
HAL Id: hal-01081962
https://inria.hal.science/hal-01081962

Submitted on 12 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A Review of World’s Fastest Connected Component
Labeling Algorithms: Speed and Energy Estimation

Laurent Cabaret, Lionel Lacassagne, Louiza Oudni

To cite this version:
Laurent Cabaret, Lionel Lacassagne, Louiza Oudni. A Review of World’s Fastest Connected Compo-
nent Labeling Algorithms: Speed and Energy Estimation. International Conference on Design and Ar-
chitectures for Signal and Image Processing, Oct 2014, Madrid, Spain. �10.1109/dasip.2014.7115641�.
�hal-01081962�

https://inria.hal.science/hal-01081962
https://hal.archives-ouvertes.fr

A Review of World’s Fastest Connected Component

Labeling Algorithms: Speed and Energy Estimation

Laurent Cabaret Lionel Lacassagne Louiza Oudni

Laboratoire de Recherche en Informatique

Inria/Univ. Paris Sud, F-91405 Orsay, France

email: firstname.name@lri.fr

Abstract—Optimizing connected component labeling is cur-
rently a very active research field. The current most effective
algorithms although close in their design are based on different
memory/computation trade-offs. This paper presents a review
of these algorithms and a detailed benchmark on several Intel
and ARM embedded processors that allows to focus on their
advantages and drawbacks and to highlight how processor
architecture impact them.

INTRODUCTION

Binary Connected Component Labeling (CCL) algorithms

deal with graph coloring and transitive closure computation.

CCL algorithms play a central part in machine vision, because

it is often a mandatory step between low-level image process-

ing (filtering) and high-level image processing (recognition,

decision). As such, CCL algorithms have numerous applica-

tions and derivate algorithms like: convex hull computation,

hysteresis filtering, geodesic reconstruction.

Designing a new algorithm is challenging both from con-

sidering the overwhelming literature and the performance of

best existing algorithms. Goals might be a faster algorithm on

some class of computer architecture or minimizing the number

of over-created labels or the smallest theoretical complexity.

Yet another issue is to be most predictable.

Now, from the current state of the computing technology,

reaching decent performances in actuality requires for CCL

algorithms to take into account two specificities/capacities

of current General Purpose Processors (GPP): the processor

pipeline and its cache memories. That amounts to minimize

conditional statements (like tests and comparisons) to reduce

the number of pipeline stalls and limit random sparse (typically

vertical) memory accesses, to lower cache misses.

The embedded processing applications ask continuously to

process bigger images in a smaller time and to consume as

little energy as possible. That is why we focused on mobile

processors in this study.

As it is an intermediate level algorithm, CCL processes

the output data coming from low level algorithms (binary

segmentation, ...) and provides abstract input data to other

intermediate or high level algorithms. Usually, such abstract

data also called features are the boundary of bounding rectan-

gle (for target tracking) and the first order statistical moments

(surface, centroid, orientation, ...). So, if a standalone CCL

algorithm can be considered at first step, the couple “CCL +

features computation” is the procedure to be actually evaluated

at end.

Our contribution consists of three elements:

• an enhanced benchmark that incorporates random images

with different granularities. That can be seen as a bridge

between classical random images of density and data base

images,

• a performance benchmark with all state-of-the-art algo-

rithms on embedded general purpose processors from

Intel and ARM,

• an analysis from the energy point of view.

In the remainder of this paper we shall describe mod-

ern algorithms and describe the benchmark’s procedure and

hardware. We then present the results on Intel’s and ARM’s

architectures and finally provide a comparison from the energy

point of view.

I. CONNECTED COMPONENT LABELING ALGORITHMS

Historical algorithms were designed by pioneers like Rosen-

feld [14], Haralick [4], and Lumia [10] who designed pixel-

based algorithms, and Ronse [13] for run-based algorithm.

Modern algorithms derive from the historical ones and try

improvements by replacing some components by a more

efficient one. An extensive bibliography can be found in [5]

and [16].

Except Contour Tracing algorithm [1] that is aesthetic but

inefficient, all modern algorithms are two-passes (or less)

algorithms, none is a data dependent multi-pass algorithm.

