
GLASS: A Graphical Query Language for Semi-Structured Data

Wei Ni Tok Wang Ling
Department of Computer Science, National University of Singapore, Singapore

E-mail: {niwei, lingtw}@comp.nus.edu.sg

Abstract

 The increase in the use of XML (eXtensible Markup
Language) makes the semistructured data more and more
important on the Web. To exploit the full power of XML
documents, a query language for semistructured data will be a
promising and interesting application. However, the XQuery
standard released by W3C is too difficult for common users to
use. Some XML graphical query languages for semistructured
data have been proposed but they are either too complex or
too limited in use. In this paper, we introduce a graphical
query language for semistructured data, which we call GLASS.
GLASS is developed on the base of ORA-SS data model, a
semantically richer data model for semistructured data. In
GLASS, we combine the advantages of graphs and texts, which
make the graphical language much clear and easy to use. The
paper presents the notations and basic capabilities of GLASS
via a series of examples with increasingly complexity. We also
discuss some complex query examples such as order, group
entity, negation and IF-THEN statement.

1. Introduction and Motivation

 Today, XML (Extensible Markup Language) has become a
standard for data representation, manipulation and exchange on
the web. From a database point of view, query engines that
allow users to extract and manage the information in XML
data will be an exciting and crucial application to exploit the
full power of XML. The current standard for querying XML
data is the XQuery released by W3C, which is developed
based on XPath. However, the XQuery is still difficult for
common users to use; and as an intuitive solution, graphical
query languages or interfaces may help people query data
sources. In this paper, we use the ORA-SS data model [10],
which is a rich semantic data model for semistructured data,
and, based on this model, we design a graphical language to
represent user queries. We tend to make the graphical language
clear and concise in expression and provide a user- friendly

query environment.
 The rest of the paper is organized as follows. In the
following two sections, we will briefly talk about the criteria of
a good query language (Section 1.1) and the requirement of
graphical query languages (Section 1.2). In Section 2, we will
introduce the data model we used, and in Section 3, we present
our graphical query language with definitions and examples.
The related work and comparison will be discussed in Section
4 and then we summarize the paper and propose the future
work in Section 5.

1.1 Criteria of a good query language

 Here we suggest three important features of a good query
language, especially from the view of users:
(1) Expressiveness: a good query language should be able to

express most user queries and the expressions should be
clear and concise without ambiguity.

(2) Completeness: a good query language should not only
support information extraction but also data manipulation
(e.g. INSERT etc.), data definition and data control.

(3) User-friendliness: Most query languages are developed
for human users and most users are not experts in
database. Thus, a good query language should be easy to
learn, easy to write and easy to read.

To meet the criteria, a graphical solution, that is a graphical
query interface or language, is an interesting and intuitive way
to build a good query environment.

1.2 The requirement of graphical query languages

 The so-called graphical query languages are known from
text-base query languages. Since the famous application of
QBE (Query By Example [9], M. M. Zloof, IBM), the
graphical query languages have evolved in two branches. One
kind of graphical query languages still use tables, nested forms,
etc to create an interface; and the other kind use vertices and
connections to express queries. However, most graphical query
languages are not so popular because of many reasons. On one
hand, QBE is a so impressive method that other languages with
tables or nested forms could hardly exceed the success of QBE;

on the other hand, graphs with vertices and connections always
perform messy and unclear for complex queries.
 Though there are many problems in graphical query
languages, the effort to make a user-friendly interface never
ends. Even the dominating text-based languages are changing
their faces in GUIs (Graphical User Interfaces). As to the XML
data, the current standard of XML query language is XQuery
[20-24]. Based on XPath [19], XSL [12] and other standards,
the XQuery language is very difficult for ordinary users to use.
Thus, the graphical query languages once again appear to be a
possible solution. Papers and developing systems make
encouraging progresses in both theory and practice. However,
there still remain many problems in developing a good
graphical query language and so this paper will discuss some
of these problems and suggest some solutions via our graphical
query language.

