
HAL Id: hal-04461126
https://hal.science/hal-04461126

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring Performance Improvement Opportunities in
Directive-Based GPU Programming
Rokiatou Diarra, Alain Merigot, Bastien Vincke

To cite this version:
Rokiatou Diarra, Alain Merigot, Bastien Vincke. Exploring Performance Improvement Opportunities
in Directive-Based GPU Programming. 2018 Conference on Design and Architectures for Signal and
Image Processing (DASIP), Oct 2018, Porto, France. pp.82-87, �10.1109/DASIP.2018.8597015�. �hal-
04461126�

https://hal.science/hal-04461126
https://hal.archives-ouvertes.fr

Exploring performance improvement opportunities
in directive-based GPU programming

Rokiatou DIARRA
SATIE, Univ. Paris-Sud

Univ. Paris-Saclay
94235 Cachan, France

rokiatou.diarra@u-psud.fr

Alain MERIGOT
SATIE, Univ. Paris-Sud

Univ. Paris-Saclay
94235 Cachan, France
alain.merigot@u-psud.fr

Bastien VINCKE
SATIE, Univ. Paris-Sud

Univ. Paris-Saclay
94235 Cachan, France

bastien.vincke@u-psud.fr

Abstract—GPUs offer an impressive computing power, but
their effective exploitation remains an open problem. Kernel
based programming models such as CUDA or OpenCL, allow
a direct programming of the GPU architecture and can drive
to excellent performance. However, these programming mod-
els require significant code changes, often tedious and error-
prone, before getting an optimized program. Directive-based
programming models (such as OpenMP and OpenACC) are
now available for GPU and can offer good trade-off between
performance, portability and development cost. In this paper,
we do a comparative performance study between OpenACC,
OpenMP 4.5 and CUDA, which is essential for facilitating
parallel programming for GPUs. In order to find most significant
performance issues, we port a suite of representative benchmarks
and three computer vision applications to OpenACC, OpenMP
and CUDA. Beyond runtime, we explore factors that influence
performance, such as register counts, workload, grid and block
sizes. The results of this work show that either OpenACC or
OpenMP are good alternatives to kernel based programming
models, provided some careful manual optimization is performed.
Through the analysis of generated PTXs files, we discover that
there is in general a systematic overhead in the kernel launch for
OpenMP, but, for most applications, it is not a big issue provided
the kernel has a sufficient workload.

Index Terms—GPU, OpenMP, OpenACC, CUDA

I. INTRODUCTION

Heterogeneous programming has become a reality with the
omnipresence of accelerators, such as the graphics processing
unit (GPU) and Xeon Phi, in current architectures. GPUS
can achieve significant performance for certain categories of
application (e.g.: computer vision algorithms, dense linear
algebra). Nevertheless, achieving this performance is not only
dependent on an important effort of programming and code
tuning, but also a good knowledge of GPUS architecture.
Thereby, porting sequential applications on these systems
requires large efforts of rewriting. Kernel based languages
such as CUDA or OpenCL are well suited to GPUS. They
offer a number of features for performance optimization as
the architecture is directly accessible to the user that makes
possible to obtain excellent performance but adds complexities
for application developers.

Directive-based programming models may therefore be-
come an interesting solution. GPUS programming using di-
rectives is an alternative to kernel based language (CUDA
and OpenCL). Because of their ease of use, directive-based

programming models can offer a good trade-off between
productivity, portability and performance. However, such pro-
gramming strategies impose technical challenges on compiler
optimizations, which could result in lower performance than
with CUDA or OpenCL. With standards such as OpenACC
and OpenMP 4.0/4.5, programmers can easily implement
an accelerated code by adding compiler directives in their
sequential code and architecture management being left to the
compiler. Each API has its own execution model, which is
intentionally abstract to avoid coupling it to the specificities
of any device.

Although many works [1]–[7] have been done on GPUS
programming with OpenACC and OpenMP since their release,
we shall demonstrate that, despite all the attention this topic
has received, current compilers still need improvement in
order to generate codes that can be equal to the performance
of a hand-optimized CUDA code. We make the following
contributions:

• The configuration of OpenMP and OpenACC directives
affects the overall performance of the application. We
test different combinations of directives to show their
impact on performance. We show also that a good com-
prehension of OpenACC and OpenMP offloading model
is necessary on behalf of the programmer in order to help
compilers efficiently parallelize.