They share the same three steps:

• first labeling that assigns a temporary/provisional label to

each pixel and builds labels equivalence,

• label equivalences solving that is to compute the transitive

closure of the graph associated to the label equivalence

table,

• second labeling to replace temporary label by the final

label (usually the smallest one of the component).

They differ on three points: the mask topology, the number

of tests for a given mask to find out the label, and the

equivalence management algorithm.

Using Rosenfeld mask (fig. 1), only two basic patterns trig-

ger label creation (fig. 2), whatever is the connectivity (here 8-

connectivity). The first one is the stair. It is responsible for the

unnecessary provisional label created by pixel-based algorithm

a b c d e f

g h i j k l

m n o p

q r s t

e1 e2 e3

e4 ex

e1 e2

e4 ex

e1 e2 e3

e4 ex

e5 ey

Fig. 1. Masks: first line: Rosenfeld, RCM , HCS2, and Grana, second
line: HCS and LSL

like Rosenfeld’s one. The second one is the concavity. With

the neighborhood CCL locality, it is obvious that the label

creation cannot be avoided.

As figure 4 and figure 5 show, the execution time is not

directly correlated to the total amount of final labels, but to

the number of stairs and concavities that generate equivalence

building. So, one way to improve CCL algorithms is to widen

the label mask. That leads to block-based algorithms (fig. 1)

like HCS2 [7] and Grana [3] that respectively compute 2

and 4 labels from 6-pixel and 16-pixel neighborhood. One

the opposite way, RCM [8] introduces a mask with only 3

neighbors in order to reduce the amount of tests. Grana’s

mask can detect some concavities and avoid label creation

if these concavities are small enough to entirely fit in the

mask. But the only way to prevent label creation from stair

is to use a run-based algorithm like HCS [6] or Light-Speed

Labeling (LSL) [9] that first detect the pixel adjacency in the

neighborhood before to assign a label to the run. The LSL

uses a tricky line-relative labeling to generate RLC coding to

directly find adjacent runs on the previous line whereas HCS

has to perform a test on every pixel to decide to continue to

propagate a label or to perform an equivalence.

2

1

1

2 1

1

Fig. 2. Minimal 8-connected basic patterns generating temporary labels: stair
(left) and concavity (right)

The second point to enhance algorithm efficiency is to

reduce the number of tests. A decision tree (DT) [16] reduces

the average number of neighbor to test to find out the value

to assign to the current label based on mask topology. For

pixel-based algorithms, it decreases the complexity of the 8-

connectivity to the 4-connectivity one. For block-based algo-

rithm, DT is mandatory. Another way to reduce complexity

is to perform a path-compression (PC) [2]. It is a step added

to the Union-Find algorithm to perform a transitive closure in

climbing up to the root of the equivalence. It has been proven

that PC make the Union-Find complexity to grow with the

inverse of Ackermann function [15].

Finally, the third point to improve is the equivalence man-

agement algorithm. Rosenfeld’s algorithm uses Union-Find al-

gorithm and the associated table to store the equivalences. An

alternative approach with three tables has been proposed by [5]

e4

e1

e3

e2

ex=e4

ex=e1

ex=e2

e4

e1

1

0 1

0 1

1

1

ex=e3

0

0 1

0 0

+1 ex=e3=e4

ex=e3=e1

= label propagation

= = label equivalence

+1 new label

Fig. 3. 8-connected Decision Tree

now referenced as Suzuki equivalence tables. The difference

is that the transitive closure is done at each equivalence rather

than at the end.

The benchmarked algorithms (all 8-connected) are:

• Rosenfeld: original algorithm improved with DT+PC,

• Suzuki: Rosenfeld mask with Suzuki tables management

that we improved with DT,

• RCM : pixel-based algorithm with Suzuki management,

• HCS2: block-based algorithm with Suzuki management,

• Grana: block-based algorithm with 128-stage DT,

• HCS: run-based algorithm with Suzuki management,

• LSL: run-based algorithms with Union-Find manage-

ment with two variants: LSLSTD and LSLRLE .

II. BENCHMARKS

We present here the images and processors used for bench-

marking. We also provide a qualitative analysis of temporary

labels creation.

