
AUTOMATED GENERATION OF AN EFFICIENT MPEG-4 RECONFIGURABLE VIDEO
CODING DECODER IMPLEMENTATION

Ruirui Gu, Jonathan Piat, Mickael Raulet, Jorn W. Janneck, Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, University of Maryland
College Park, MD, 20742, USA, Email: rgu, ssb@umd.edu

IETR Laboratory, UMR CNRS 6164, Image and Remote Sensing Group,
35043 RENNES Cedex, FRANCE, Email: jonathan.piat, mraulet@insa-rennes.fr

United Technologies Research Center, Berkeley, CA, USA, Email: jannecjw@utrc.utc.com

ABSTRACT

This paper proposes an automatic design flow from user-

friendly design to efficient implementation of video process-

ing systems. This design flow starts with the use of coarse-

grain dataflow representations based on the CAL language,

which is a complete language for dataflow programming of

embedded systems. Our approach integrates previously de-

veloped techniques for detecting synchronous dataflow (SDF)

regions within larger CAL networks, and exploiting the static

structure of such regions using analysis tools in The Dataflow

interchange format Package (TDP). Using a new XML for-

mat that we have developed to exchange dataflow informa-

tion between different dataflow tools, we explore systematic

implementation of signal processing systems using CAL,

SDF-like region detection, TDP-based static scheduling, and

CAL-to-C (CAL2C) translation. Our approach, which is a

novel integration of three complementary dataflow tools —

the CAL parser, TDP, and CAL2C — is demonstrated on an

MPEG Reconfigurable Video Coding (RVC) decoder.

1. INTRODUCTION

Upcoming MPEG video coding standards are intended to

increase the quality and flexibility of complex and versa-

tile future video coding applications. Since 1988, several

MPEG standards have been developed successfully based on

available hardware technologies and software support. Early

MPEG standards (MPEG-1 and MPEG-2) were specified by

textual natural-language descriptions. Starting with MPEG-4,

reference software written in C/C++ became the formal speci-

fication of the standard. Written in a sequential programming

language, this reference software describes a sequential al-

gorithm, effectively hiding the considerable inherent concur-

rency of a video decoder. Furthermore, the reliance on global

memory and state makes the reference description difficult

to modularize, resulting in a very monolithic specification

format.

At the same time, multi-core devices, which incorporate

two or more processors on the same integrated circuits, are

becoming increasingly relevant to the design and implemen-

tation of DSP systems (e.g., see [1]). Efficient deployment

of video processing applications on multi-core systems re-

quires effective parallel exploitation of task level concurrency

in order to improve system performance. The drawbacks of

existing video standard specification formats and the increas-

ing importance of multi-core platform technologies motivated

the development of the Reconfigurable Video Coding (RVC)

standard [2]. The key concept of RVC is to enable design and

specification of decoders at a higher level of abstraction than

that provided by generic, monolithic C-based specifications,

and improve high level application analysis and optimization,

including exploitation of parallel processing resources.

Dataflow-based programming, with its intrinsic concur-

rency, is employed in a wide variety of commercial and

research-oriented tools related to digital signal processing

(DSP) system design. Dataflow modeling techniques under-

lie many popular graphical tools for DSP system design (e.g.,

see [3]). In DSP-oriented dataflow graphs, vertices (actors)

represent computations of arbitrary complexity, and an edge

represents the flow of data as values are passed from the

output of one computation to the input of another. A variety

of dataflow-based languages and tools have been developed

for design and implementation of embedded DSP systems.

Although all of these languages share the property of data-

driven communication between actors, distinct languages

generally differ in terms of specialized dataflow modeling

features and associated support for analysis and optimization

techniques.

Synchronous dataflow (SDF) is a specialized form of

dataflow that is streamlined for efficient representation of

DSP systems [4]. SDF is a restricted model that handles a

limited sub-class of DSP applications, but in exchange for

this limited expressive power, SDF provides increased poten-

tial for static (compile-time) optimization of DSP hardware

and software (e.g., see [5]).

In Proceedings of the Conference on Design and Architectures for

Signal and Image Processing, Edinburgh, Scotland, October 2010.