• Using various applications from the Rodinia benchmark
suite and the field of computer vision, we do a com-
parative performance study between OpenACC, OpenMP
4.5 and CUDA, which is essential for facilitating parallel
programming for accelerators.

• While kernel compute time is not sufficient to understand
what is really happening at the architectural level when
kernel running, we carry out a detailed analysis of the
results with the help of performance counters and PTXs
codes to identify execution models differences between
OpenACC, OpenMP 4.5 and CUDA.

• Many embedded systems integrate GPUs. Embedded
systems applications developers can use OpenMP or Ope-
nACC to accelerate their codes. Currently, LLVM/Clang
is the only open source compiler that has a support
for NVIDIA GPU and ARM CPU. To the best of our

knowledge, this is the first work evaluating performance
of LLVM/CLang implementation of OpenMP 4.5 on
NVIDIA Tegra embedded platforms.

The paper is organized as follows. Section II provides
background information on CUDA, OpenMP and OpenACC.
Section III and Section V presents an extensive performance
evaluation and analysis. Section VI summarize concluding
remarks.

II. BACKGROUND

A. CUDA

CUDA is a parallel computing programming model that
fully utilizes hardware architecture and software algorithms
to accelerate various types of computation [6], [8]. In CUDA,
the programmer writes device code in functions called kernels.
A kernel will be executed by many GPU threads. Before
launching the kernel on the GPU the user must specify the
number of threads, by setting grid and block sizes, that
will execute the kernel. A grid consists of multiple thread
blocks and each block contains several threads. During kernel
execution, threads have access to different types of memory
on the GPU. Each type of memory has its properties such
as access latency, address space, scope, and lifetime. Before
launching kernels, data must be transferred to GPU memories.
To obtain optimized code, the programmer must understand
well not only GPU architecture, but also CUDA optimization
strategies like memory-coalescing access, efficient usage of
shared memory or tiling technology. Additionally, grid and
block configurations, computing behaviors of each thread, and
synchronization problems need to be carefully tuned [6], [9].

B. OpenMP

OpenMP is undoubtedly the most used standards for several
years in the parallel programming for shared memory CPUs
[10]. OpenMP 4.0 and 4.5 extended the OpenMP shared
memory programming model with the introduction of device
constructs to support accelerators. In order to offload a region
of code into the device, OpenMP 4.0 and 4.5 uses the target
construct to create a data environment on the device and then
execute the code region on that device. Various directives
are provided to express the levels of parallelism. The teams
construct, creates a league of thread teams where the master
thread of each team executes the region. The number of teams
created and of threads participating in the contention group
that each team initiates are implementation defined, but can
be specified respectively by the num teams and thread limit
clauses. The distribute construct specifies loops which are
executed by the thread teams. OpenMP 4.0 provides the
target data construct to handle data transfers and update data
on both of the host and accelerators within the target data
regions. The use device ptr clause allows to indicate that a
list item is a device pointer already. The target enter data
and target exit data constructs, newly added by OpenMP 4.5,
allow programmers to specify that variables are respectively
mapped/unmapped to/from a device data environment. Finally,

OpenMP provides the declarative declare target construct that
specifies that variables and functions are mapped to a device.

C. OpenACC

OpenACC is another specification focused on directive-
based ways to program accelerators [11]. Unlike OpenMP,
OpenACC standard is relatively new, the first version was
released in 2011. OpenACC has fewer constructs, but most
of them are analogous to those of OpenMP 4.0/4.5. The
OpenACC parallel construct starts parallel execution on the
current accelerator device by creating one or more gangs of
workers. The number of gangs, workers and vector lanes are
set by the compiler if no num gangs, num workers and
vector length are specified. The kernels construct defines a
region of the program that is to be compiled into a sequence
of kernels for execution on the current accelerator device.
The loop construct specifies the type of parallelism for the
associated loop. In addition to the collapse directive, the loop
construct provides the tile clause which specifies that the
implementation should partition a loop’s iteration space into
smaller chunks or blocks. Like OpenMP 4.0/4.5, OpenACC
provides the data construct for data transfer management
between host and accelerator. The enter/exit data or declare
constructs and deviceptr clause work in the same way as
their correspondent in OpenMP. OpenACC offers also the
cache construct which allows to specify that this data should
be fetched into the highest level of the cache. Listing 1
shows matrix addition kernel example in CUDA, OpenMP and
OpenACC.