2. ORA-SS the data model of our language

 The ORA-SS (Object-Relationship-Attribute model for
Semi-Structured data) is a rich semantic data model for
semistructured data. Besides reflecting the nested structure, it
also distinguishes among object classes, relationship types and
attributes in ORA-SS. Moreover, the ORA-SS specifies the
participation constraints of object classes in relationship types
and indicates whether an attribute belongs to an object class or
a relationship type, which is the information lacked in OEM
(Object Exchange Model) and DOM (Document Object
Model). With the help of the semantic information in ORA-SS,
we can develop a much powerful graphical query language for
semistructured data.

Before we discuss our query language, we give an
introduction about ORA-SS. Suppose we have a DTD (named
as “Department.dtd”) of the XML document “Depart-
ment.xml” as Figure 1. The DTD in Figure 1 specifies the
information about departments, courses and students. Every
department has a unique name and provides one or many
courses; every course has a unique course code, a title and one
or many students; and every student has a unique student
number, a grade under the course and his/her own name. The
ORA-SS schema diagram of the DTD is in Figure 2.
 In ORA-SS, department, course and student are treated as
object classes that are represented by labeled rectangles. The
name of the department, course code and title, student number
and name and the grade are treated as attributes under the
corresponding object classes by using circles. The filled circles
are the primary keys. The arrows indicate the nested structure
of the schema and the labels on the edges are for relationship
types. The label “2, 1:n, 1:1” near the arrow from department
to course means: there is a binary relationship type between
department and course; and one department can has one or
many courses while one course can only belong to one
department. The label “cs, 2, 1:n, 1:n” near the arrow from

course to student means: there is a binary relationship type,
named as “cs”, between course and student where one course
may has one or many students and one students can take one or
many courses. The “cs” label near the arrow from student to
grade indicates that the grade is an attribute that belongs to the
relationship type “cs” rather than the object class student. This
semantic information cannot be expressed in DTD, XML
schema and OEM.

 As a superset of DTD, the ORA-SS schema needs some
semantic announcements from users [7]. Ignoring the labels on
the edges, which are for relationship types, the ORA-SS
schema diagram exactly reflects the nested structure of DTD.
However, the labels of relationship types help us distinguish
relationship type attributes from object class attributes. As a
result, such kind of semantic information will aid us with view
validation[6] in query processing.

3. Our graphical query language

 Our graphical query language, which we call GLASS
(Graphical Query Language for Semi-Structured Data), is
developed as a graphical language for users to extract
information from semistructured data. The language should be
able to express various queries clearly and concisely without
ambiguity, and be simple to draw and easy to read. It should
support aggregation functions, negation and other XQuery
standards, which will be discussed in this paper. Other
functionalities like data manipulation, control and integration
will not be included in this paper.

In this section, we firstly introduce the general ideas
including the basic and advanced concepts in GLASS (in
Section 3.1.1 and 3.1.2) and the output construction (3.1.3).
Following that, we show how to express the basic queries such

<!ELEMENT department (course+)>
 <!ATTLIST department name ID #REQUIRED>
<!ELEMENT course (title?, student+)>
 <!ATTLIST course code ID #REQUIRED>
<!ELEMENT title PCDATA>
<!ELEMENT student (name?, grade+)>
 <!ATTLIST student number #IMPLIED>
<!ELEMENT name PCDATA>
<!ELEMENT grade PCDATA>

Example 1:

Figure 1. The “Department.dtd”

department

course

student

name

code title

number name grade

2, 1:n, 1:1

cs, 2, 1:n, 1:n

cs

Figure 2. The ORA-SS schema diagram of
“Department.dtd”

as Selection, Projection (3.2.1) and Join (3.2.2). After that we
present the aggregation functions (3.2.3) and the queries on
order sensitive data (3.2.4). Finally, in Section 3.3, we give
some complex query examples that are difficult to express in
other graphical query languages.

3.1 General concepts in GLASS

In GLASS, we use graphs to express user queries. Based
on the ORA-SS model, most notations in GLASS are reused
from the ORA-SS diagram.

3.1.1 Basic concepts

(1) Data Icons:
 We basically have two data icons: rectangles and circles,
which are the vertices in query graphs.
(a) Rectangles represent the object classes in ORA-SS. If we

map the rectangles into the XML schema, they are all non-
terminal elements in XML (element with subelements or
attributes).