A number of dataflow-based formalisms have been devel-

oped to describe applications that involve dynamic dataflow

behavior. For example, CAL [6] is a language for specifying

dataflow actors in a way that is fully general (in terms of ex-

pressive power), while clearly exposing functional structures

that are useful in detecting important special cases of actor

behaviors (e.g., SDF or SDF-like actor behaviors). The CAL

language, in terms of its high level of abstraction, is similar to

the Stream-Based Functions (SBF) model of computation [7].

Both models share common features relating to modeling of

dynamic dataflow behaviors. However, SBF combines the se-

mantics of both dataflow models and process network mod-

els, while CAL extends the dataflow model by enriching the

properties of individual actors. Furthermore, CAL is a fully-

featured programming language, providing both an abstract,

dataflow model of computation as well as a comprehensive

set of operators and other semantic features for completely

specifying the internal behavior of dataflow components.

The DIF language (TDL) provides a standard approach

for specifying DSP-oriented dataflow graphs at a high level

of abstraction that is suitable for both programming and

interchange (across different dataflow-based languages or

tools) [8]. TDL provides a unique set of semantic features

for specifying graph topologies, hierarchical design struc-

ture, dataflow-related design properties, and actor-specific

information. TDP (The DIF Package) accompanies TDL,

and provides a variety of intermediate representations, anal-

ysis techniques, and graph transformations that are useful

for working with dataflow graphs that have been captured by

TDL.

In order facilitate integration of TDL and TDP into design

flows, we present in this paper a common XML-based format

called DIFML. DIFML is designed for structured exchange of

design information between different dataflow-based specifi-

cation formats, such as TDL and CAL.

In previous work, we have formulated systematic stati-

cally schedulable region (SSR) detection and implemented

SSR region detection using TDP (The DIF Package) [9].

Code generation from CAL to C (CAL2C) has also been

developed in previous work [10], and we have explored inte-

grated application of CAL, TDP, and CAL2C using manual

techniques [9]. Simulation results from such manual inte-

gration demonstrated that the integrated application leads to

improved exploitation of parallelism [11].

This paper builds on these previous efforts, and presents

an automated approach for integrating SSR derivation into

implementations that are synthesized from CAL specifica-

tions. To facilitate such an automated and integrated design

flow, we also present in this paper a new XML-based for-

mat, called DIFML, which we have developed to exchange

information between different dataflow tools. We present

experimental results on a reconfigurable video coding ap-

plication to demonstrate the effectiveness of our automated

toolset.

2. RELATED WORK

2.1. Reconfigurable Video Coding

The desire for a more compositional approach to building ex-

isting and future video standards, and for a shorter path to par-

allel implementation has led to the development of the recon-

figurable video coding (RVC) standard [2]. The MPEG RVC

framework is a new standard under development by MPEG

that aims at providing a unified high-level specification of cur-

rent and future MPEG video coding standards. Rather than

building a monolithic piece of reference software, RVC stan-

dardizes an “Abstract Decoder Model” (ADM) composed of

a network that interconnects a set of video coding tools with

uniform interfaces extracted from a library. Decoder descrip-

tions are composed from that library, which permits a wide

range of decoding algorithms.

The MPEG RVC framework is currently under develop-

ment in MPEG as part of the MPEG-B part 4 [12] and MPEG-

C part 4 [13] standards. An abstract decoder is built as a block

diagram or “network” in which blocks define processing en-

tities called functional units (FUs), and connections represent

data paths between the FUs. Such a network is described in

MPEG-B part 4 as an XML dialect called the FU Network

Language (FNL). RVC also provides in MPEG-C part 4 a

normative standard library of FUs, called the “Video Tool Li-

brary (VTL)”, and a set of decoder descriptions expressed as

networks of FUs.

CAL is currently chosen as the language to express the

behavior for the coding tools of the library (VTL). Such a

representation is modular and helps in formulating the po-

tential configuration of decoders in terms of modifications of

network topologies. The ADM is a CAL dataflow program

that constitutes the conformance point between the normative

RVC specification and all possible proprietary implementa-

tions that have to be generated to decode the incoming bit-

streams. Thus the MPEG RVC standard leaves open the plat-

forms and the implementation methodologies that can be used

to generate proprietary RVC implementations. This provides

great flexibility in the development of future RVC technolo-

gies and implementations.