A. Random images generation and qualitative analysis

Depending on the OS and the compiler the pseudo-random

number generator embedded into the libC can change, so pro-

viding the seed is not enough if one wants to do reproducible

experiments. For that reason, the Mersenne Twister MT19937

[11] has been chosen with seed = 0.

Usually papers evaluate CCL performance first with random

images (varying pixel density from 0% to 100%) for hard-

to-label benchmark and secondly with image data base. But

data base can be biased and then may favor some algorithms.

In order to analyze algorithms behavior depending on some

image properties: size of connected components and size of

the smaller element compared to the algorithm neighborhood

scale, we decided to extend random images by changing the

pixel granularity. Initial random image has a granularity of

1. Then we create g-random images whose block of pixels

have a size of g × g, with g ∈ [1 : 16]. The symmetrical

shape of these blocks ensure an equitable treatment between

the different algorithms. All the random images are 1024 ×
1024 (width × height).

The figure 4 provide the temporary labels distribution for

granularity g ∈ {1, 2, 4} for pixel-based, run-based and

Grana’s algorithms (red, magenta, and blue). The number of

final labels (green), concavities (cyan), and stairs (orange) is

also provided.

First, if we compare run-based and pixel-based label distri-

bution, we can see that run-based curve has always the same

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 10 20 30 40 50 60 70 80 90 100

n
u

m
b

er
 o

f
la

b
el

s
-

g
 =

 1

image density (%)

labels-pixel
labels-grana

labels-run
final labels

concavities
stairs

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 20 30 40 50 60 70 80 90 100

n
u

m
b

er
 o

f
la

b
el

s
-

g
 =

 2

image density (%)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 20 30 40 50 60 70 80 90 100

n
u

m
b

er
 o

f
la

b
el

s
-

g
 =

 4

image density (%)

Fig. 4. Distribution of labels, concavities and stairs versus density for
granularity g ∈ {1, 2, 4}

behavior (close to the final label curve), contrary to the pixel-

based curve. The reason is that the amount of concavities is

proportionally constant (from one granularity to another one)

to the number of final label. For g ≥ 2, it appears that the

amount of stairs becomes bigger than concavities, and thus

increases the gap between the number of labels of pixel-based

and run-based. That is the reason why run-based algorithms

have a better execution time when g is growing: they avoid

more and more label creation.

Concerning Grana algorithm, it generates quite the same

number of temporary labels for g = 1 than pixel-based ones.

For g = 2 it comes closer to run-based algorithms as its wide

mask avoids many temporary labels. But for g ≥ 4, its wide

mask does not avoid label creation, as 4-pixel wide stair and

concavities are beyond the pixel’s neighborhood.

B. Image data base

The Standard Image Data-Base (SIDBA) has been used

for natural image labeling. Gray-scaled images have been

automatically binarized with Otsu algorithm [12]. For both

random images and natural ones, we provide the cpp (cycle

per pixel) of each algorithm, with features computation. The

features extracted for each component are: the bounding box

([xmin, xmax]× [ymin, ymax]) and the first statistical moments

(S, Sx, and Sy).

C. General Purpose Processors

In order to evaluate the impact of the architecture on

the execution time, we selected two mobile processors from

Intel: PenrynM (U9300, 1.2GHz, 10W), HaswellM (4650U,

1.7GHz, 15W) and two embedded from ARM: CortexA9

(OMAP4460, 1.2GHz, 1.2W) and CortexA15 (Exynos5250,

1.7GHz, 1.7W). HaswellM and CortexA9 were chosen for the

curves and tables, however all the SIDBA results were reported

in figures 9 and 10. Executable codes were generated with Intel

ICC v14.0.1 and gcc-arm 4.6.3.