1 g l o b a l
2 vo id addCuda (f l o a t * A, f l o a t * B , f l o a t * C) {
3 i n t x= blockDim . x * b l o c k I d x . x + t h r e a d I d x . x ;
4 i n t y= blockDim . y * b l o c k I d x . y + t h r e a d I d x . y ;
5 i f (x >= 0 && x < W && y >= 0 && y < H)
6 C[x + y * W] = A[x + y * W] + B[x + y * W] ;
7 }
8 vo id addOpenMP (f l o a t * A, f l o a t * B , f l o a t * C) {
9 # pragma omp t a r g e t teams i s d e v i c e p t r (A, B , C)

10 # pragma omp d i s t r i b u t e
11 f o r (i n t i = 0 ; i < H; i ++)
12 # pragma omp p a r a l l e l f o r s c h e d u l e (s t a t i c , 1)
13 f o r (i n t j = 0 ; j < W; j ++)
14 C[i * W + j] = A[i * W + j] + B[i * W + j] ;
15 }
16 vo id addOpenACC (f l o a t * A, f l o a t * B , f l o a t * C) {
17 # pragma acc k e r n e l s d e v i c e p t r (A, B , C)
18 f o r (i n t i =0 ; i<H; i ++)
19 # pragma acc loop i n d e p e n d e n t
20 f o r (i n t j =0 ; j<W; j ++)
21 C[i * W + j] = A[i * W + j] + B[i * W + j] ;
22 }

Listing 1. Matrix addition kernel example

III. PREVIOUS WORK

In recent years, much work has been done on directive-
based programing models for accelerators. Par4All [12] is
an open source directive-based programing that allows to
target parallel architectures including GPUS. PPCG [13] is
a source-to-source compiler based on polyhedral compilation
techniques. HMPP [14] is another high-level directive-based

language and source-to-source compiler that can generate
CUDA and OpenCL code. Since the release of the OpenACC
and OpenMP 4.0 standards, many works have been done to
compare their performance with that of CUDA. Hoshino et
al. [1] have studied the performance aspects of OpenACC
and found that in general OpenACC is approximately 50%
slower than CUDA, but for some applications, it can reach
up to 98% with careful manual optimizations. Winke et al.
[15] compared OpenMP 4.0 and OpenACC, predicting that
OpenMP 4.0 would likely achieve best adoption in the long-
term because it is such a prominent standard. Martineau et al.
evaluated in [3] OpenMP 4.0 effectiveness as a heterogeneous
parallel programming model and found that OpenMP 4.0
can achieve good performance while decreasing development
cost. They also analyzed, in [5], the Clang OpenMP 4.5
current implementation on an NVIDIA Kepler GPU and
suggested some potential solutions that can improve Clang
code generation performance. Graham et al. [16] explored the
performance portability of directives provided by OpenMP 4
and OpenACC to program various types of node architectures.
They concluded that due to the slightly different interpretations
of the OpenMP 4 specification, it is crucial to understand
how the specific compiler being used implements a particular
feature on different platforms. Hayashi et al. [4] evaluated
and analyzed OpenMP 4.x on an IBM POWER8 + NVIDIA
Tesla K80 platform. They found that the OpenMP generated
codes are in some cases faster, in some cases slower than
straightforward CUDA implementations written without com-
plicated hand-tuning. The work presented in this paper brings,
to the state of art, a clarification about the impacts of directives
configuration on performance, variations in generated PTX and
the additional costs related to the launch of kernel and thread
management.