2.2. Design Flow

Embedded system design and implementation can be a time-

consuming process requiring intensive effort, resources, and

time. Hardware description languages (HDLs), such as Ver-

ilog HDL [14], are widely used in the design of embedded

systems. In an attempt to reduce the complexity of design-

ing in HDLs, which have been compared to the equivalent

of assembly languages, a variety of efforts have emerged to

raise the abstraction level of associated design processes. For

example, companies such as Cadence, Synopsys and Agility

Design Solutions are promoting SystemC as a way to com-

bine high level languages with concurrency models to allow



faster design cycles for FPGAs than is possible using tradi-

tional HDLs.

Approaches based on standard C or C++ (with libraries

or other extensions allowing parallel programming) are found

in the Catapult C tools from Mentor Graphics, and in the Im-

pulse C tools from Impulse Accelerated Technologies. Lan-

guages such as SystemVerilog [15] seek to accomplish the

same goal, but are aimed at making hardware engineers more

productive versus making FPGAs more accessible to software

engineers.

There are also a number of high level languages targeting

embedded systems. For example, StreamIt [16] is a program-

ming language for high-performance streaming applications.

Annapolis Micro Systems, Inc.’s CoreFire Design Suite and

National Instruments LabVIEW FPGA provide a graphical

dataflow approach to high-level design entry. Our work in

this paper is related to such efforts in being tightly coupled

with CAL, which is a language oriented towards design and

implementation of embedded systems from a high level of

abstraction. In addition to the coupling with CAL, another

distinguishing aspect of our work is its focus on the domain

of video processing, and in particular, reconfigurable video

coding.

2.3. XML format

The extensible markup language, widely known as XML, is

a markup language that was created by the World Wide Web

Consortium (W3C) to overcome limitations of HTML. Like

HTML, XML is based on SGML — the Standard General-

ized Markup Language. Although SGML has been used in

the publishing industry for decades, its perceived complexity

intimidated many people that otherwise might have used it.

XML was designed with the Web in mind.

A major advantage of XML is that one can encode doc-

ument information more precisely compared to HTML. This

means that programs processing these documents can “under-

stand” them much better and therefore process the informa-

tion in ways that are not possible for ordinary text processors.

One major application of XML is to make web pages with

decent layout that are universally accessible, regardless of

browser type. XML also lets one check whether or not op-

tional features are present, and allows for invocation of al-

ternative code to take care of cases where such features are

missing.

XML is a promising candidate for carrying data associ-

ated with high level text based languages for subsequent use.

XML itself is designed to be self-descriptive, which ensures

that all of the information from the original file can be under-

stood by other applications. XML tags are not predefined by

users. It can be convenient for users to design appropriate tags

to describe the context of the information being exchanged.

Representing different languages using a common XML

format allows for integrated use of heterogeneous languages

within a design flow, thereby allowing designers to combine

the unique strengths and features associated with different

languages. In our work, as shown in Figure 1, we use CAL to

design the targeted system, DIF to optimize the system, and

Cal2C as a back-end implementation process. The interfaces

in our design flow between CAL and DIF, and between DIF

and Cal2C, are based on CALML (an XML-based format as-

sociated with CAL), and DIFML, respectively.

Fig. 1. Automation of efficient video processing system gen-

eration.

3. AUTOMATED APPROACH

Our proposed design-to-implementation process is illustrated

in Figure 2. Here, CAL is used to describe and model the

functionality of the targeted system. DIF and TDP are then

applied for analysis and exploration of optimization alterna-

tives. Different optimization techniques target different per-

formance measures, such as real time constraints, power con-

sumption, or buffer size. In this paper, we focus on optimizing

the execution speed of the targeted RVC systems. The CAL

actors are manually generated in a designer friendly manner.

The procedure to transform the system of CAL actor into C

code is designed to be automated and we are currently work-

ing on the automation. CAL actors can be re-used to build

other video processing systems, which is one motivation for

the RVC library.

Fig. 2. Automated design-to-implementation flow.

The Open RVC-CAL compiler (Orcc) [17] is a tool set

under the BSD license to realize an automated design-to-

implementation flow for the RVC-CAL dataflow program-

ming language. It has been developed with a back-end that

performs CAL-to-C transformation. Transformation to other

lower level languages, such as Java, is under development.