III. RESULTS AND ANALYSIS

TABLE I
AVERAGE cpp VERSUS GRANULARITY

granularity

g = 1 g = 2 g = 4 g = 8 g = 16

algorithms HaswellM

Rosenfeld 13.15 7.55 4.97 4.28 4.02

Suzuki 12.53 7.26 4.68 3.96 3.68

RCM 13.30 9.15 7.21 6.34 5.90

HCS 13.36 8.52 6.12 5.06 4.56

HCS2 11.22 6.93 5.77 5.30 5.15

Grana 15.00 7.36 5.15 4.08 3.59

LSLSTD 8.70 5.88 4.97 4.63 4.48

LSLRLE 16.42 8.54 4.73 3.14 2.55

algorithms CortexA9

Rosenfeld 42.20 35.82 34.14 33.35 32.46

Suzuki 40.67 34.86 32.86 31.85 31.21

RCM 50.99 40.92 37.63 36.27 35.88

HCS 28.79 22.84 20.74 20.25 20.19

HCS2 40.42 30.24 29.13 29.00 29.02

Grana 32.85 23.18 20.61 19.60 19.46

LSLSTD 32.69 27.11 24.94 23.99 23.58

LSLRLE 35.03 23.03 17.20 14.41 13.75

a) Density behavior: Figure 5 shows us that algorithm

curves - except HCS2 -, are symmetrical about their maxi-

mum value. The abscissas of the maximum values are con-

tained in the [45%; 55%] area depending on the algorithm.

Concavities and stairs (fig. 4), lead to temporary label creation

and labels merging, they also increase the probability of having

more tests to perform in the decision tree (e.g., stair makes to

traverse all the DT graph until the label creation node “+1” -

figure. 3) and doing so, increase cpp.

One can observe that when the number of stairs and

concavities decrease (g comes higher) the density curves tend

to flatten. As described in [6], HCS2 algorithm make no usage

of decision tree and so, it needs to load the neighborhood’s

labels for each pixel to label. Doing so, it is not able to reduce

cpp when density grows above 50%.

b) Granularity influence: Table I and figure 5 describe

the behavior of algorithms faced to images of different gran-

ularities. The main trend is that when g grows cpp drops.

First quickly [×0.49;×0.69] for g ∈ {1, 2}, and then slowly

[×0.30;×0.76] for g ∈ [2:16]. One can notice that LSLRLE is

the most accelerated when granularity grows while LSLSTD

is the most regular. It comes from their construction as

explained in [9]. LSLRLE is inefficient for g = 1 because

of its run length encoding kernel. RCM is efficient but only

for g = 1, this is due to the smaller number of tests it performs

compared to Rosenfeld which is an efficient strategy on

unstructured data.

LSLSTD is first for g ∈ [1:4[, Suzuki is first for g = 4
and LSLRLE is first for g ∈]4:16]. Note that g = 4 is a

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

5

10

15

20

25

C
yc

le
s p

er
 p

ix
el

 -
g=

1
Rosenfeld

Suzuki

RCM

HCS

HCS2
Grana

LSLSTD

LSLRLE

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0
1
2
3
4
5
6
7
8
9

C
yc

le
s p

er
 p

ix
el

 -
g=

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Image granularity

0
2
4
6
8

10
12
14
16
18

C
yc

le
s p

er
 p

ix
el

Fig. 5. HaswellM: cpp over density for granularity g ∈ {1, 4} and average
cpp versus granularity

turning point where LSLRLE , LSLSTD, Suzuki, Grana,

and Rosenfeld are close. Their different trade-offs between

memory management and number of tests are broadly equiva-

lent in performances for this granularity value. For structured

data (higher g values), the algorithm ranking is (first to last):

LSLRLE , Grana, Suzuki, Rosenfeld, LSLSTD, HCS,

HCS2, and RCM .

LSL is still the fastest algorithm on Intel architecture. If the

application field provides unstructured images (g ∈ [1 : 3]),
LSLSTD should be chosen, otherwise LSLRLE .

c) Features computation (FC) influence: When FC is

activated, LSLSTD and LSLRLE outperform all others al-

gorithms (table II and fig. 6). This is mostly due to on-the-fly

FC, which make the last relabeling scan unnecessary [9]. FC is

almost always faster than doing the second labeling, especially

for LSLRLE where run length coding speeds up FC. In facts,

the addition of FC accelerates the LSL algorithm. LSLSTD

is first for g ∈ [1:2] and LSLRLE is first for g ∈]2:16].
For structured data (higher g values), the algorithm ranking

becomes (first to last): LSLRLE , LSLSTD, Grana, Suzuki,

Rosenfeld, HCS, HCS2, and RCM .

