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Abstract—Local feature extraction is one of the most im-
portant steps in image processing applications such as image
matching and object recognition. The Scale Invariant Feature
Transformation (SIFT) algorithm is one of the most robust as well
as one of the most computation intensive algorithms to extract
local features. Recent implementations of the algorithm focus
on homogeneous processors like multi-core CPUs or many-core
GPUs. In this paper, we introduce an OpenCL-based implemen-
tation, which can be used in homogeneous and heterogeneous
CPU/GPU environments. We analyze possible coarse-grained and
fine-grained parallelization solutions of the SIFT algorithm. Using
a set of optimizations we implement a high-performance SIFT
implementations for very different CPU/GPU architectures. The
scalable implementation allows for a fast processing, more than
40 FPS for Full-HD images.

Keywords—OpenCL, SIFT, Many-core GPU, Multi-core CPU,
Heterogeneous computing, Platform specific optimizations

I. INTRODUCTION

Recent developments in the area of programming models
have made it possible to easily access the computational
power of computing devices such as Graphics Processing
Units(GPUs). With programming frameworks like OpenCL
(Open Computing Language), developers are able to easily
use different computational resources available on a platform.
The use of heterogeneous devices provides an opportunity
to significantly increase the overall run-time performance of
an application and to achieve higher energy efficiency. How-
ever, it is unlikely to achieve the best performance without
architecture specific optimizations and a proper distribution
of the application across heterogeneous devices. There is a
lot of ongoing research in the field of improving the run-
time of algorithms for local feature detection in images on
multi-core CPUs [1], [2] and many-core GPUs [3]–[5]. But
many publications are focused on a single class of devices
and the associated optimization techniques. We would like to
present an alternative implementation, which is able to work
in a heterogeneous environment and utilize all supported and
available computing resources in parallel. Additionally, we
present architecture specific optimization steps and describe
the main differences between CPU and GPU devices in the
context of the OpenCL programming model.
The paper is organized as follows. Section II introduces the
SIFT algorithm. In Section III, we briefly introduce OpenCL
and describe the mapping of the OpenCL programming model
to generic CPU and GPU devices. Section IV describes
the parallelization process and various optimization steps for
specific hardware platforms. Section V introduces a multi-
device implementation that utilizes many devices concurrently.

Section VI describes the conducted experiments and discusses
the results. Section VII concludes the paper and presents the
future work.

II. ALGORITHM DESCRIPTION

The SIFT algorithm is used to extract distinctive rotation-
and scale-invariant features in images [6]. In this section, we
briefly describe the algorithm and the inherent parallelization
opportunities.

A. Gaussian scale space construction

The Gaussian scale space of an 2D-image I(x, y) is divided
into octaves. Each octave consists of scale images L(x, y, σ)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

defined as a convolution of the image with a normalized
Gaussian function

G(x, y, σ) =
1
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e−

(x2+y2)
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Adjacent scale images are subtracted to produce the
Difference-of-Gaussian (DoG) images D(x, y, σ)

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (3)

with some multiplication factor k.

B. Feature detection and localization

In the detection phase, the DoG images are searched for
local extrema and unstable features are filtered out. The single
steps are

• Local extremum detection
To detect a local extremum, each scale space point
with position x = (x, y, σ)T is compared to its 8 pixel
neighbors at the image D(x, y, σ) and to the 9 pixel
neighbors at the adjacent DoG images. If the intensity
is lower or higher than the intensities of all neighbors,
the point is declared keypoint.

• Localization
To localize a keypoint with sub-pixel precision, D(x)
is expanded into a Taylor series to second order and
the offset x̂ is calculated by setting the derivative of
Equation (4) to zero.
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The offset is used to get an interpolated keypoint
position.

• Low contrast rejection
If the contrast value D(x̂) is lower than some thresh-
old value Th, the keypoint is rejected.