IV. EXPERIMENTAL METHODOLOGY

In this section, we present the experiments carried out to
perform our performance comparison between CUDA, Ope-
nACC and OpenMP.

A. Applications
As part of this research it was necessary to port a num-

ber of applications that would be used in the performance
analysis. For what purpose, applications: Back Propaga-
tion (BP), Breadth First Search (BFS), Heartwall Tracking
(HW), HotSpot (HS), LavaMD (LMD), LU Decomposition
(LUD), Needleman - Wunsch (NW) and Speckle Reducing
Anisotropic Diffusion (SRAD) come from Rodinia1 bench-
mark suite. We chose the Rodinia benchmark because it con-
tains several classes of applications, and this variety allowed us
to show the impacts of our different combinations of directives
on performance. Detailed description of Rodinia benchmark
is provided in [17]. We also used three applications typically
used in preprocessing steps of complex computer vision algo-
rithms: Canny filter (Canny), Harris Corner Detector (HCD)
and Horn & Schunck (H&S) method of estimating optical flow.

1https://www.cs.virginia.edu/ skadron/wiki/rodinia/index.php/Downloads

B. Hardware platforms & Compilers
For our experiments, performance data were collected on

an NVIDIA GPU Quadro M2000M hosted in an Intel I7 CPU
and an NVIDIA Tegra X2 GPU. LLVM/Clang2 (4.0) being
the only free compiler with OpenMP 4.5 support for NVIDIA
GPUs, it is the latter that was used to compile our OpenMP
versions. For OpenACC, we used the PGI 17.10.0 compiler
and CUDA Driver/Runtime version is 9.1. On all platforms,
we used Ubuntu 16.04.

C. Approach
Since our goal is to explore performance improvement

opportunities in directive-based GPU programming, we have
studied several aspects that can impact on OpenACC and
OpenMP achievable performance. For that purpose, our study
will take place in two steps:

1) Although the use of directive-based methods does not
necessarily require a knowledge of GPU architecture,
it is nevertheless useful to understand the offloading
mechanism used by OpenACC and OpenMP in order to
better exploit them. Indeed, the quality of the PTX code
generated by the OpenACC and OpenMP compilers
is dependent on how the programmer configures the
directives. So, as a first step, we will analyze in detail
the impact of directives configurations on performance.
These configurations include: using directives separately
on multiple lines or combining them into one, loops
collapsing and grid and block sizes setting. Indeed, it is
well known that using the optimal grid and block sizes
helps to improve GPU code performance. Since default
grid and block sizes chosen by OpenACC and OpenMP
compilers are not always the right ones, the developer
must often set theses sizes using the clauses dedicated
for this purpose.

2) For the second step, we will study the performance
evolution according to the workload. This will allow us
to see how the additional cost related to the preparation
and launch of the kernel as well as thread management
varies depending on the body of the kernel.

All performance data were collected with NVIDIA profiler
nvprof. In our experiment, we used Rodinia CUDA implemen-
tations for BP, BFS, HW, HS, HS3D, LMD, LUD, NW and
SRAD and ours for Canny, HCD and H&S. In the following,
we will take the performance of CUDA versions as a baseline.

V. EXPERIMENTS RESULTS AND ANALYSIS

In this section, we will discuss the results obtained from
our experiences.

A. Evaluation of directives configuration impacts on perfor-
mance

Although accelerator directive based programming model
does not exhibit the same level of complexity as CUDA, it
is necessary to understand how OpenACC and OpenMP 4.5

2https://github.com/clang-ykt

map the data as well as the distribution of the computation
on the device in order to achieve good performance. With
directive-based programming methods, the first opportunity to
improve performance is how to combine directives. Figure
1 shows examples of directives configuration in OpenMP
and OpenACC. In order for comparisons to be as fair as
possible, all memory allocations are made with CUDA APIs
in all versions. Thus, data transfers between the CPU and the
GPU are managed in the same way as in CUDA versions.
In all that follows, the CUDA versions of our applications
are optimized using texture memory, constant memory or
even shared memory. All optimizations made in OpenMP and
OpenACC rely mainly on the use of directives and clauses. It
should be noted that unlike OpenACC, whose cache directive
allows the developer to tell the compiler that this data needs to
be put in shared memory, OpenMP does not offer any directive
for this service.