FC increases equally the cpp of every other algorithms

depending on g (even if number of pixels is constant as density

is constant). From 4.3 cpp for g = 16 up to 9.0 cpp for g = 1

TABLE II
AVERAGE cpp ACCORDING TO GRANULARITY WITH FC

granularity

g = 1 g = 2 g = 4 g = 8 g = 16

algorithms HaswellM

Rosenfeld 22.07 14.35 10.43 9.04 8.41

Suzuki 21.50 14.05 10.17 8.78 8.13

RCM 22.10 15.77 12.48 10.92 10.15

HCS 22.36 15.30 11.56 9.82 8.96

HCS2 20.22 13.74 11.23 10.05 9.52

Grana 23.98 14.13 10.57 8.80 7.97

LSLSTD 9.55 5.71 4.34 3.75 3.42

LSLRLE 12.73 6.25 3.66 2.59 2.01

algorithms CortexA9

Rosenfeld 65.92 57.18 54.43 53.01 51.67

Suzuki 65.47 56.55 53.20 51.43 50.26

RCM 76.55 62.81 58.47 56.50 55.57

HCS 53.28 44.36 41.01 39.86 39.21

HCS2 64.06 51.66 49.74 48.91 48.29

Grana 57.28 44.28 40.79 39.09 38.25

LSLSTD 31.24 21.44 17.84 16.27 15.59

LSLRLE 25.19 15.36 11.75 10.10 9.39

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

5

10

15

20

25

30

35

40

C
yc

le
s p

er
 p

ix
el

 -
g=

1

Rosenfeld

Suzuki

RCM

HCS

HCS2
Grana

LSLSTD

LSLRLE

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

2

4

6

8

10

12

14

16

C
yc

le
s p

er
 p

ix
el

 -
g=

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Image granularity

0

5

10

15

20

25

C
yc

le
s p

er
 p

ix
el

Fig. 6. HaswellM: cpp over density for granularity g ∈ {1, 4} and average
cpp over granularity with FC

for HaswellM (18.8 cpp up to 25.6 cpp for CortexA9). Those

variations are explained by the structure of the image (fig. 4).

If granularity is low there are more labels than if granularity

is high. So sparser memory accesses will happen, leading to

different amounts of cache hits and cache misses.

d) Architecture influence - HaswellM/CortexA9: The

most noticeable differences between HaswellM and CortexA9

are the increase of cpp and the evolution of the algorithms

rank. Table III highlights the cpp ratio between HaswellM and

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

10

20

30

40

50

60

70

C
yc

le
s p

er
 p

ix
el

 -
g=

1
Rosenfeld

Suzuki

RCM

HCS

HCS2
Grana

LSLSTD

LSLRLE

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0
5

10
15
20
25
30
35
40
45

C
yc

le
s p

er
 p

ix
el

 -
g=

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Image granularity

0

10

20

30

40

50

C
yc

le
s p

er
 p

ix
el

Fig. 7. CortexA9: cpp over density for granularity g ∈ {1, 4} and average
cpp versus granularity

CortexA9 for each algorithm. The lowest value means that the

algorithm is comparatively less slowed on CortexA9 than the

others, One can remark that, LSLRLE , HCS, Grana, and

LSLSTD make a better use of the CortexA9 than HCS2,

RCM , Rosenfeld, and Suzuki. There are two explanations:

conditional instructions and memory latency who question the

trade-offs made by algorithms. RCM does less tests for each

pixel, less loads for foreground pixel, but more loads for back-

ground ones. These choices might be valuable on HaswellM

but are less efficient on CortexA9. Grana and HCS2 execute

more tests than others and less memory accesses due to

their block-based construction. The gap between LSLRLE

and LSLSTD is bigger on CortexA9 than HaswellM, because

LSLRLE performs less memory accesses (only for the start

and the end of runs). As HCS is a run-based algorithm it

performs less memory access than pixel based.