• Edge response rejection
In the last step, all keypoints along edges are rejected
by calculating the eigenvalues of the Hessian matrix

H =

[
Dxx Dxy

Dyx Dyy

]
(6)

C. Orientation-assignment

For every keypoint η(x, y, σ) found, the scale image with
the closest σ value is used to assign an orientation to the
keypoint by calculating the gradient magnitude m(x, y) and
the orientation θ(x, y), as defined by equations (9) and (10),
in a local region around η. An orientation histogram is formed
from the gradient orientations of the sample points. Peaks in
the orientation histogram correspond to dominant directions of
the local gradients. The highest peak in the histogram defines
the orientation of the keypoint.

5x = L(x+ 1, y)− L(x− 1, y) (7)
5y = L(x, y + 1)− L(x, y − 1) (8)

m(x, y) =
√
52

x +52
y (9)

θ(x, y) = arctan
5y

5x
(10)

D. Feature-descriptor

For the feature descriptor, gradient and magnitude of a local
2D area of L around the keypoint position are calculated.
The area is divided into M × N cells. For every cell, the
orientations weighted with the magnitudes are used to fill a
NHist bin histogram. To suppress the influence of far pixels,
the entries are additionally weighted with a Gaussian function.
The feature descriptor is defined as the combination of all
histograms. For the typical parameters M = N = 4 and
NHist = 8 this gives a 128 element feature vector. The
feature vector undergoes a normalization procedure to reduce
the effects of illumination changes. The vector is normalized,
large values are clipped to some threshold value Thnorm and
the clipped feature vector is normalized again.

III. OPENCL ARCHITECTURE

OpenCL is a framework for writing programs for different
hardware such as CPUs, GPUs, Field-Programmable Gate Ar-
rays (FPGAs) and other supported processors [8], [9]. OpenCL
provides a common programming language based on C99
and a programming interface (API). The OpenCL hardware
abstractions enable developers to accelerate applications with
task-parallel or data-parallel computations in a heterogeneous
computing environment. In this section, we briefly introduce
the OpenCL platform model and its interpretation for CPU and
GPU devices.

Fig. 1. OpenCL Platform Model

Fig. 2. OpenCL Execution Model - Index space [7]

TABLE I. MAPPING OF OPENCL PLATFORM MODEL TO THE
MULTI-CORE CPU PROCESSORS AND MANY-CORE GPUS

OpenCL model multi-core CPU many-core GPU
Host processor CPU log. core CPU log. core
Host memory CPU main mem. CPU main mem.
Compute device (CD) CPU log. core GPU streaming cores
Compute Unit (CU) CPU log. core Streaming core
Processing element (PE) log. core resources Streaming processor
Global memory CPU main mem. GPU global mem.
Constant memory CPU main mem. GPU constant mem.
Local memory CPU main mem. GPU shared mem.
Private memory CPU main mem. GPU registers

A. OpenCL platform model

Figure 1 shows the generic OpenCL platform model that
consists of a host connected to one or more compute devices.
Each compute device is divided into one or more compute units
(CU). A CU is further divided into one or more processing
elements (PE).
An OpenCL program has two parts: one or more kernels
written in the OpenCL programming language, implementing
an application, and a host program that manages the execution
of the kernels. When a kernel is submitted for execution by
the host, it works on an index space as defined in Figure 2.
A kernel instance is called a work-item (WI). Work-items are
organized into work-groups (WG). The work-items in a given



TABLE II. COMMON DESCRIPTION OF AMD/NVIDIA GPU
HARDWARE ARCHITECTURES

AMD GPUs Common description NVIDIA GPUs
SIMD engine Streaming core SM multiprocessor
Thread processor Streaming processor Scalar-CUDA core
VRAM-global memory GPU global memory Global memory
Constant memory GPU constant memory Constant memory
LDS-local data share GPU shared memory Shared memory
Registers memory GPU registers Registers memory

work-group execute concurrently on the processing elements
of a single compute unit.
OpenCL defines four distinct memory regions on a compute
device: global, constant, local, and private memory. As shown
in Figure 1, the compute device can have global and constant
memory regions. Global or constant memory may be cached in
global/constant memory data caches. These regions are shared
by all CUs in a compute device (i.e., all work-items in all
work-groups). The local memory is shared by all PEs in a CU
(i.e., all work-items in a single work-group), and the private
memory is assigned to and only accessible by the individual
PEs (i.e., private to each work-item).