Source code and test cases can be found on [17]. We have de-

veloped XML-based interfaces between different languages



and the SSR detection algorithm to provide paths for integra-

tion.

The input to the Orcc is an application that is in terms of

CAL actors and a CAL network. CAL actors are represented

in the form of .cal files, and the CAL network is specified as

.xdf file. The output is an automatically generated implemen-

tation, which is targeted to a lower level language, such as C,

C++ or Java.

The compiler is divided into two phases — a front end and

a back end. The front end is responsible for parsing actors and

networks, flattening the hierarchical network, and generating

actors in the JASON format. The back end is responsible for

generating an implementation in a user-specified lower level

language.

3.1. CAL

CAL is a dataflow- and actor-oriented language that rep-

resents algorithms in terms of networks of communicating

dataflow-actor components [6]. A CAL actor is a modular

component that encapsulates its own state. The state of an

actor cannot be shared with other actors, and thus, an actor

cannot modify the state of another actor.

The behavior of an actor is defined in terms of a set of ac-
tions. The operations an action can perform are consumption

(reading) of input tokens, modification of internal state, and

production (writing) of output tokens. The topology of the

connections among actor input and output ports constitutes

what is called a CAL network. Compared to the complexity

of actors, edges — connections between pairs of actors — are

rather simple. The only interaction an actor can have with an-

other actor is through input and output ports that connect the

actors. Such connections are represented as edges in a CAL

network.

Each action of an actor defines the kinds of transitions that

internal states can undergo, and the specific conditions under

which the action can be executed (fired). The conditions for

firing actions in general involve (1) the availability of input

tokens, (2) values of input tokens, (3) state of the actor, and

(4) priority of the action. In an actor, actions are executed

sequentially — i.e., at most one action can be executing at

any given time.

CAL is supported by a portable interpreter infrastructure

that can simulate a hierarchical network of actors. In addition

to the strong encapsulation afforded by the actor description,

the dataflow model also makes much more algorithmic par-

allelism explicit. This allows application of the wide range

of dataflow graph transformations to the realization of sig-

nal processing systems on a variety of platforms. In particu-

lar, platforms will differ in their degree of parallelism, which

gives rise to the challenging problem of matching the concur-

rency of the application representation with the parallelism of

the computing machine that is executing it. The newly de-

veloped MPEG video coding standard, Reconfigurable Video

Coding (RVC) [2], uses the CAL actor language [6] for speci-

fying functional components, and dataflow as the composition

formalism [18]. Building a library of CAL actors for RVC

systems can reduce the design time, since designers can take

or lightly modify available actors to construct a new system

instead of starting from scratch.

3.2. DIF

The dataflow interchange format (DIF) is proposed as a

standard approach for specifying and integrating arbitrary

dataflow-oriented semantics for DSP system design [8]. The

DIF language (TDL) is an accompanying textual design

language for high-level specification of signal-processing-

oriented dataflow graphs. The TDL syntax for dataflow graph

specification is designed based on dataflow theory and is

independent of any design tool. For a DSP application, the

dataflow semantic specification is unique in TDL regardless

of the design tool used to originally enter the specification.

The TDL grammar and the associated parser framework

are developed using a Java-based compiler-compiler called

SableCC [19].

TDL is designed as a standard approach for specifying

DSP-oriented dataflow graphs. TDL provides a unique set

of semantic features to specify graph topologies, hierarchi-

cal design structures, dataflow-related design properties, and

actor-specific information. Because dataflow-oriented design

tools in the signal processing domain are fundamentally based

on actor-oriented design, TDL provides a syntax to specify

tool-specific actor information, which ensures that all rele-

vant information can be extracted from a given design tool.

The DIF Package (TDP) is a software tool that accompanies

TDL, and provides a variety of intermediate representations,

analysis techniques, and graph transformations that are useful

for working with dataflow graphs that have been captured by

TDL.

3.3. Intermediate Representation

The Intermediate Representation (IR) used in Orcc is man-

aged in the form of .jason files. The top-level structure in the

Intermediate Representation is an actor. An actor contains

parameters, input/output ports, state variables, a list of func-

tions/procedures, a list of actions and an action scheduler

A variable is represented by the Variable class. A Vari-

able has a location, which is the place in the source file where

it was declared, a type, a name, and the list of its uses. The

list of uses (called ‘def-use‘) is automatically computed and

maintained by Orcc. A Variable also has two attributes that

may be used depending on the context: a Variable may have

an initial expression, with the exception of local variables, and

a Variable may have a value, which is its runtime value. The

value of a Variable is only used when an actor is interpreted.