(b) Circles represent the attributes in ORA-SS, both object
class attributes and relationship type attributes. When we
match the circles into the XML schema, they are all
terminal elements with PCDATA only and the attributes
(or attribute lists) in XML.

(2) Connections:
 Beside the icons, the connections in the query graphs also
take important roles.
(a) Arrow: the first connection is the arrows that are used to

represent the relationships.
(b) Dashed arrow: the dashed arrows are used to represent the

IDREF in XML. Both types of arrows, the solid or dashed,
are reused from ORA-SS diagram.

(c) Line: the solid lines are used to specify constraints between
outputs and original data in the query graphs. The line is
not derived from ORA-SS, but XML-GL [4, 5], we will
see the use of line in Query 7 (in Section 3.2.1.).

(3) Box:
 The box is used to indicate group entities in our query
graphs. The group entity consists of all rectangles or circles
inside the box. In the query graph, a boxed group entity can be
regarded as a complex vertex. The use of box will be
mentioned in Section 3.3.1.

3.1.2 Advanced concepts

(1) Derived entities:
 Derived entities, including derived object classes and
attributes are represented as dashed rectangles and dashed
circles. The dashed data icons are treated the same as solid
ones in constructing outputs since they are the new data types
defined by users (See Figure 9 in Section 3.2.3.)
(2) Condition Logic Window (CLW):
 The condition logic window is an optional part in a GLASS

query. It is a place to write logic expressions and statements
(e.g. IF-THEN) for complex query conditions rather than draw
them in the graph. The use of CLW will be discussed in 3.3.
(3) Path Identifier and Condition Identifier:
 Both identifiers are user-defined unique names of entities in
query graphs. The entities here include all data icons,
connections and boxes.
 The path identifiers are the unique names given to data
icons or boxes. They start with “$” and are assigned at the right
side of data icons or boxes between two “:”s. The path
identifiers are used to represent the corresponding entities in
query graph.

The condition identifiers are the unique names given to the
connections. They are assigned between two “:”s after the
typename of the connection without beginning with “$”. The
typename of the connection can be omitted when it is “default”.
The condition identifiers stand for certain parts of query
conditions.

To both identifiers, the colons are not parts of the
identifiers but distinguish them from the names of
relationship types.
(4) Logic Expression and Statement:

Both logic expressions and statements are written in CLW.
The statements are quoted by a pair of braces (“{}”) to be
distinct from logic expressions. The logic expression specifies
the logic over or among the conditions in query while the
statement helps construct complex outputs.

3.1.3 Construct output

One of the important features of XML data is the flexibility
in its schema. One set of information can be organized in
different ways according to different users. Therefore, we
should allow user to define the needed output structure in
GLASS.
 Recall the DTD file “Department.dtd” from Example 1 in
Figure 1. The “Department.xml” in Figure 3 is supposed to be

<?xml version = “1.0” standalone = “no” encoding = “UTF-8”>
<DOCTYPE BOOK SYSTEM “Department.dtd”>
<department name=“CS”>
 <course code=“201”>
 <title>Software Engineering</title>

<student number=“1001”>
 <name>John Smith</name>
 <grade>A</grade>
 <grade>B</grade>
</student>
<student number=“1002”>
 <name>Mel Green</name>
 <grade>C</grade>
 <grade>A</grade>
</student>

</course>
 <course code=“303”>
 <title>Database Design</title>

<student number=“1001”>
 <name>John Smith</name>
 <grade>B</grade>
</student>

 </course>
</department>

Figure 3. The content of “Department.xml”

the document according to the definition in “Department.dtd”.
In Figure 4, we list series queries to construct different

outputs and, based on the data in Figure 3, we compare the
result in Figure 5.

Query 1. Extract courses and all information one level under
course elements by using the default output method;
Query 2. Extract courses and all information at all levels under
course elements by using the default output method;
Query 3. Extract courses with all attributes of course element
in the original XML document;
Query 4. Extract courses and all terminal entities at one level
under course elements;
Query 5. Extract courses and all entities (both terminal and
nonterminal ones) at one level under course;
Query 6. Extract courses with their titles as attributes and
codes as subelements in the output.