#pragma omp target teams
#pragma omp distribute
for(int i=0; i<N; i++) {
 #pragma omp parallel for schedule(static, 1)
 for(int j=0; j<M; j++) {
 //……..
 }
}

#pragma omp target teams distribute
for(int i=0; i<N; i++) {
 #pragma omp parallel for schedule(static, 1)
 for(int j=0; j<M; j++) {
 //……..
 }
}

#pragma acc kernels
for(int i=0; i<N; i++) {
 #pragma acc loop independent
 for(int j=0; j<M; j++) {
 //……..
 }
}

#pragma omp target teams distribute parallel for collapse(2) schedule(static, 1)
for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 //……..
 }
}

#pragma acc kernels loop independent tile(32,32)
for(int i=0; i<N; i++) {
 for(int j=0; j<M; j++) {
 //……..
 }
}

Non combination of directives Combination of directives

Fig. 1. Examples of directives configuration

In all following graphs, nonComb corresponds to the
uncombined configuration of directives as we can see an
example, in the red box in figure 1, Comb means combined
configuration of directives (green box in figure 1) and Setting-
Grid&Block corresponds to the case of manual configuration
of grid and block sizes in addition to directives combination. It
should be noted that, directives configuration only has an im-
pact on application performance (runtime, executed instruction
count, register used per thread, etc.) and not on the accuracy
of the result.

Figure 2 shows speedup factors relative to the baseline
CUDA versions, overall execution time (including API calls
and data transfer), on an NVIDIA Quadro M2000M and
Tegra X2 GPUs. Overall, for both OpenACC and OpenMP,
SettingGrid&Block versions are faster than nonComb and
Comb versions. With OpenACC, as we cans see on sub figure
2a, directives combination (plus loops collapsing or tiling
when they are ready for it) improves applications compute
time by a reduction of 1.269⇥, on average, with respect
to uncombined versions. Typically, an OpenACC optimized
version (here SettingGrid&Block versions) requires 1.556⇥

hand-optimized CUDA runtime. With OpenMP, as we can
see in sub figures 2a and 2b, directives combination allows a
reduction in application execution time by a factor of 1.456⇥
on average, with respect to uncombined version, on both
Quadro M2000M and Tegra X2 GPUs. Typically, an OpenMP
optimized version requires 2.114⇥ hand-optimized CUDA
runtime. However, these factors are slightly higher for HW and
LMD due to the fact that their CUDA versions extensively use
the shared memory while in PGI compiler, current version, the
cache directive does not work well when there are many arrays
to put in shared memory and OpenMP has nos directives to
put data in shared memory.

Directives combination helps, OpenACC and OpenMP com-
pilers, to generate efficient code by influencing on the numbers
of registers used per thread, the grid and block sizes, the
number of generated instructions in PTX file, as well as the
number of executed instructions by the threads. Inspecting
generated PTXs, we have found that, for both OpenACC and
OpenMP, the difference between uncombined and combined
versions lies in how the parallelization is made. Table I shows
the grid and block sizes and the number of registers used per
thread automatically chosen by OpenACC/OpenMP compilers.
We can see that directives combination reduces the number of
registers used per thread in general. This reduction is more
important in the case of OpenMP due to the fact that unlike
OpenACC and CUDA, OpenMP uses more registers. For grid
and block sizes, OpenACC and OpenMP compilers tend to
use the same configurations in general.

By inspecting all PTXs generated by LLVM/Clang for all
applications used in our experiment, we found what a third
of instructions are used to compute parameters of functions
such as kmpc spmd kernel init, kmpc for static fini,
etc. These functions, systematically called in each kernel, are
used by OpenMP in order to prepare the launch of the kernel
on GPU, team creation, threads management and synchroniza-
tion. So, it seems that the number of these functions called is
higher in the case of non combination of directives, which
contributes to degrade performance by increasing the number
of registers used per thread for example. Thus, it is important
to combine directives, in OpenMP, as much as possible in
order to minimize the additional cost associated with these
functions.