A GlobalVariable is a Variable whose initial expression may



be evaluated as a constant, and accessed with the getCon-

stantValue method. A StateVariable is a GlobalVariable that

has an additional “assignable” attribute. This attribute records

the information about whether a variable can be assigned or

not. A LocalVariable is a Variable that has an “assignable”

attribute (like a StateVariable), an SSA (static single assign-

ment) index, and an “instruction” attribute. The “instruction”

attribute references the assign instruction where the variable

is assigned for the first and only time.

A procedure has parameters and local variables. It has a

body made of a list of CFG nodes. A CFG node corresponds

to a node in the Control Flow Graph, and is defined by the

interface. There are three types of nodes: a BlockNode, an

IfNode, and a WhileNode.

Scheduling information (priorities and FSM) are present

in the action scheduler. Actions are sorted by descending pri-

ority, so the action with the highest priority comes first.

3.4. Integrating Results of DIF Analysis into the C Back
End

In our targeted design flow, the analysis of CAL networks and

CAL actors is conducted in the DIF environment, as shown in

Figure 1. In our current implementation, we detect statically

schedulable regions (SSRs) from the DIF-based analysis to

optimize scheduling structures for efficient implementation.

Currently the input to this form of DIF analysis is a CAL

network along with its constituent CAL actors. The output

is a set of SSRs, and static schedules corresponding to those

SSRs. This SSR and schedule information is generated for

efficient system implementation.

The back end of the code generator adopts a round-robin

scheduling approach. Round-robin (RR) is a simple schedul-

ing algorithm for executing multiple tasks in an operating

system. In the form of RR scheduling that we apply, time

slices are assigned to each task in equal portions and in cir-

cular order, and no priority ordering is considered across the

tasks. Round-robin scheduling is simple, easy to implement,

and starvation-free. In the generated system, there is a main

scheduler that takes care of all actor schedulers. The main

scheduler passes the right of execution to the actor schedulers

one by one. When an actor scheduler is selected for execution,

and dataflow requirements for one or more actions within the

actor are satisfied, the actor scheduler will execute an appro-

priate action. Then the right of execution is passed to the next

actor scheduler.

Static scheduling can be integrated into the RR sched-

uler in the following way. If some actors can be statically

scheduled, that is, the execution of some actors is determined

to be continuous and fixed in compile time, then we can

combine the schedulers of these actors into one scheduler.

For example, suppose row and transpose are actors and

row scheduler and transpose scheduler are correspond-

ing schedulers. Based on SSR detection in TDP analysis, we

can determine the scheduling of these two instances as always

following the pattern shown in Figure 3. Thus, we can reduce

the number of schedulers into one.

Fig. 3. Static scheduling: actors row and transpose

A number of related efforts are underway to develop effi-

cient scheduling techniques for CAL networks. The approach

of Platen and Eker [20] sketches a method to classify CAL

actors into different dataflow classes for efficient schedul-

ing. Boutellier et al. [21] propose an approach to quasi-static

multiprocessor scheduling of CAL-based RVC applications.

The approach involves the dynamic selection and execution

of “piecewise static schedules” based on novel extensions of

flow shop scheduling techniques.

Many previous research efforts have focused on task map-

ping for multiprocessor systems from other kinds of specifi-

cation models or languages (e.g., see [3]). For example, Li et

al. [22] provide a method for allocating and scheduling tasks

using a hybrid combination of a genetic algorithm and ant

colony optimization. The approach involves consideration of

both global and local memory spaces across the targeted mul-

tiprocessor system. Ennals et al. [23] develop a method for

partitioning tasks on multi-core network processors.

Compared to prior work on dataflow techniques and mul-

tiprocessor system design, major unique aspects of our ap-

proach for scheduling are the capability to decompose CAL

actors based on their formal action- and port-based seman-

tics, and to construct and subsequently transform SSRs and

SSR actors from these decomposed representations.