B. OpenCL mapping to multi-core CPU devices

Table I shows the mapping between the OpenCL platform
model and multi-core CPUs. In this mapping, a set of logical
cores is a compute device and a logical core is the host
processor. The host processor core may be shared with the
compute device. Each logical core in the compute device is a
CU. The host memory and the device memory are allocated
in the main memory of the multi-core system.

C. OpenCL mapping to many-core GPU devices

Table I shows the mapping between the OpenCL platform
model and a typical GPU system that consists of a CPU and
a GPU. A CPU logical core is the host processor and the
GPU is the compute device. A CU in the GPU concurrently
executes thousands of work-items. To manage such a large
number of work-items, the GPU employs a SIMT(Single-
Instruction, Multiple-Thread) architecture, where work-items
execute one common instruction at a time. The CU creates,
manages, schedules, and executes work-items in a group called
a warp for NVIDIA GPUs and wavefront for AMD GPUs.
In our experiments we tested GPUs from NVIDIA and AMD.
Both hardware vendors support OpenCL, but use a different
terminology to describe GPU hardware architectures. To de-
scribe the mapping between GPU hardware and the OpenCL
model, we propose our own terminology provided in Table II.

From the perspective of a performance oriented program-
mer, the most important hardware feature of modern GPUs
is the memory architecture. Modern GPUs have very effi-
cient memory units, optimized for streaming workloads. The
OpenCL programming model maps perfectly to the memory
architecture of modern GPUs.
We distinguish between two different memory levels, on-chip
and on-board memory. The fastest memory, as can be seen
in Table III, is the on-chip memory, defined as registers and
shared memory [10]. This memory has a typical size of 16-
48 kilobyte(KB) and is directly accessible by the streaming
processors. The on-board global memory is shared among
all streaming cores of the GPU. It is the largest, typically

TABLE III. GPU MEMORY BANDWIDTH AND MAPPING TO OPENCL
MEMORY MODEL [10]

OpenCL memory GPU memory Bandwidth
Private Register on-chip <10000 GB/s
Local Shared on-chip <2000 GB/s
Global Global on-board <300 GB/s

about 2-8 gigabyte(GB) large, and the most commonly used
memory, but also the slowest memory on the GPU. Managing
the significant performance difference between on-board and
on-chip memory is the primary concern of a GPU programmer.

IV. OPENCL BASED SIFT IMPLEMENTATION

We start with an analysis of the SIFT algorithm. The goal
of this analysis is the extraction of data and task dependencies
to explore the parallelization opportunities. The parallelism of
the SIFT algorithms can be defined at different levels.

• Octave level
Different algorithm parts can be pipelined and concur-
rently processed. The initial image is incrementally
convoluted with Gaussian functions to generate the
scale space images. Adjacent scale space images are
subtracted to get the DoG images. When all scale
images of octave n have been processed, we start
in parallel the computation of octave n + 1. Except
for the first octave, the input of the next octave is
the resampled last scale space image of the preceding
octave. The computational flow is visualized in Figure
3;

• Image level
Each scale space and DoG image can be decomposed
into smaller sub-images and processed in parallel.

• Feature level
The calculation of the feature orientation and the
descriptor uses read-only memory operations. Read-
only memory operations are independent and can be
easily parallelized.

During the analysis process, we identified an additional al-
gorithmic change that can be applied in case of the SIFT
algorithm. The Gaussian scale space is based on the Gaussian
smoothing Equation (1).
A 2D Gaussian smoothing can be implemented as a separable
two-pass Gaussian smoothing method. This method enables
reduction in number of executed instructions.
In computation terms, the non-spearable filtering of M × N
image with a P ×Q filter kernel requires MNPQ multiply-
accumulate(MAC) operations. The horizontal convolution pass
requires MNP MAC operations, the vertical pass MNQ
MAC operations, for a total of MN(P +Q) MAC operations.
The gain in saved instructions is given by PQ/(P +Q).
Another aspect is the handling of pixels at the image boundary.
For all boundary pixels of an image, it is necessary to load
additional pixels. We have implemented a boundary pixel
repetition method for the CPU and GPU implementation which
is based on [3]. In the following we will describe a baseline
algorithm implementation for both CPU and GPU and the
applied architecture specific optimizations to speed up the
baseline implementation on different platforms.