As we can see in Figure 5, by using the default output
method, everything will be kept in the original style from
source data as in Query 1 and Query 2. The wildcard “*” in
Query 2 means all nested levels under course element. Query
3 extracts courses and all attributes of course elements in XML
document. The symbol “@” near the circle implies all
attributes of course element in the original XML document.

Query 4 extracts courses and all terminal entities at one
level under course elements. The so-called terminal entities are
those leaf entities in the ORA-SS schema diagram. A terminal
entity can be an attribute or a simple element with PCDATA
only. The nonterminal entities are the elements with
subelements or attributes in XML. Therefore, Query 4 only
extracts course codes and titles. Query 5 uses a rectangle to
extract the nonterminal entities one level under course
elements such as “student”. Since we just extract the entities at
one level under course, the student number at the second level
under course doesn’t appear in the result. Also, the student
elements appear NULL since they haven’t any contents except
subelements and/or attributes.

Query 6 is a demonstration of the conversion between
attribute and subelement.

3.2 Basic query operators

 In this section, we present how we use GLASS to
represent the basic query operators in most query languages:
Selection, Projection and Join. Besides, the aggregation
functions and the queries on order sensitive data will also be
discussed.

3.2.1 Selection and projection

 Now we demonstrate how we express selection and
projection in GLASS in comparison with XQuery.
Query 7. FOR $c IN $department/course
 WHERE $c/@code/data() = ‘2%’
 RETURN $c

Query 1: Extract courses with the information at one level under
course elements by using the default output method

<course code=“201”>
 <title>Software Engineering</title>
</course>
<course code=“303”>
 <title>Database Design</title>
</course>

Query 2: Extract courses with all information at all levels under
course elements by using the default output method

<course code=“201”>
 <title>Software Engineering</title>
 <student number=“1001”>
 <name>John Smith</name>
 <grade>A</grade>
 <grade>B</grade>
 </student>
 <student number=“1002”>
 <name>Mel Green</name>
 <grade>C</grade>
 <grade>A</grade>
 </student>
</course>
<course code=“303”>
 <title>Database Design</title>
 <student number=“1001”>
 <name>John Smith</name>
 <grade>B</grade>
 </student>
</course>

Query 3: Extract courses with all their attributes in the original
XML document.

<course code=“201”></course>
<course code=“303”></course>

Query 4: Extract courses with all terminal entities at one level
under course elements

<course code=“201”>

<title>Software Engineering</title>
</course>
<course code=“303”>
 <title>Database Design</title>
</course>

Query 5: Extract courses with all entities at one level under course
elements

<course code=“201”>

<title>Software Engineering</title>
<student></student>
<student></student>

</course>
<course code=“303”>
 <title>Database Design</title>

<student></student>
</course>

Query 6: Extract courses with their titles as attributes and codes as
subelements in the output

<course title=“Software Engineering”>

<code>201</code>
</course>
<course title=“Database Design”>
 <code>303</code>
</course>�

Figure 5. The corresponding outputs of Queries 1 to 6

@

Figure 4. Queries 1 to 6, the basic ways of output
construction

 Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

course course

*

course course course

course

code

@title

The XQuery expression in Query 7 select all courses whose
codes begin with “2”. In the XQuery expression, $c is a
variable of element type “department/course” and “data()” is a
keyword to extract data under the given path “$c/@code/”. We
express the query as the graph in Figure 6.
 To project all courses with their titles, XQuery will give the
following expression:
Query 8. FOR $c IN $department/course
 RETURN <course>{ $c/title }</course>
This query will display all courses and extract their titles as
subelements. In Figure 6, we draw this query as a simple
construction.

The GLASS queries generally have two parts separated by
a vertical line. The left hand side (LHS) is used to specify
conditions, which is optional (See Query 8 where there is right
hand side only.). In contrast, the right hand side (RHS) is used
to define the output, which is compulsory. The solid line
connecting two courses on both sides is a constraint that the
courses in the result on the RHS are just the courses that satisfy
the conditions on the LHS. In Query 7, the RHS has the same
structure as Query 2 in Figure 4. Thus it will pick out all
courses whose codes begin with “2” and extract all information
of those courses in the same format as Query 2 does.