When integrating SSRs into real implementations, we dis-

tinguish between two kinds of SSRs, as shown in Figure 4. In

the first type, all CAL actors inside the SSR are preserved

from their original structures in the corresponding CAL net-

work, such as SSR1 in Figure 4. In the second kind of SSR,

there is at least one partial CAL actor, of which some ports do

not belong to the SSR, such as SSR2. When implementing

SSRs of the second type, we divide each partial actor into two

separate actors, as shown in Figure 5. In Figure 5, actor C is

split into two new actors: C1 and C2. C1 is statically sched-

uled in SSR2, and C2 has its own dynamic scheduler. Cur-

rently, implementation of the first kind of SSR is complete,

and integration of the second kind of SSR is under develop-

ment.



Fig. 4. Two kinds of statically schedulable regions.

Fig. 5. SSR: splitting one CAL actor into two actors.

Figure 6 shows three kinds of options to integrate SSRs

into Orcc. Option 3 is to modify the generated C code by

integrating SSRs. Option 2 is to introduce SSRs into inter-

mediate representations, that is, into generated intermediate

code that is based on .jason files and .difml files. Option 1 is

to introduce SSRs in the front end where the CAL network is

parsed into JASON files. Option 3 is generally the simplest to

implement, while option 1 has the potential to produce more

efficient implementations since the structure of SSRs can be

exploited more rigorously in scheduling and related dataflow

transformations.

Fig. 6. Code generation procedure.

We have implemented option 3 as an initial prototype of

SSR integration. In our ongoing and future work, we are ex-

ploring implementations of options 2 and 3.

4. THE DIFML FORMAT

As described previously, the dataflow interchange format

(DIF) is proposed as a standard approach for specifying

and integrating arbitrary dataflow-based semantics for DSP

system design [8], and The DIF language (TDL) is an accom-

panying textual design language for high-level specification

of signal-processing-oriented dataflow graphs.

In order to describe DIFML, we introduce a number of

concepts associated with the general XML format: node,

element, attribute and tag. A node is a part of the hierarchi-

cal structure that makes up an XML document. “Node” is

a generic term that applies to any type of XML document

object, including elements, attributes, comments, process-

ing instructions, and plain text. A tag is a markup construct

that begins with < and ends with >. An element is a logi-

cal component of a document. The element’s content may

contain markup, including other elements, which are called

“child elements”. An attribute is a markup construct con-

sisting of a name/value pair that exists within a start-tag or

empty-element tag.

DIFML is designed as an XML-based format for exchang-

ing information between TDL and other tools and languages,

and more generally, between arbitrary pairs of dataflow envi-

ronments. There are different elements in DIFML and these

elements are listed in a hierarchical way. The element at the

highest level is graph, while topology and interface are lower

level element. Under topology, there are three elements at the

same level: nodes, edges and interface. For each element,

there are three kinds of attributes: implicitAttributes, builtI-
nAttributes and userDefinedAttributes. ImplicitAttributes are

those attributes necessary and inherent to the element, such as

the id of a node. BuiltInAttributes are attributes that are rec-

ognized as part of the DIF language, typically through cor-

responding reserved words or other kinds of language con-

structs. For example, for an edge element in and SDF model

within a DIF graph (i.e., within a graph that is defined with

the sdf keyword), there are three kinds of builtInAttributes:

the production rate, consumption rate, and delay. UserDefine-

dAttributes are attributes that users add to selected elements

at their own discretion. The following is a simple example of

an SDF model in the DIFML format. For conciseness, we just

show part of the associated DIFML file.

<? xml v e r s i o n = ' 1 . 0 ' e n c o d i n g = 'UTF−8 ' ?>
<d i f m l xmlns= ' h t t p : / /www. ece . umd . edu / DIFML '>