Fig. 3. High level view of SIFT-OpenCL implementation

A. Baseline implementation of SIFT and mapping to OpenCL
programming model

Our baseline implementation of the SIFT algorithm is a
parallelized implementation without platform specific opti-
mizations. The implementation has, as can be seen in Figure 3,
two main parts: the host part and the device part. The workload
for each octave is send through a separated command queue for
each avaliable device. Our implementation with independent
command queues enables pipelined octave execution.
The host part is a C++ control program that is responsible
for controlling and communicating with the found OpenCL-
capable compute devices. It is also responsible for the distribu-
tion of the OpenCL-kernel functions and the synchronization
of their execution. The host program reads image frames and
sends them to the compute devices for processing. When the
calculation is completed, the results are transferred back from
the compute devices. On the device part, the different kernels
are processed.
To keep our host program unified for CPU and GPU, we de-
cided to use only generally available OpenCL memory spaces
for GPUs and CPUs and not to use special memories like
the image2D buffers available for many GPUs. The workloads
are differently mapped to the OpenCL resources.The execution
setup is implicit controlled by the OpenCL runtime. The
OpenCL runtime decide how many work items should be
allocated for a single work group. Table IV shows the exe-
cution setup and mapping of the work-items to the individual
workloads.
Our solution contains an additional stage, the feature com-
paction. After the detection phase, the keypoints form a sparse
matrix in the scale space with an unknown number of entries.
The number of entries, the keypoints, is calculated in parallel
with an compaction algorithm based on prefix-sums [11]. The
use of the compaction algorithm allows for an efficient memory
allocation for the descriptor buffers and avoids the creation of
redundant work-items during the descriptor building phase.

B. Optimization of OpenCL-kernels for many-core GPU de-
vices

An analysis of the execution time of the baseline
implementation and a comparison with the computational
capabilities of GPUs shows a significant inefficiency.

TABLE IV. MAPPING TO OPENCL RESOURCES;W/H - IMAGE
WIDTH/HEIGHT, WI - WORK-ITEMS, WG- WORK-GROUP

Kernel names # WI # WI/WG
Gauss Scale Space w × h runtime control
DoG w × h runtime control
Feature Detection w × h runtime control
Feature Compactification w × h runtime control
Feature Orientation # features runtime control
Feature Description # features runtime control

TABLE V. WORKLOAD DISTRIBUTION, SINGLE OCTAVE ON TESLA
C2050, ECC=ON, IMAGE IL2

Kernel names baseline kernels # feat.
Gaussian scale space 20.3% -
DoG 1.9% -
Feat. Detection 5.3% 4539
Feat. Compactification 5.7% 4539
Feat. Orientation 28.1% 4539
Feat. Descriptor 38.4% 4539
Transfer from/to host 0.05% 4539

Therefore it is necessary to explore optimization techniques.
The applied GPU-specific optimization techniques are well
described in [10], [12], [13].
To identify the bottlenecks, we begin with an analysis of the
baseline implementation using NVIDIA’s and AMD’s profiler
tools [7], [14]. The output information from the profilers gives
a full view about the relative runtime of each workload and
helps to identify performance bottlenecks. As performance
metric we choose the number of registers used, the amount
of used shared memory and the number of work-items inside
a single work-group. These parameters are highly correlated
with the run-time. The results in Table V show the relative
execution time for a single octave. The experimental setup is
described in Section VI. We decided to optimize the following
kernels: Gaussian scale space, feature orientation and feature
descriptor. Those kernels consume more than 80% of the total
execution time and are a proper target for further analysis and
optimization.

We focus on optimization techniques that target the mem-
ory hierarchy of GPUs. The memory hierarchy of GPUs
is generic and common for all tested GPUs in our experi-
ments. There are also special optimization techniques related
to specific GPU architectures like the AMD Graphic Core
Next(GCN) [15]. They are not applied in our implementation.
The applied optimization techniques are based on the following
three observations:

1) Global memory access
Modern Dynamic Random Access Memory(DRAM)
is designed to transfer large lines of data in bursts.
Poor usage of those bursts means wasted memory
bandwidth. In these situations, the most effective
optimization strategy is to transform the data layout in
the memory or to change the memory access pattern.
The memory coalescing technique makes off-chip
accesses efficient by combining load/store requests
from consecutive work-items to reduce the number
of requested words.