3.2.2 Join

 In this section we discuss the third basic query operation,
join. Suppose we have another XML data named as
“Description.xml” containing the descriptions of all courses;
and the DTD and ORA-SS schema diagram (Figure 7) of
“Description.xml” is shown as follows.
Query 9. To extract everything of the courses from
“Department.xml”, which have descriptions in “Des-
cription.xml”, and put the corresponding descriptions under the
books in the results (See Figure 8).

Notice that, in Figure 8, the line connects the course in the
output with the course under “Department.xml” rather than
“Description.xml”, which indicates that the extracted
information about the courses comes from “Department.xml”
as mentioned in Query 9. Thus, the result will contain the
student information and grade as in “Department.xml”.
Without this line or change the connection to the course under
“Description.xml”, the query meaning and the result will also
be changed.

Similarly, the line connecting the description in the result

with the description under the course from “Description.xml”
means that, in the result, the description elements come from
“Description.xml”. Without this line, the description elements
in the result will be NULL since the course in “Depart-
ment.xml” doesn’t have a subelement called “description”

3.2.3 Aggregation functions

 The GLASS also supports aggregation functions over
results, such as “max”, “min”, “avg”, etc. Since the output
value after aggregation process may not be the original data,
we use derived data types to express the aggregation results.
Query 10. For all courses, display courses with their
information (in default way) and the average grade of each
course (Figure 9).
 The “_group” label beside the arrows from course to
student means: to group student under course. The element
type “avg_grade” is a derived attribute in the results, which is
the average grade of all students’ grades grouped under one
course. The hexagon labeled as “AVG” is the aggregation
function to get average value of grades of student grouped by
course.

3.2.4 Query order sensitive data

In XML, the data can be order sensitive. In ORA-SS, we
express the order sensitive data by using the symbol “<”. The
diagram in Figure 10 represents an order sensitive data
“Bib.xml”. The “<” symbol in the binary relation means the
“author” order is important to “book” in the relation.

course course

 code
=‘2%’

 *

Figure 6. Selection (Query 7)
and Projection (Query 8) in GLASS.

course

title

 Query 7 Query 8

Figure 9. Query 10, aggregation function “average” over
result

course

student

_group

cs

grade

course

avg_grade
AVG

FROM
Department.xml

course

FROM
Description.xml

course

code description

course

*

description

Figure 8. Query 11 in GLASS, join from two documents

course

 code title description

<!ELEMENT course (title?, description)>
 <!ATTLIST course
 code ID #REQUIRED>
<!ELEMENT title PCDATA>
<!ELEMENT description PCDATA>

Figure 7. The DTD and the ORA-SS schema diagram of
“Description.xml”

 DTD ORA-SS schema diagram

Query 11. Display all books with their isbn’s, titles and their
first authors (Figure 11).

The “[1]” operator beside the author means to return the
value of the first author element of a certain book.

3.3 Advanced features of GLASS

 In this section, we tend to introduce box and Condition
Logic Window to express more complex queries. The queries
are based on the data about projects, members and publications.
The ORA-SS diagram of the data is shown in Figure 12.
 There are two relations in Figure 12. One is a binary
relationship type between project and member and the other is
a ternary relationship type among project, member and
publication. For the binary relationship, one project can have
one or many members and one member can attend one or
many projects. As to the ternary relationship, one member in
one project can write zero or many publications while one
publication can belong to one or many (project, member) pairs.

3.3.1 Group entity

 In GLASS, we use box to express group entity in query.
Query 12. Display the members with names who have taken
part in less than 5 projects but written more than 6 publications
in some project they attended, and their names begin with the
character “S” (Figure 13).

 The box includes member and project, which makes a
group entity, that is, pairs of member and project. The
“_group” label near the arrow from the box to publication
means: to group publication under each pair of (member,
project). Since the member’s name is not inside the group
entity, it should be outside the box. The “CNT” is the short
form of count, which is an aggregation function after group
operation.
 Another important thing is that the position between
member and project has been changed from the original
schema. We call the GLASS query graphs as view graphs
because it is exactly a user defined view instead of tying him
with the original data schema. This is much more flexible for
user to focus on what he want to query rather than how he
could draw a query. The further consideration may lead to the
problem that whether the user-defined view is valid or not.
With the semantic information included in ORA-SS model, we
check the view validation [6] and the technology is beyond the
scope of this paper.