In summary directives must be combined and loops fused
as much as possible. Indeed, we found that the collapse
clause improves performance. With OpenACC, a significant
improvement of performance can be achieved with the tile
clause. Additionally, setting block and grid sizes contribute to
improve application performance.

B. Performance evolution with workload
Code generation quality and cost, global memory access

pattern and workload are factors which can affect OpenACC
and OpenMP performance. In this section, we gradually in-
crease in the loops the number of executed instructions. In
order to prevent the compiler from using temporal variables,
we use different memory address. In OpenMP and OpenACC

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

BP BFS HW HS HS3D LMD LUD NW SRAD Canny HCD HandS

S
p
e
e
d
u
p
 r

e
la

tiv
e
 t
o
 C

U
D

A
 b

a
se

lin
e
 [
L
o
w

e
r

is
 b

e
tt
e
r]

OpenMP_nonComb
OpenMP_Comb

OpenMP_SettingGrid&Block
OpenACC_nonComb

OpenACC_Comb
OpenACC_SettingGrid&Block

(a) Quadro M2000M

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

BP BFS HW HS HS3D LMD LUD NW Canny HCD HandS

S
p
e
e
d
u
p
 r

e
la

tiv
e
 t
o
 C

U
D

A
 b

a
se

lin
e
 [
L
o
w

e
r

is
 b

e
tt
e
r]

OpenMP_nonComb
OpenMP_Comb

OpenMP_SettingGrid&Block

(b) Tegra X2 GPU

Fig. 2. Directives configuration impact on performance

TABLE I
REGISTERS, GRID & BLOCK CONFIGURATION GENERATED BY OPENMP/OPENACC COMPILERS ON QUADRO GPU: KN = KERNEL N; RG =

REGISTERS/THREAD; THREADS/BLOCK = BLK; BLOCKS/GRID = GD

CUDA OpenMP nonComb OpenMP Comb OpenACC nonComb OpenACC Comb

BP K1[Rg:10], K2[Reg:20] K1[Rg:47], K2[Reg:48] K1[Rg:47,Gd:16], Blk:128 K1[Rg:22,Gd:16], Blk:128 K1[Rg:22,Gd:16], Blk:128
Gd:4096, Blk:256 Gd:16, Blk:128 K2[Rg:32,Gd:8193] K2[Rg:27,Gd:2049] K2[Rg:19,Gd:8193]

BFS K1[Rg:18], K2[Rg:12] K1[Rg:48,Gd:128] K1[Rg:21], K2[Rg:21] K1[Rg:22], K2[Rg:16] K1[Rg:22], K2[Rg:16]
Gd:512,Blk:2048 K2[Rg:40,Gd:1], Blk:128 Gd:8191,Blk:128 Gd:8191,Blk:128 Gd:8191,Blk:128

HS Rg:32,Gd:1849,Blk:256 Rg:166,Gd:1024,Blk:128 Rg:72,Gd:1024,Blk:128 Rg:54,Gd:1024,Blk:32 Rg:48,Gd:1024,Blk:128
HS3D Rg:32,Gd:1024,Blk:256 Rg:208,Gd:128,Blk:128 Rg:46,Gd:16384,Blk:128 Rg:42,Gd:16384,Blk:128 Rg:30,Gd:8192,Blk:128
LMD Rg:40,Gd:128,Blk:1000 Rg:90,Gd:128,Blk:128 Rg:49,Gd:128,Blk:8 Rg:58,Gd:128,Blk:81 Rg:58,Gd:128,Blk:1000

NW K1[Rg:40], K2[Reg:32] K1[Rg:55], K2[Reg:56] K1[Rg:32,Gd:512], Blk:128 K1[Rg:49,Gd:512], Blk:32 K1[Rg:49,Gd:512], Blk:32
Gd:512, Blk:16 Gd:128, Blk:128 K2[Rg:32,Gd:511] K2[Rg:50,Gd:511] K2[Rg:50,Gd:511]

SRAD K1[Rg:20], K2[Reg:23] K1[Rg:101], K2[Reg:56] K1[Rg:40], K2[Rg:38] K1[Rg:49], K2[Rg:40] K1[Rg:28], K2[Rg:29]
Gd:16384, Blk:256 Gd:32766, Blk:128 Gd:2048, Blk:128 Gd:33280, Blk:128 Gd:2048, Blk:128

versions, directives are combined, but we did not set grid and
block sizes. Thus, compilers have the freedom to choose grid
and block sizes. CUDA versions are not optimized. In this
experiment, arrays sizes are 4096 ⇥ 4096 and data type is
float.