2) Tiling
Manual Tiling improves data locality and on-chip
memory usage. By tiling, one uses smaller sets of
data, so that the sets fit into the faster on-chip memory



TABLE VI. UNOPTIMIZED KERNELS MAPPING TO OPENCL
RESOURCES;REG-REGISTERS,SM-SHARED MEMORY

Kernels # reg./WI SM/WG [bytes] # WI # WI/WG
Conv. hor. 5 0 w × h runtime cont.
Conv. vert. 6 0 w × h runtime cont.
Feat. orient. 33 0 # feat. runtime cont.
Feat. desc. 17 0 # feat. runtime cont.

TABLE VII. OPTIMIZED KERNELS MAPPING TO OPENCL RESOURCES

Kernels # reg./WI SM/WG [byte] # WI # WI / WG
Conv. hor. 5 640 w × h 128×1
Conv. vert. 7 7296 w × h 16×16
Feat. orient. 18 5376 # feat. ×36 36
Feat. descr. 12 4608 # feat. ×128 128

while the system processes them.
3) Occupancy

The occupancy is defined as the number of active
warps/wavefronts per streaming core divided by the
maximum possible number of warps/wavefronts per
streaming core. When some work-items from a work-
group are accessing global memory, these items are
effectively stalled for hundreds of instruction cycles,
while the other work-group items continue working.
Internally, the GPU has a warps/wavefronts sched-
uler. This scheduler enables some warps/wavefronts
to perform memory accesses, while others perform
calculations. This is effectively hiding the memory
accesses.

This leads to the following individual kernel optimizations.

1) Gaussian scale space - image blur kernel: The Gaussian
blurring is based on a separable convolution operator. The
major problem of the baseline implementation, is the access
pattern to the GPU global memory, where all scale space
images are stored. To optimize this, we use the GPU shared
memory. The on-chip memory access is faster than a global
memory access and has a higher throughput on a GPU as
shown in Table III. Table VII shows how the global work-
items are divided into different work-groups compared to the
baseline mapping shown in Table VI.
Each work group fetches a set of data into the faster on-chip
memory and then does the convolution. The global memory
access pattern is transformed, so that work-items request
load/store operations in a coalesced manner. After completion,
the results are transferred back to the global memory. Table
VIII shows the speedup. The low speedup is explained by the
implicit use of the cache memory on the streaming cores of
the used GPU. Due to the low arithmetic density of this kernel,
other optimizations than memory access optimizations will not
give a significant speedup.

2) Feature orientation kernel: For each keypoint, the gra-
dient histogram with 36 bins is created from pixels around
its position. In the baseline case, we use one work-item to
calculate the histograms and to find the dominant orientation
as shown in Table VI. Each work item inside a single wave-
front/warp reads data which is spread in memory space. The
amount of used registers, together with the uncached access
into memory prohibits a high throughput on a streaming core.
If the amount of memory requests is high and not properly
mapped to consecutive memory addresses, than the memory
unit of GPU is unable to coalesce memory accesses on a

TABLE VIII. EXECUTION TIME OF SINGLE OCTAVE ON TESLA C2050,
ECC=ON, IMAGE IL2 [MS]

Kernels Baseline Optimized # feat. Speedup
Conv. hor. 1.56 1.00 - 1.56
Conv. vert. 2.04 1.24 - 1.64
Feat. orient. 26.8 3.8 4539 7.05
Feat. descr. 36.7 10.6 4539 3.4

