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Abstract—Connected components labeling and analysis for
dense images have been extensively studied on a wide range
of architectures. Some applications, like particles detectors in
High Energy Physics, need to analyse many small and sparse
images at high throughput. Because they process all pixels of
the image, classic algorithms for dense images are inefficient on
sparse data. We address this inefficiency by introducing a new
algorithm specifically designed for sparse images. We show that
we can further improve this sparse algorithm by specializing it for
the data input format, avoiding a decoding step and processing
multiple pixels at once. A benchmark on Intel and AMD CPUs
shows that the algorithm is from x1.6 to x2.5 faster on sparse
images.

I. INTRODUCTION

In computer vision, Connected Component labeling (CCL)
is a common and wide spread algorithm. It consists in assign-
ing a unique label to each group of connected pixels. These
groups of pixels, called Connected Components (CC), are then
used for higher level tasks, like tracking, motion detection or
optical character recognition. First instances of this algorithm
were proposed by pioneers like Rosenfeld [16] or Haralick [6].
In High Energy Physics (HEP), CCL is used in the tracking of
particles by labeling hits on the detectors’ sensors to extract
the real impact positions.

A CCL algorithm by itself, only provides the association of
pixels, this is why it is followed by an analysis algorithm. The
purpose of the analysis is to compute features of each CC, like
the bounding box or the first statistical moments i order to to
compute the center of gravity. If naive algorithm perform the
labeling first and then the analysis, the optimized algorithms
do the analysis during the labeling. These algorithms are called
Connected Component Analysis (CCA).

Most of CCL algorithms used to be sequential ones
developed on single-core processors [7] [3]. Recently, new
parallel algorithms were developed for multi-core processors
[13] [5], SIMD processors [18] [11] [8] and GPUs [14] [9].

These algorithms are very efficient for natural images but
not for very low density images (very few pixels set to one)
like those generated in HEP experiment.

The case considered here is similar to matrix algebra.
When a matrix has very few non-zero value, the classical
dense structure and the classical dense algorithms turn out
to be inefficient. The dense structure is replaced by various

flavours of lists that hold the non-zero value and specialized
or dedicated algorithms are designed to process these data
efficiently. In the case of tracking hits on detectors’ sensors,
the same phenomenon happens: even if CCA algorithms are
very fast, they are inefficient to cluster and label matrices of
hits with around 0.5% of hits.

The section II presents some classic connected components
labeling algorithms. Section III introduces a new algorithm
for connected components labeling of sparse images and its
specialization for the pattern recognition of CERN’s LHCb
experiment. Finally, in section IV, we evaluate this new
algorithm and compare it to state-of-the-art.

II. CLASSIC ALGORITHMS FOR DENSE IMAGES

In this section, we present three classes of connected
components labeling algorithms.

A. One component at a time

In this first class of algorithm, we process one connected
component at a time. The image is scanned one time and,
for every foreground pixel encountered, a traversal of the con-
nected component is done to label all the pixels. This algorithm
and its variants are often called flood fill or sometimes seed fill.
The traversal can be done using a stack in depth-first order or
a queue, in breadth-first order. Implementations of algorithms
of this class are found in [17] and [1]. This algorithm can be
optimized by only adding, on top of the stack, the branching
pixels — ie. the pixels that have more than one non-visited
neighbour — and directly processing the others. Doing so,
we avoid a store and a load for these pixels. If the image
is sparse and if we have a list of pixel coordinates, we can
directly start at known pixel positions avoiding the read of
many background pixels. However, this does not prevent the
test of every pixel on the contour of the connected component
and the visited pixels have to be removed from the list.

B. Iterative algorithms

The second class was introduced by Haralick [6]. Each pixel
is initialized with a unique temporary label, then this label
is propagated to the pixel’s neighbors using local minimum
or maximum propagation. The propagation step is repeated
until the image of labels reaches stabilization, ie. there is no
more change within the image. This algorithm was particularly



fitted for implementations on parallel architectures, due to
its high regularity, before the apparition of fast scatter and

Algorithm 1: Rosenfeld algorithm — first labeling (step 1)

Input: a,b, ¢, d, four labels, py, the current pixel in (3, j)
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Fig. 1. Example of 8-connected CCL with Rosenfeld algorithm: binary image
(top), image of temporary labels (bottom left), image of final labels (bottom
right) after the transitive closure of the equivalence table.

meifo1]1]3]2]3]
equivalence table

The two-pass CCL algorithms are split into three steps
and perform two image scans (like the pioneer algorithm of
Rosenfeld [16]). The first scan (or first labeling) assigns a
temporary label to each CC and some label equivalences are
built if needed. The second step solves the equivalence table
by computing the transitive closure of the graphs associated
to the label equivalences. The third step performs a second
scan (or second labeling) that replaces temporary labels
of each CC by its final label, by doing a simple look up:
1(i,5) + LI, 5)).