<graph>
< i m p l i c i t A t t r i b u t e s>

<name v a l = ' d a t 2 c d ' />
<t y p e v a l = ' SDFGraph ' />

</ i m p l i c i t A t t r i b u t e s>
<t o p o l o g y>

<nodes>
<node>

< i m p l i c i t A t t r i b u t e s>
<i d v a l = 'A ' />

</ i m p l i c i t A t t r i b u t e s>
<b u i l t I n A t t r i b u t e s>

<nodeWeight t y p e = ' DIFNodeWeight '←↩
/>

</ b u i l t I n A t t r i b u t e s>
</ node>

</ nodes>
</ t o p o l o g y>
< i n t e r f a c e>

<p o r t>
< i m p l i c i t A t t r i b u t e s>

<d i r e c t i o n i d = ' InA ' nodeId = 'A ' v a l = '←↩
IN ' />

</ i m p l i c i t A t t r i b u t e s>
</ p o r t>

</ i n t e r f a c e>



</ g r aph>
<!−−A u t o m a t i c a l l y g e n e r a t e d from DIF f i l e−−>

</ d i f m l>

As shown in the above example, DIFML follows the same

format as XML files, and defines a series of elements and at-

tributes. Note that there is an element named node. This name

is in correspondence with the related definition in the DIF lan-

guage, and has different a meaning from the node concept in

XML terminology, which is a generic concept that applies to

any type of XML document object.

Currently, the DIFML parser supports several major

dataflow models that are recognized in the DIF language,

including SDF [4], cyclo-static dataflow (CFDF) [24], param-

eterized synchronous dataflow dataflow (PSDF) [25], CAL

dataflow (CALDF) [6], and multidimensional synchronous

dataflow (MDSDF) [26].

5. EXPERIMENTAL RESULTS

We apply our automated design-to-implementation flow to an

RVC MPEG4 SP decoder. We generate three kinds of code

using Orcc tools:

1. C code with “C” as back end;

2. C code with “C+SSR” (C code generation integrated

with derived SSRs) as back end;

3. C code with “C+modified SSR” — based on the de-

rived SSRs, we manually compute token production

rate and consumption rate information to enhance static

scheduling.

Fig. 7. Experimental results for MPEG4 RVC SP decoder.

We generate three kinds of C projects using CMake. The

projects are compiled and built using Microsoft Visual C++

2008. The generated executables are executed on a Sony

VAIO laptop with an Intel Pentium 1.2GHz processor. The

experimental results are shown in Figure 7.

The results show an improvement of approximately a fac-

tor of two in performance after we integrate SSR derivation

and scheduling compared with direct C-based implementa-

tion from the CAL system. If we modify the CAL actors

based on results of SSR derivation, the performance is even

better. Currently, the modification based on SSRs is per-

formed by hand. Automating this part of the optimization

process is an interesting direction for future work.

The results show a significantly higher frame rate on

benchmark 5 of hit016. This is because for the first four

benchmarks, the display sequence is set to 352x288, while

for the fifth benchmark the display sequence is 176x144. The

smaller display size consumes less resources and runs faster.

6. CONCLUSION

This paper proposes an automated design flow from user-

friendly design to efficient implementation of reconfigurable

video coding systems. We have developed tools and tech-

niques to support both designer productivity and implemen-

tation efficiency by strategically combining complementary

dataflow languages and tools.

Our approach integrates previously developed techniques

for detecting SDF-like regions within larger CAL networks,

and exploiting the static structure of such regions using analy-

sis tools in The Dataflow interchange format Package (TDP).

This integration is achieved using a new XML format, called

DIFML, which we have developed to transfer information

across different dataflow environments. Experimental results

demonstrate significant performance improvements on an

MPEG Reconfigurable Video Coding (RVC) decoder.

7. REFERENCES

[1] T. Chen and Y. K. Chen, “Challenges and opportuni-

ties of obtaining performance from multi-core CPUs

and many-core GPUs,” in Proceedings of IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, April 2009.

[2] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz,

M. Mattavelli, and M. Raulet, “Overview of the MPEG

reconfigurable video coding framework,” Journal of
Signal Processing Systems, June 2009. [Online].

Available: http://dx.doi.org/10.1007/s11265-009-0399-

3

[3] S. Sriram and S. S. Bhattacharyya, Embedded Multipro-
cessors: Scheduling and Synchronization, 2nd ed. CRC

Press, 2009.

[4] E. A. Lee and D. G. Messerschmitt, “Synchronous

dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp.

1235–1245, September 1987.

[5] S. S. Bhattacharyya, R. Leupers, and P. Marwedel,

“Software synthesis and code generation for DSP,”

IEEE Transactions on Circuits and Systems — II: Ana-
log and Digital Signal Processing, vol. 47, no. 9, pp.

849–875, September 2000.