TABLE III
cpp RATIO CORTEXA9/HASWELLM FOR RANDOM IMAGES WITH FC

granularity

algorithms g = 1 g = 2 g = 4 g = 8 g = 16

Rosenfeld 2.99 3.99 5.22 5.86 6.14

Suzuki 3.05 4.02 5.23 5.86 6.18

RCM 3.46 3.98 4.68 5.17 5.48

HCS 2.38 2.90 3.55 4.06 4.38

HCS2 3.17 3.76 4.43 4.87 5.07

Grana 2.39 3.13 3.86 4.44 4.80

LSLSTD 3.27 3.76 4.11 4.34 4.56

LSLRLE 1.98 2.46 3.21 3.90 4.67

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

20

40

60

80

100

C
yc

le
s p

er
 p

ix
el

 -
g=

1

Rosenfeld

Suzuki

RCM

HCS

HCS2
Grana

LSLSTD

LSLRLE

0 10 20 30 40 50 60 70 80 90 100
Image density (%)

0

10

20

30

40

50

60

70

80

C
yc

le
s p

er
 p

ix
el

 -
g=

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Image granularity

0

10

20

30

40

50

60

70

80

C
yc

le
s p

er
 p

ix
el

Fig. 8. CortexA9: cpp vs density for granularity g ∈ {1, 4} and average
cpp over granularity with FC

e) Real case images: The benchmark on natural images

from SIDBA data base confirms the random images conclu-

sion. We give the results for algorithms with FC (table IV)

with min, average and max values for processing time and

cpp, to allow direct comparison with others articles’ results.

TABLE IV
EXECUTION TIME AND cpp FOR SIDBA WITH FC

time(ms) cpp

min avg max min avg max

algorithms Haswell

Rosenfeld 2.34 2.73 3.16 8.28 9.65 11.19

Suzuki 2.27 2.69 3.50 8.03 9.54 12.40

RCM 2.64 2.99 3.29 9.35 10.58 11.66

HCS 2.38 2.78 3.17 8.44 9.85 11.23

HCS2 2.63 3.06 3.61 9.32 10.84 12.78

Grana 2.14 2.59 3.04 7.58 9.19 10.77

LSLSTD 0.87 1.02 1.18 3.08 3.61 4.17

LSLRLE 0.42 0.69 1.00 1.48 2.43 3.55

algorithms A9

Rosenfeld 19.20 23.41 28.84 48.00 58.53 72.10

Suzuki 18.80 22.69 27.32 47.01 56.73 68.30

RCM 23.40 24.30 25.79 58.51 60.75 64.49

HCS 15.10 17.55 20.40 37.74 43.87 50.99

HCS2 17.42 21.39 26.19 43.55 53.47 65.47

Grana 14.92 17.01 19.81 37.31 42.53 49.52

LSLSTD 7.38 8.23 8.81 18.46 20.58 22.03

LSLRLE 5.62 6.00 6.62 14.04 14.99 16.56

Figures 9 and 10 present cpp for all algorithms on all

architectures for the SIDBA data base. On HaswellM, the

ranking without FC is LSLRLE , Grana, Suzuki, LSLSTD,

Rosenfeld, HCS, RCM , and HCS2 and with FC the

ranking is LSLRLE , LSLSTD, Grana, Suzuki, Rosenfeld,

HCS, RCM , and HCS2.

One can remark that - in average - new architectures are

faster than previous ones and Intel’s architectures are faster

than ARM’s one. But not identically for all algorithms: HCS

and Grana take both a great advantage of the CortexA15

architecture. Without FC they are the fastest on CortexA15,

but on a real application case (with FC), LSL (RLE and

STD) are the world’s fastest algorithm.

LSLSTD has a very stable execution time for all images

(table IV): For SIDBA, the execution time variation be-

tween images is 0.31ms on HaswellM (0.21ms without FC),

whereas for Rosenfeld the variation is 0.82ms on HaswellM

(0.48ms without FC) :

CortexA9 CortexA15 PenrynM haswellM
0

5

10

15

20

25

30

35

40

cp
p

Fig. 9. Histogram of average cpp for SIDBA

CortexA9 CortexA15 PenrynM haswellM
0

10

20

30

40

50

60

70

cp
p

Fig. 10. Histogram of average cpp for SIDBA with FC

f) Architecture influence - A15/A9: The relative order

of algorithm is maintained except for LSLRLE that is less

accelerated than the others. This is due to its already optimized

memory management that takes less advantages from A15
optimizations.

g) Energy consumption: Table V presents IE an energy

index that is proportional to the average energy consumption

(IE = t × TDP of the whole dual-core processor). As TDP

reflects the power consumption of the two cores, IE is higher

than the real energy consumption. But as the benchmarked

processor have two cores, IE enforces the order relation

between processors. On HaswellM, PenrynM, and CortexA9,

LSLRLE is the best. On A15 it is LSLSTD. The CortexA15

is, right now, the most energy-efficient architecture.