Figure 3 shows matrix and vector additions kernels compute
time and executed instructions count evolution with the work-
load. On sub figures 3a and 3b, we found that global memory
access pattern does not significantly affect performance for
OpenACC.

The variation in computing time, according to the number
of instructions in kernel (in source code), is relatively stable
with an average slope of 878µs for both OpenACC, OpenMP
and Cuda. However, the most important thing to see in figure
3 is that there is in general a systematic overhead in the kernel
launch for OpenMP. As said in V-A and as can be seen in the
figure 3b, OpenMP versions execute 2 to 8⇥ instructions more
than CUDA versions and 2 to 6⇥ more than OpenACC ver-
sions. This shows that the current implementation of OpenMP
in LLVM/Clang still needs improvement in order to generate
better PTX code.

VI. CONCLUSION

This paper did a comparative study between OpenACC,
OpenMP and CUDA. For that, we made investigations on
applications taken from the Rodinia benchmark suite, three
computer vision applications and synthetic programs in order
to find most significant performance issues. We tested differ-
ent configurations of OpenMP and OpenACC directives and
evaluate their impact on overall application performance. We
show that directives must be combined and loops must be
collapsed as much as possible and, additionally, setting block
and grid sizes contribute to improved application performance.
It happens from our experiments that, provided some proper
tuning of compilation directives is performed, either OpenACC
or openMP can be good alternatives to direct CUDA pro-
gramming. Kernel code generation is similar to the CUDA
compiler. However, there is in general a systematic overhead in
the kernel launch for OpenMP, but, for most applications, it’s
not a big issue provided the kernel has a sufficient workload.

We show that it is important to understand well most
features of OpenACC and OpenMP in order to get competitive
optimized codes with hand-optimized CUDA. We found that
OpenACC optimized code typically requires 1.269⇥ hand-

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 33

 36

 39

 42

 45

 48

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K
e
rn

e
l c

o
m

p
u
te

 t
im

e
 in

 m
ill

is
e
co

n
d

Number of instrucitons in kernel in source code

Cuda_VectAdd
OpenACC_VectAdd

OpenMP_VectAdd
Cuda_MatAdd

OpenACC_MatAdd
OpenMP_MatAdd

(a) Kernels execution time

 0

 5x107

 1x108

 1.5x108

 2x108

 2.5x108

 3x108

 3.5x108

 4x108

 4.5x108

 5x108

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E
xe

cu
te

d
 I
n
st

ru
ct

io
n
s

co
u
n
t

Number of instrucitons in kernel in source code

Cuda_VectAdd
OpenACC_VectAdd

OpenMP_VectAdd
Cuda_MatAdd

OpenACC_MatAdd
OpenMP_MatAdd

(b) Executed instructions

Fig. 3. Performance evolution with workload of matrix and vector addition kernels on Quadro M2000M GPU

optimized CUDA runtime which is consistent with factors
found by Hoshino et al. in [1]. On the other hand, OpenMP
requires in general 2.114⇥ hand-optimized CUDA runtime
while Martineau et al. found in [3] a factor of 2.2⇥ with
CCE implementation of OpenMP 4.0. However, it should be
noted that current compilers (especially true for LLVM/Clang)
still need some improvements to increase the competitiveness
of OpenMP and OpenACC against CUDA. OpenACC and
OpenMP standards also have to evolve to give more possibility
(e.g.: access to constant and texture memories) to developers.