 In Query 12, the box is very important because it explicitly
specifies the group entities. In contrast, Query 13, which has no
box, makes a totally different meaning.
Query 13. Display the members with names who have totally
taken part in less than 5 projects and totally written more than 6
publications, and their names begin with character “S”.

The first difference in Query 13 from Query 12 is that there
is no box in the graph. The publication is grouped under
member directly. However, to group publication under
member in the ternary relationship among project, member and
publication may cause duplicates in the results when a member
has written one publication for two or more projects. Hence we
use “CNT_UNIQUE” here, which is the second difference
from Query 12, instead of “CNT” to eliminate duplicates in
count.

3.3.2 Negation

 As mentioned in Section 3.1.2, we can use Condition Logic
Window to express complex query conditions in GLASS.
Here is an example of negation.
Query 14. Display the members with their names who haven’t
written any publication titled “Introduction to XML”.

author

book

isbn title [1]

Figure 11. Query 11, find the first author

Figure 10. The ORA-SS schema diagram of “Bib.xml”,
order-sensitive data

Example 2:

 isbn title

firstname lastname

2, +, +, <

 content
author

book

_group

member

name
= ‘S%’

project

_group

publication

CNT < 5

CNT > 6

member

name

Figure 13. Group with boxes (Query 12) and without boxes
(Query 13)

member

name

member

name
= ‘S%’

project

_group

publication

CNT < 5

CNT_UNIQUE > 6

_group

 Query 12 Query 13

project

member

publication

 id name

name job_title

 number title

2, +, +

3, *, +

Example 3:

Figure 12. The ORA-SS schema diagram of the data about
“project, member and publication”

In Query 14, “A” is a condition identifier, which stands for
the condition that member has some publication titled as
“Introduction to XML”. Then we put the logic expression “¬∃
A;” in CLW, which means “not exist condition A” in the
selected member. Here, “∃ ” is the Existential quantifier and
“¬” is the logic operator “NOT”. Other logic operators such as
“∧ ” (and), “∨ ” (or) and “XOR” (disjunctive operator) as well
as the universal quantifier “∀ ” are also available in GLASS.

3.3.3 IF-THEN Statement

 In some queries, the output may be conditionally organized
such as “if some condition is satisfied, display the result in
some way, otherwise, in some other way”. We express the
statements in GLASS as follows.

Query 15. Display the members with their names who have
written a publication titled “Introduction to XML” or
“Introduction to Internet”; and for those members who have
written “Introduction to XML”, also display all information
about the projects that they have attended in (Figure 15).
 The part inside a pair of braces in the CLW is the IF-THEN
statement that we use to express the query. Without this IF-
THEN statement, the information of the projects of the
members who have written “Introduction to XML” or
“Introduction to Internet” will be displayed. The IF-THEN
statement here secures that only when a member who has
written “Introduction to XML” (i.e. when the condition “A” is
satisfied), the information of the project of the member that is
identified as “$pro” will be extracted. Recall from Section

3.1.2, “$pro” is a path identifier. The prefix “$” distinguishes
path identifiers from condition identifiers.
 Notice that the result of Query 15 will display the selected
member in the original member order from the source data,
and for those who have written “Introduction to XML”, the
project information of them are also displayed.