TABLE IX. WORKLOAD DISTRIBUTION, SINGLE OCTAVE ON XEONE5,
IMAGE IL2

Kernel names un-optimized kernels # feat.
Gauss Scale Space 55.43% -
DoG 2.2% -
Feat. Detection 5% 4539
Feat. Compaction 8.91% 4539
Feat. Orientation 8.76% 4539
Feat. Description 20.5% 4539
Transfer from/to host 0.001% 4539

streaming core [13].
To achieve a higher throughput, we use shared memory and
create more work-items. For each feature, a work-group of
36 work-items is started as shown in Table VII. The set of
pixels around a keypoint position is divided in 36 sub-regions.
The division of the local area in smaller sub-regions enables
parallel computation on them and to start additional work-
items. Each work-item concurrently calculates the histogram
on a sub-region and saves the result in the shared memory.
When all sub-histogram calculations are finished, a merge step
is performed to obtain a single histogram. In the next step,
the dominant orientation is obtained. The use of additional
work-items combined with shared memory usage reduced the
amount of non-coalesced memory transactions, resulting in a
speedup of 7x as shown in Table VIII. A further speedup
is limited due to the high amount of shared memory, which
decreases the number of active wavefronts/warps.

3) Feature descriptor kernel: As described in Section II,
the descriptor kernel also works on a local area around a
keypoint. For each keypoint, 16 gradient histograms are created
from the pixels around its position and combined to a descrip-
tor. In the baseline implementation, we use one work-item
of the work-group to calculate the histograms. Each created
histogram contains 9 bins. The histogram is stored in registers
as shown in Table VI. Similar to the orientation kernel, for each
feature, a work-group with 128 additional work-items is started
as shown in Table VII. The work-group is divided into 16 sub-
groups with 8 work items each. Each work-item independently
does its calculations on a sub-region around the keypoint.
Each computed histogram is temporarily saved in the shared
memory and all 16 histograms are concurrently calculated on
the streaming processors. This results in a speedup of 3.4 as
shown in Table VIII.

C. OpenCL-kernels optimization for multi-core CPU devices

For our CPU optimization process, we choose a hardware
feature that is available on many modern CPUs, the SIMD-
vector instructions. Table IX shows the relative run-time of
the baseline kernels on a multi-core CPU. The Gaussian
convolution is the most time consuming task.

There are important differences between typical CPUs and
GPUs in the context of OpenCL. The most important differ-
ence between CPU and GPU is the memory architecture. A



TABLE X. EXECUTION OF GAUSS SEPARABLE CONVOLUTION ON
XEONE5, IMAGE IL2 [MS]

Workloads baseline optimized Speedup
Conv. horizontal 11.5 3.2 3.59
Conv. vertical 12.8 3.7 3.45

typical GPU has different memory levels that the programmer
can manually address. In contrast, the CPU contains only one
memory region, the global memory with implicit cache levels.
Another difference is the mapping of vector data types into
hardware resources. The OpenCL-C programming language
provides vector data types and corresponding operators and
functions. In the case of the CPU, vector data types are mapped
by the OpenCL compiler to Single Instruction Multiple Data
(SIMD) functions and Streaming SIMD Extensions (SSE)
registers. Utilizing SIMD units has been one of the key
performance optimization techniques for CPUs [16], [17].

1) Gaussian Scale space - Image blur kernel: We have
implemented the Gaussian blurring using vector data types
and vector functions. Due to the high spatial locality of data
accesses, a separable convolution is an ideal candidate to use
SIMD instructions. The main difference between the optimized
and the baseline version lies in the data access granularity. The
optimized version with vector types uses a coarse-granular
access to data items while the baseline version reads/writes
single data items.
Due to the high spatial SIMD-locality of the data, the memory
management unit of the CPU is able to efficiently fetch the data
to the SSE registers which have, similar to GPU registers, a
very low memory access time. The scalar float variables in the
baseline implementation were replaced by float4 vector data
types. Table X shows a speedup very close to the maximum
theoretical value of 4. This value could not be reached as
the calculation on the boundary pixels is done without SIMD
instructions.