TABLE V
ENERGY ESTIMATION WITH FC (mJ)

Architectures

algorithms CortexA9 CortexA15 PenrynM HaswellM

Rosenfeld 28.1 13.4 68.9 40.9

Suzuki 27.2 13.3 67.6 40.4

RCM 29.2 14.3 76.2 44.8

HCS 21.1 11.2 68.1 41.7

HCS2 25.7 12.6 76.3 45.9

Grana 20.4 10.7 66.1 38.9

LSLSTD 9.9 4.6 21.4 15.3

LSLRLE 7.2 5.0 16.5 10.3

IV. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a new detailed benchmark

procedure for connected component labeling with granularity

steps that is complemented with the use of a standard database.

The benchmark procedure, confirms that for real applica-

tions (that is with features computations) LSLRLE algorithm

outperforms all state-of-the-art algorithms, on both Intel and

ARM processors. For time-predictability and standard devia-

tion, LSLSTD is the best choice.

Future works will consider parallelization of CCL on GPP.

REFERENCES

[1] F. Chang and C. Chen. A linear-time component-labeling algorithm
using contour tracing technique. Computer Vision and Image Under-

standing, 93:206–220, 2004.
[2] T. Cormen, C. Leiseirson, R. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, 2001.
[3] C. Grana, D.Borghesani, and R. Cucchiara. Fast block based connected

components labeling. In ICIP, pages 4061–4064. IEEE, 2009.
[4] R. Haralick and L. Shapiro. Computer and Robot Vision. Addison-

Wesley ISBN 0-201-56943-4, 1992.
[5] L. He, Y. Chao, and K. Suzuki. A run-based two-scan labeling algorithm.

In ICIAR, pages 131–142. LNCS, 2007.
[6] L. He, Y. Chao, and K. Suzuki. An efficient first-scan method for label-

equivalence-based labeling algorithms. Pattern Recognition Letters,
31(1):28–35, 2010.

[7] L. He, Y. Chao, and K. Suzuki. A new two-scan algorithm for labeling
connected components in binary images. In W. Congress, editor,
Proceedings of the World Congress on Engineering, volume 2, pages
p1141–1146, 2012.

[8] U. Hernandez-Belmonte, V. Ayala-Ramirez, and R. Sanchez-Yanez.
Enhancing ccl algorithms by using a reduced connectivity mask. In
Springer, editor, Mexican Conference on Pattern Recognition, pages
195–203, 2013.

[9] L. Lacassagne and B. Zavidovique. Light speed labeling: efficient
connected component labeling on risc architectures. Journal of Real-

Time Image Processing, 6(2):117–135, 2011.
[10] R. Lumia, L. Shapiro, and O. Zungia. A new connected components

algorithms for virtual memory computers. Computer Vision, Graphics

and Image Processing, 22-2:287–300, 1983.
[11] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-

dimensionally equidistributed uniform pseudorandom number generator.
Transactions on Modeling and Computer simulation, 8(1):3–30, 1998.

[12] N. Otsu. A threshold selection method from gray-level histograms.
Transactions on System, Man and Cybernetics, 9:62–66, 1979.

[13] C. Ronse and P. Dejvijver. Connected components in binary images:
the detection problems. In Research Studies Press, 1984.

[14] A. Rosenfeld and J. Platz. Sequential operator in digital pictures
processing. Journal of ACM, 13,4:471–494, 1966.

[15] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J.

ACM, pages 215–225, 1975.
[16] K. Wu, E. Otoo, and A. Shoshani. Optimizing connected component

labeling algorithms. Pattern Analysis and Applications, 2008.