4. Related works and comparison

 When we talk about the graphical query language, QBE
may be the first application that appears in our topic. As we
mentioned in Section 1.2, QBE is both the language name and
the system name of the early application by IBM in 1970s [9]. It
is designed for relational database with table-like interfaces.
QBE can express most SQL queries including selection,
projection, join, aggregation and transitive closure. Along with
the success of QBE, many graphical languages for relational
data appear such as QBD* [2], GM (Graph Model) [3], GrIT [11]
and Condor [14] etc.
 As to the semistructured data like XML, the graphical query
languages for relational data cannot be simply modified even if
we manage to store the data in an Object-Oriented and/or
Relational Database Management System (OO/RDBMS) [1, 16]
because there is no relation in XML schema and the XML
documents are tree-structured data.
 Before we design the GLASS, there is only one graphical
language designed for XML. Its name is XML-GL [4, 5], which
shares some similarities with our GLASS.
 XML-GL is built on the base of a graphical representation of
XML documents and DTDs, which is called XML graphs.
XML graph represents the XML documents and DTDs by
means of labeled graphs. All XML-GL queries consist of two
parts, left hand side (LHS) and right hand side (RHS), which are
similar to the Query 7 in Figure 6. The LHS of XML-GL
indicates the data source and conditions, and the RHS constructs
the output.
 The main difference between GLASS and XML-GL is the
data model. GLASS uses ORA-SS data model that is a superset
of DTD and XML Schema. The semantic information in ORA-
SS secures the view validation; and the GLASS queries are view
graphs constructed by the users as their wishes. However, based
on the DTD or XML Schema, XML-GL has no mechanism to
secure view validation. Thus, the LHS of XML-GL, which is the
instance of the query, must keep the original data structure in
XML graphs. Although users can construct the output, XML-
GL doesn’t know whether the construction is valid or not.
 Compared with GLASS, XML-GL query graphs can be very
sophisticated. XML-GL doesn’t indicate the group entities
explicitly and has ambiguity in expression (especially when
expressing IF-THEN statement in output construction).
 Other graphical XML query languages use nesting forms to
express the nesting data structure in DTDs and/or XML Schema.
Such applications as Graphical XML Query Language [13] and
XMLApe Query Language [15] are exactly graphical user-

CLW
A ∨ B;
{IF (A) THEN EXTRACT $pro;}

member

publication

title
= “Introduction

to XML”

: A :

publication

 : B :

title
= “Introduction

to Internet”

member

name
project : $pro :

Figure 15. Query 15, IF-THEN statement to construct
complex output

member

name

member

publication

title
= “Introduction to XML”

: A :

CLW
 ¬∃ A;

Figure 14. Query 14, negation in query

interfaces for users to query XML data. Users assign values into
the forms to define the instances of queries. The first problem of
these two graphical query languages is that neither of them
support user-defined output construction. Besides, both use color
to express join fields, which is not a good solution since some
color can be very similar and the color only supports equijoin.

The Table 1 compares our graphical query language with
XML-GL, Graphical XML Query Language and XMLApe
Query Language.

5. Conclusion and future work

 GLASS (Graphical query Language for Semi-Structured
data) is a powerful visual language to express queries on XML
data. Based on ORA-SS, the GLASS creates a query
environment of freedom, which allows user construct any view
graphs that he thinks in the most natural way. GLASS combines
the advantages of graphs and texts, which keeps the graphical
part clear and makes the textual part easily understood.
 The future research work on GLASS is that: we firstly need
to enhance the language, map the graphical expression into
XQuery standard; then in the second step, we will expand the
content of GLASS including data manipulation (e.g., INSERT,
etc), data integration, and view maintenance to exploit the power
of graphical method for querying XML data sources.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom and J. Wiener. The
Lorel Query Language for Semistructured Data. Department of
Computer Science, Stanford University. International Journal on Digital
Libraries, 1(1):68-88, Apr. 1997.
[2] M. Angelaccio, T. Catarci, and G. Santucci. QDB*: A graphical
query language with recursion. IEEE Transactions on Software
Engineering, 16(10):1150-1163, 1990.
[3] T. Catarci, S.K. Chang, M.F. Costabile, S. Levialdi, and G. Santucci.
A graph-based framework for multiparadigmatic visual access to
databases. IEEE Transactions on Knowledge and Data Engineering,