Figure 1 defines some notations and gives an example of a
classic Rosenfeld algorithm execution. Let p,, e,, the current
pixel and its label. Let p,, pp, D¢, P4, the neighbor pixels, and
a, b, c,d, the associated labels. L is the equivalence table, e a
label and r its root. The first scan of Rosenfeld is described
in algorithm 1, the transitive closure in algorithm 2, while the
classical union-find algorithms are provided in algorithms 3
& 4. In the example (Fig. 1), we can see that the rightmost
CC requires three labels (1, 2 and 4). When the mask is in
the position seen in figure 1 (in bold type), the equivalence
between 2 and 4 is detected and stored in the equivalence table
L. At the end of first scan, the equivalence table is complete
and applied to the image.

III. CONTEXT AND SPARSECCL

In this section we present SparseCCL, a parameterizable
connected components labeling and analysis algorithm for
sparse images. Then, we present a specialization of the al-
gorithm in the context of the LHCb experiment, where the

very few hits of high-energy particles are scattered across the
detector’s sensors.

A. General parameterizable ordered SparseCCL

In this first version of the algorithm, we assume that the
image is represented by a list of active pixels ordered by their
coordinates. This kind of representation allows the algorithm
to take advantage of the sparse nature of the data. This is due
to the size of the list scaling directly with the number of pixels
to label and not the total number of pixels. Another case where
this representation is useful is when the coordinate ranges are
too large or if the number of dimensions makes the storage
not practical. Figure 2 gives an example of such an image and
its list representation.

The algorithm parameterization is done through the func-
tions is_adjacent / is_far_enough for the labeling
and init_features / accumulate_features for the
analysis. The algorithm is generic enough to be adapted to
n-dimension and every type of connectivity and pixel format.
Algorithm 5 gives the complete algorithm.

Algorithm 3: find(L, e)

Input: e a label, L an equivalence table
Result: r, the root of e

1 re

2 while L[r] # r do
3| e Lr]

4 return r

Algorithm 4: union(L, eq, e3)

Input: eq, ez two labels, L an equivalence table
Result: e, the least common ancestor of the e’s
if e;1 < es then

| e<e1, Llea] +e
else

| e<e2, Ller] +e

W N =

5 return e
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Fig. 2. Sparse binary image and its list representation. Each entry in the list
is a tuple of pixel coordinates (x, y). The list is sorted in column major order
and contains n = 9 pixels.

Algorithm 5: SparseCCL

1 // First scan: pixel association

2 start_j <0

3 fori<Oton—1do

4 L[i] <14

5 ai <1

6 for j < start_j toi— 1 do

7 if is_adjacent (pixel[i], pixel[j]) then

8 | ai<union(L, ai, find(L, 3))

9 else if is_far_enough (pixel[i], pixel[j]) then
10 | start_j < start_j +1

11 // Second scan: transitive closure and analysis
12 labels < 0

13 fori<Oton—1do

14 if L[i] = i then

labels < labels + 1

I < labels

init_features(l, pixel[i])

18 else

19
20

a | L[] 1

1« L[L[{]]

accumulate_features(l, pixel[i])

SparseCCL is designed to minimize the memory footprint
in order to have the best data locality and to fit in the L1
cache. The only internal memory it needs is an integer table
of size n to store the equivalences. The input table containing
the pixels and the output tables containing the connected
components features are allocated outside of the algorithm.
The algorithm is divided into two parts: the first scan where
pixels are associated using an equivalence table and the
second scan where we resolve equivalences by performing a
transitive closure of the graph embedded in the equivalence
table. We can also do an on-the-fly analysis of connected
components in the second scan.

The first scan iterates over the pixels in the list and adds
them one by one to the equivalence table. The equivalence
table is an index table implementing a forest of equivalence
trees. Each cell of the table corresponds to one pixel, the
content of the cell is the index of the parent pixel. A pixel is a
root if its entry in the equivalence table is its own index. For
each pixel, the algorithm checks on previously added pixels
for adjacency and merge their two equivalence trees if they
are adjacent. The merging is done by calling the union and
find functions described in algorithms 4 and 3. Because
the list is ordered, we can keep track of a start index to
avoid testing pixels that are too far from each other. With
this optimization, the first scan complexity becomes O (kn)
instead of O (n(n — 1)/2), with k << n. The is_adjacent
and is_far_enough parameterization for 2-dimensions 8-
connectivity labeling is described in algorithms 6 and 7.

Algorithm 6: is_adjacent(p;, p2)

1 return [p;.z — p2.xz| < 1and |p1.y —p2.y| <1

Algorithm 7: is_far_enough(p;, p2)

1 return p1.y —p2.y > 1

The second scan iterates over each temporary label in the
equivalence table. If the label is a root, it creates a new
connected component label by incrementing the labels counter
and initialises the features for this connected component.
If the label has a parent, it takes the parent’s label and
accumulates the features. Because the temporary label of a
parent is always smaller than the one of the child, we know
that the parent is already processed. Before continuing to the
next label, we update the equivalence table with the new
label. Algorithms 8 and 9 give an example of the features
needed to compute the connected components center of gravity
(G2, Gy) = (S:/5,8y/S). (Sz,8,y) are the sums of = and y
coordinates and .S the number of pixels.