V. SIFT IMPLEMENTATION ON COMBINED CPU/GPU
DEVICES

In a second step, the optimized implementations are used
to run them in parallel on a system with a CPU and several
GPUs. The first step is to implement a partition strategy. The
host code identifies all available OpenCL-capable devices. The
input image is divided into sub-images, corresponding to the
number of found devices. If the size of the image is not
evenly dividable, the last device will get the remaining parts
of the image, while the other devices get the same amount of
data. The sub-images are distributed to the compute devices
and processed. After completion, all sub-results are merged
together and the whole process is repeated with the next frame.
The partition strategy is named static scheduling.
We evaluated the static scheduling with the setup described
in Section VI. The results in Figure 4 show, that the static
scheduling does not optimally utilize the combined perfor-
mance of the individual devices. The reason of the inefficiency
is the unbalanced work distribution, as the slowest (CPU0)
and fastest device (GPU1) get the same amount of work. As a
consequence, the processing on CPU0 constrains the whole
execution time. Another major difficulty, inherent in every
algorithm for feature detection, is the variation of work in sub-
images due to the unpredictable feature distribution. The static

Fig. 4. Execution of SIFT on multiple devices

scheduler cannot predict variations in the number of features
and properly distribute the work based on such a prediction.
A more efficient approach would be a dynamic scheduling
based on a fine-grained partition of the images to increase the
performance. Each device will get a new small sub-image after
completing the calculations on another sub-image. So devices
well suited for some kernel execution will get more work than
less suited devices.

VI. EXPERIMENTAL METHODOLOGY AND RESULTS

To evaluate the scalability and portability of our imple-
mentations, different tests were performed on various CPUs
and GPUs. The GPUs used in our experiments have different
computational capabilities and are based on different architec-
tures, like AMD Very Long Instruction Word (VLIW), Graphic
Core Next-GCN or NVIDIA Fermi, Kepler architectures [15],
[18], [19]. All of them have a memory hierarchy as described
in Section III. Additionally, the CPUs support SIMD-vector
instructions.

A. Experimental setup

Results showed along this paper are performed on two
heterogeneous computing systems. The first one consists of an
Intel Xeon E5-2667 CPU, a NVIDIA Tesla C2050 and a AMD
Radeon HD 6970 GPU. The second computing system consits
of an Intel CoreI7-4930k CPU and AMD R9-290 or Nvidia
GTX780 TI GPUs. The Intel CPUs have 6 physical cores each
and support hyper-threading technology. Both desktops have
32GB of main memory and run Windows7 Ultimate OS.
The first and second OpenCL-CPU runtime is configured by
the INTEL OpenCL-XE SDK R3 [20] and uses the entire
6 physical cores as the compute device. It uses one of the
logical cores as the host processor. This logical core is shared
by the host and the device. The OpenCL-GPU runtimes are
configured by the AMD-APP SDK 2.9 [21] and CUDA Toolkit
5.0 [22], use a logical CPU core as the host processor and
the GPU streaming cores as the compute device. The kernel



Fig. 5. Results with different CPUs

Fig. 6. Results with different GPUs

codes are compiled with the device compiler provided by each
OpenCL SDK.

B. Methodology

We performed tests with different hardware platforms and
use additional open-source implementations of the SIFT algo-
rithm as references. For the CPU, the Open-SIFT implementa-
tion was selected. Open-SIFT is a C99 implementation without
parallelization [23]. For the GPU, we choose Cuda-SIFT [3].
Cuda-SIFT is implemented with the CUDA-API provided by
NVIDIA. CUDA is a vendor specific framework which only
supports NVIDIA GPUs.
We use two sets of images with different sizes as shown in
Table XI. The small size image set is a data-set collected by
K.Mikolajczyk [24] and is a standard image set used in many
computer vision research activities. Images in the large size
image set are downloaded from the Internet. With the different
image sizes we want to test the scalability of our solution.
The SIFT algorithm has a group of adjustable parameters
which control the number of keypoints and the computational
load. All implementations, Open-SIFT, Cuda-SIFT and our
OpenCL-SIFT, work on the image set shown in Table XI and
have a common set of input parameters: 6 scale images per
octave, 5 octaves, 1 orientation pro feature, a contrast threshold
of 0.0066, a curvature threshold of 10.0 and a Gaussian filter σ

TABLE XI. SMALL IMAGE SET [24] / LARGE IMAGE SET

Image name Image size
bark 765x512
boat 850x680
leuven 900x600
trees 1000x700

Image name Image size
IL0 1280x960
IL1 1920x1080
IL2 1920x1200

of 1.6. The execution time is defined as the averaged execution
time of 10 consecutive test runs.