8(3):455-475, 1996.
[4] S. Ceri, S. Comai, E. Damiani, P, Fraternali, S. Paraboschi, and L.
Tanca. XML-GL: a graphical language of querying and restructuring
XML documents. In Proc. WWW8, Toronto, Canada, May 1999
[5] S. Ceri, S. Comai, E. Damiani, P. Fraternali, and L. Tanca. Complex
Queries in XML-GL. SAC (2) 2000: 888-893
[6] Yabing Chen, Tok Wang Ling, Mong Li Lee: Designing Valid XML
Views. To appear in the proceedings of 21st International Conference on
Conceptual Modeling (ER'2002), October 7-11, 2002, Tampere, Finland.
[7] Zhuo Chen. Extracting Schema from XML Documents. SoC, NUS.
Honours Year Project Report.
[8] Sara Comai, Ernesto Damiani, Letizia Tanca. The WG-Log System:
Data Model and Semantics. INTERDATA technical report, T2-R06,
July 1998.
[9] C. J. Date. An Introduction to Database Systems. 3rd Edition,
Addison-Wesley Publishing Company, 1981.
[10] Gillian Dobbie, Wu Xiaoying, Tok Wang Ling, Mong Li Lee:
ORA-SS: An Object-Relationship-Attribute Model for Semistructured
Data. TR21/00, Technical Report, Department of Computer Science,
National University of Singapore, December 2000.
[11] P.W. Eklund, J. Leane, and C. Nowak. GrIT: An implementation of
a graphical user interface for conceptual structures. Technical Report
TR94-03, Computer Science Department, The University of Adelaide,
February 1994.
[12] Extensible Stylesheet Language (XSL) Specification. W3C
Working Draft. Apr 1999. http://www.w3.org/TR/1999/WD-xsl-
19990421/
[13] Ankur Gupta, Zahid Khan. Graphical XML Query Language.
Course paper. College of Computing, Georgia Institute of Technology,
Sep 2000
[14] Joshua S. Hodas, Robert M. Keller, Ingo Muschenets, Jeffrey
Polakow, Amy R. Ward and Will Ballard. Condor: A Simple,
Expressive Graphical Database Query Language. Department of
Computer Science, Harvey Mudd College. Computer Science Technical
Report HMC-CS-97-04.
[15] Leo Mark, etc. XMLApe. College of Computing, Georgia Institue
of Technology.
http://www.cc.gatech.edu/projects/XMLApe/
[16] Yuanying Mo, Tok Wang Ling. Storing and Maintaining
Semistructured Data Efficiently in an Object-Relational Database.
Research Report. SoC, NUS.
[17] Jan Paredaens, Peter Peelman, Letizia Tanca. G-Log: A Graph-
Based Query Language. IEEE Transactions on Knowledge and Data
Engineering, 7(3):436--453, June 1995.
[18] Jayavel Shanmugasundaram, Kristin Tufte, Gang He, Chun Zhang,
David DeWitt and Jeffrey Naughton. Relational Databases for Querying
XML Documents: Limitations and Opportunities. VLDB 1999: 302-314
Department of Computer Sciences, University of Wisconsin-Madison.
[19] XML Path Language (XPath) 2.0. W3C. Apr 2002.
 http://www.w3.org/TR/xpath20/
[20] XML Query Requirements. W3C. Feb 2001.
http://www.w3.org/TR/xmlquery-req
[21] XML Syntax for XQuery 1.0 (XQueryX). W3C. Jun 2001.
http://www.w3.org/TR/xqueryx
[22] XQuery 1.0 and XPath 2.0 Data Model. W3C. Apr 2002.
http://www.w3.org/TR/query-datamodel/
[23] XQuery 1.0 and XPath 2.0 Functions and Operators Version 1.0.
W3C. Apr 2002. http://www.w3.org/TR/xquery-operators/
[24] XQuery 1.0 Formal Semantics. W3C. Mar 2002.
http://www.w3.org/TR/query-semantics/

 GLASS XML-GL
[4, 5]

Graphical
XML Query

Language [15]

XMLApe
[17]

Data Model ORA-SS XML
Graphs XML DTD XML

Schema
Selection, Projection
and Join

Yes Yes Yes Yes

Query Order Yes Yes No No
“Group by” operator
and Aggregation
function

Yes Yes No No

Negation Yes No No No
Qualifiers (∀ , ∃) Yes No No No
Conditional output
construction (e.g. IF-
THEN clause)

Yes No No No

User-defined View Yes Yes No No
View Validation Yes No No No

Table 1. Comparison among GLASS, XML-GL,
Graphical XML Query Language and XMLApe