REFERENCES

[1] T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki, “Cuda
vs openacc: Performance case studies with kernel benchmarks and
a memory-bound cfd application,” 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing, jun 2013. [Online].
Available: http://ieeexplore.ieee.org/document/6546071/

[2] V. G. V. Larrea, W. Joubert, M. G. Lopez, and O. Hernandez,
“Early experiences writing performance portable openmp 4 codes.”
[Online]. Available: https://cug.org/proceedings/cug2016 proceedings/
includes/files/pap161.pdf

[3] M. Martineau, S. McIntosh-Smith, and W. Gaudin, “Evaluating openmp
4.0s effectiveness as a heterogeneous parallel programming model,”
IEEE International Parallel and Distributed Processing Symposium
Workshops, may 2016. [Online]. Available: http://ieeexplore.ieee.org/
document/7529889/?arnumber=7529889

[4] A. Hayashi, J. Shirako, E. Tiotto, R. Ho, and V. Sarkar, “Exploring
compiler optimization opportunities for the openmp 4.x accelerator
model on a power8+gpu platform,” Third Workshop on Accelerator
Programming Using Directives, nov 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7836582/

[5] M. Martineau, S. McIntosh-Smith, C. Bertolli, A. C. Jacob, S. F.
Antao, A. Eichenberger, G.-T. Bercea, T. Chen, T. Jin, K. OBrien,
G. Rokos, H. Sung, and Z. Sura, “Performance analysis and
optimization of clangs openmp 4.5 gpu support,” 7th International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems, nov 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7836414/

[6] X. Li, P.-C. Shih, J. Overbey, C. Seals, and A. Lim, “Comparing
programmer productivity in openacc and cuda: An empirical
investigation,” International Journal of Computer Science, Engineering
and Applications (IJCSEA), vol. 6, no. 5, oct 2016. [Online]. Available:
http://aircconline.com/ijcsea/V6N5/6516ijcsea01.pdf

[7] K. Ikeda, F. Ino, and K. Hagihara, “An openacc optimizer for
accelerating histogram computation on a gpu,” 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, feb 2016. [Online]. Available: http://ieeexplore.ieee.org/
document/7439170/

[8] T. D. Han and T. S. Abdelrahman, “hicuda: High-level gpgpu
programming,” IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, vol. 22, no. 1, jan 2011. [Online].
Available: http://ieeexplore.ieee.org/document/5445082/

[9] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, and W. mei W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded gpu using cuda,” in
PPoPP’08 Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, 2008, pp. 73–82.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1345220

[10] O. A. R. Board, “Openmp application programming interface,” http:
//www.openmp.org/wp-content/uploads/openmp-4.5.pdf, 2015.

[11] OpenACC-Standard, “The openacc application programming interface,”
http://www.openacc.org/sites/default/files/OpenACC 2pt5.pdf, 2015.

[12] M. AMINI, “Source-to-source automatic program transformations for
gpu-like hardware accelerators,” Ph.D. dissertation, cole nationale
suprieure des mines de Paris, 2012. [Online]. Available: http:
//www.cri.ensmp.fr/classement/doc/A-506.pdf

[13] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gomez, C. Tenllado,
and F. Catthoor, “Polyhedral parallel code generation for cuda,”
ACM Transactions on Architecture and Code Optimization (TACO)
- Special Issue on High-Performance Embedded Architectures and
Compilers, vol. 9, no. 4, jan 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2400713

[14] A. Sa-Garriga, D. Castells-Rufas, and J. Carrabina, “Omp2hmpp:
Hmpp source code generation from programs with pragma extensions,”
in HIP3ES Workshop, Vienna, January, 21st 2014, 2014. [Online].
Available: https://arxiv.org/abs/1407.6932

[15] S. Wienke, C. Terboven, J. C. Beyer, and M. Mller, “A pattern-based
comparison of openacc and openmp for accelerator computing,” in Euro-
Par2014 Parallel Processing Workshops. Springer, 2014, pp. 812–823.

[16] M. G. Lopez, V. V. Larrea, W. Joubert, O. Hernandez, A. Haidar,
S. Tomov, and J. Dongarra, “Towards achieving performance portability
using directives for accelerators,” Third Workshop on Accelerator
Programming Using Directives, nov 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7836577/

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IEEE International Symposium on Workload Characterization, oct
2009.