C. Results

Figure 5 shows the execution time on different CPUs
for the Open-SIFT and OpenCL-SIFT implementations. Both
CPUs, a XeonE5-2667 and a Core i7-4930k processor, have
6 physical cores with enabled Hyper-Threading. The OpenCL
run-time recognizes these cores as 12 CU. In Figure 5 we can
observe an average-linear speedup on XeonE5 and on Corei7-
4930k of factors 6.1 and 6.7 respectively. In comparsion to
the Open-SIFT implementation our solution finds more stable
features as shown in Table XII. The reason for this is a
different algorithm for the sub-pixel interpolation used in the
detector kernel. The CPUs are on average 4.11 times slower
than the GPUs. This difference is mainly due to lower memory
bandwidth of the CPU as one sees a strong correlation between
the CPU performance and the data size. For small size images,



TABLE XII. COMPARE OPEN-SIFT AND OPENCL-SIFT

Implementation Open-SIFT Corei7-4930k OpenCL-SIFT Corei7-4930k
Image name bark1 bark2 bark1 bark2

Count features 1071 1100 1902 2132
Count matches 277 366

Image name boat1 boat2 boat1 boat2
Count features 1170 1111 1739 1697
Count matches 376 459

Image name leuven1 leuven2 leuven1 leuven2
Count features 603 494 1168 1143
Count matches 294 638

Image name trees1 trees2 trees1 trees2
Count features 2299 2193 3064 2910
Count matches 394 620

TABLE XIII. COMPARE CUDA-SIFT AND OPENCL-SIFT

Implementation Cuda-SIFT GTX780 TI OpenCL-SIFT GTX780 TI
Image name bark1 bark2 bark1 bark2

Count features 1928 2129 1988 2230
Count matches 243 420

Image name boat1 boat2 boat1 boat2
Count features 1591 1479 1802 1761
Count matches 321 503

Image name leuven1 leuven2 leuven1 leuven2
Count features 1033 860 1190 1162
Count matches 401 658

Image name trees1 trees2 trees1 trees2
Count features 2903 2735 3121 2963
Count matches 273 641

the run-time of CPU and GPU are comparable (Figures 5
and 6). On larger images, the GPUs outperform CPUs due to
the higher memory bandwidth and the higher peak arithmetic
performance. The quality of the features was also compared.
For the comparison we matched SIFT features between images
using kd-trees and Best Bin First search method. Additionally,
the geometrical image transformation from feature matches
using RANSAC is performed [23].
Figure 6 shows the execution times, including communication
times on different GPUs with the Cuda-SIFT and the OpenCL-
SIFT implementation. We tested low-end and high-end GPUs
with different computation capabilities. Our tests showed that
the proposed optimization techniques fits different GPUs well.
The expected scaling between low-end HD 6970 results and
high-end R9 290 results can be observed. We also observed
a difference of the run-time related to the variable number of
features found in the different implementations and different
algorithms used to implement the kernels. In comparison to
Cuda-SIFT, our solution finds again more stable features as
shown in Table XIII. Additionally, our implementation is
portable across GPUs and is in avarage 1.84 times faster than
Cuda-SIFT on Nvidia GPUs.
The experimental results shows that OpenCL-SIFT finds more
stable features and still is faster than reference implementa-
tions. The maximum achieved framerate, 43 FPS on AMD
R9-290, enables a real time local feature extraction.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented OpenCL based SIFT imple-
mentations that transparently run on both CPUs and GPUs.
The proposed optimizations for both devices have proved
efficient and demonstrate scalability across various devices.
Additionally, our approach enables the concurrent processing
on multiple devices. The results show that the proposed
optimizations increase the performance of the solution despite
significant differences of the internal GPU architectures.

We plan to investigate more efficient scheduling methods to
further speed up the application on systems with multiple
devices. Additionally, we want to explore the mapping of
the OpenCL programming model and associated optimization
techniques to specialized coprocessors such as the Intel Xeon-
Phi.
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