[6] J. Eker and J. W. Janneck, “CAL language report, lan-

guage version 1.0 — document edition 1,” Electronics

Research Laboratory, University of California at Berke-

ley, Tech. Rep. UCB/ERL M03/48, December 2003.

[7] B. Kienhuis and E. F. Deprettere, “Modeling stream-

based applications using the SBF model of computa-

tion,” Journal of Signal Processing Systems, vol. 34,

no. 3, 2003.

[8] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software syn-

thesis from the dataflow interchange format,” in Pro-
ceedings of the International Workshop on Software
and Compilers for Embedded Systems, Dallas, Texas,

September 2005, pp. 37–49.

[9] R. Gu, J. Janneck, M. Raulet, and S. S.

Bhattacharyya, “Exploiting statically schedulable

regions in dataflow programs,” Journal of Signal
Processing Systems, January 2010. [Online]. Available:

http://www.springerlink.com/content/7828n20m31186635/

[10] M. Wipliez, G. Roquier, M. Raulet, J. Nezan, and O. De-

forges, “Code generation for the MPEG reconfigurable

video coding framework: From CAL actions to C func-

tions,” in Proceedings Multimedia and Expo, IEEE In-
ternational Conference, June 2008, pp. 1049–1052.

[11] R. Gu, J. W. Janneck, S. S. Bhattacharyya, M. Raulet,

M. Wipliez, and W. Plishker, “Exploring the concur-

rency of an MPEG RVC decoder based on dataflow pro-

gram analysis,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, 2009.

[12] MPEG video technologies – Part 4: Video tool library,

ISO/IEC FDIS 23002-4, 2009.

[13] MPEG systems technologies – Part 4: Codec Configu-
ration Representation, ISO/IEC FDIS 23001-4, 2009.

[14] Z. Navabi, Verilog Digital System Design: Register
Transfer Level Synthesis, Testbench, and Verification.

McGraw Hill, 2006.

[15] S. Sutherland, S. Davidmann, and P. Flake, SystemVer-
ilog for Design: A Guide to Using SystemVerilog for
Hardware Design and Modelingn, 2nd ed. Springer,

2006.

[16] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploit-

ing coarse-grained task, data, and pipeline parallelism in

stream programs,” in Proceedings of the International
Workshop on Rapid System Prototyping, San Jose, Cali-

fornia, USA, 2006, pp. 151–162.

[17] “Open RVC CAL compiler.” [Online]. Available:

http://sourceforge.net/apps/trac/orcc/

[18] M. Mattavelli, I. Amer, and M. Raulet, “The reconfig-

urable video coding standard,” IEEE Signal Processing
Magazine, vol. 27, no. 3, pp. 159–167, May 2010.

[19] E. M. Gagnon and L. J. Hendren, “SableCC, an

object-oriented compiler framework,” in Proceedings of
TOOLS (26), 1998, pp. 140–154.

[20] C. v. Platen and J. Eker, “Efficient realization of a CAL

video decoder on a mobile terminal,” in Proceedings of
the IEEE Workshop on Signal Processing Systems, Oc-

tober 2008.

[21] J. Boutellier, V. Sadhanala, C. Lucarz, P. Brisk, and

M. Mattavelli, “Scheduling of dataflow models within

the reconfigurable video coding framework,” in Pro-
ceedings of the IEEE Workshop on Signal Processing
Systems, October 2008.

[22] M. Li, H. Wang, and P. Li, “Tasks mapping in multi-core

based system: hybrid ACO&GA approach,” in Proceed-
ings of the International Conference on ASIC, October

2003.

[23] R. Ennals, R. Sharp, and A. Mycroft, “Task partitioning

for multi-core network processors,” in Proceedings of
the International Conference on Compiler Construction,

April 2005.

[24] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peper-

straete, “Cyclo-static dataflow,” IEEE Transactions on
Signal Processing, vol. 44, no. 2, pp. 397–408, Febru-

ary 1996.

[25] B. Bhattacharya and S. S. Bhattacharyya, “Parameter-

ized dataflow modeling for DSP systems,” IEEE Trans-
actions on Signal Processing, vol. 49, no. 10, pp. 2408–

2421, October 2001.

[26] P. K. Murthy and E. A. Lee, “Multidimensional syn-

chronous dataflow,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 8, pp. 2064–2079, August 2002.