Algorithm 8: init_features(label, pixel)

1 sumg[label] + pizel.x
2 sumy[label] < pizel.y
3 sump[label] < 1

Algorithm 9: accumulate_features(label, pixel)

1 sumg[label] < sumg[label] + pizel.xz
2 sumyllabel] < sumy[label] 4 pizel.y
3 sumn[label] < sumn[label] + 1

B. Acceleration structure for unordered pixels

In some scenarios, we might not receive an ordered list of
pixels as input and sorting them would already take too much
time. We also cannot afford accessing a full pixel image buffer
because of data locality and the time it will take to reset such



buffer between two images labeling. We compromise by doing
dimension reduction: we use a table for each row and add
the pixels to its corresponding row when we encounter it in
the first scan. Now, when checking for adjacency, we only
have to check the previous, the current and the next row table.
The pixels within each row are not sorted so they have to be
all checked. Each row table has a size property (N,.,) that
keeps track of how many pixels were added to the row. When
resetting the tables, we only have to set the size of used rows
to zero. Table I shows an example of such structure.

Row Nrow Pixels (index, column)
0 1 5,1
1.3 0
4 2 9, 8), (7, 10)
5 2 4,9, (1, 10)
6.11 0
12 1 8, 12)
13 2 (3, 3), (6, 11)
14 1 2,4
15 0

TABLE I

STRUCTURE REPRESENTING THE RECEIVED PIXELS

C. Case study: specialization for LHCb VELO Upgrade

LHCb, one of the four major experiments at the Large
Hadron Collider (LHC) [2], is a general purpose spectrometer
optimized for the study of particles containing b and anti-b
quarks (B mesons). The experiment’s detector is specifically
designed to filter out these particles and the products of their
decay. Each LHCb sub-detector is specialized in measuring a
different characteristic of the particles produced by colliding
protons. Collectively, the detector’s components gather infor-
mation about the identity, trajectory, momentum and energy of
each generated particle, and can single out individual particles
from the billions that spray out from the collision point each
second. After the upcoming high luminosity upgrade, the LHC
will collide protons 30 million times per second at LHCb.
These collision “events” must be analysed in real time by a
system called the High Level Trigger 1 (HLT1), in order to
find and keep the small fraction of these events which contain
B mesons.

The VELO (VErtex LOcator) sub-detector, shown in fig-
ure 3, is a high precision pixel detector surrounding the
beamline where the collision occurs. It is divided into 52 L-
shaped modules. Each module is itself composed by 4 sensors
of 3 chips each. The chips have 256 x 256 pixels, so the sensors
have 256 rows and 768 columns. Each pixel is a square with a
length of 55 microns. The sensor pixels are packed into Super-
Pixels (SP) of size 2x4 pixels, so the sensors have 64 SP rows
and 384 SP columns [10] [15].

The modules are positioned along the z axis. More infor-
mation about the geometry can be found in the LHCb VELO
Upgrade Technical Design Report [12]. Figure 4 shows the
format of a Super-Pixel (SP) encoded in a 32 bit integer. The
less significant byte is a bitmask representing the pixels. Then
we find, from bit 8 to 13, the row of the SP and, from bit 14
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Fig. 3. CERN LHCb VELO geometry

to 22, the column of the SP. The 31*” bit is a flag indicating if
the SP is isolated, ie. if it doesn’t have any neighbor. The SP
are delivered in raw banks. There is one raw bank per sensor
and each one contains the number of SP in the bank followed
by the encoded SP.

31 23 15 7 0
BT T T T T T T T T T
Isolation flag Column Row Pixels
[0]4]
2]6]

Fig. 4. CERN LHCb VELO Super-pixel format

To take advantage of the data format, we specialized the
SparseCCL algorithm to label SP instead of pixels. This allows
to further reduce the amount of memory needed and to skip a
decoding step. We first start by preparing the data: we remove
the SP that are known to be isolated and resolve them using
lookup tables, for the remaining SP, we test if there is more
than one CC inside and split them if necessary. Figure 5 shows
the two possible configurations for a SP: one CC or two CCs.
Once the SP list is prepared, we run the algorithm using a
combination of bitwise operations and a lookup table to test the
adjacency. Another lookup table is used for a fast computation
of the first statistical moment and the number of pixels within

:
LR

Fig. 5. A Super-Pixel containing one CC (left) and a Super-Pixel containing
two CCs, split in two (right)

In 8-connectivity CCL there are eight directions of adja-
cency, but by using symmetries we can reduce their number
to four. Figure 6 shows the configurations of SP and the pixels
we have to test. Configurations a, b and ¢ are quickly tested



using only bitwise operations. While configuration d could be
tested the same way, it was found faster to use a 256-entry
lookup table using the dark pixels bit pattern as the address.
Configuration e shows the pixels required to take the decision
to split the SP in two.

EERE T

Fig. 6. a. Diagonal “forward” link, b. Diagonal "backward” link, c. Vertical
link, d. Horizontal link, e. Two clusters condition

IV. EXPERIMENTAL EVALUATION

Evaluating CCL algorithms has always been a challenge
as the speed of such algorithms is data-dependent. To model
natural images, we follow the approach which is proposed
in [4] and generate pseudo-random noise images of varying
densities and granularity. The density parameter controls, at
low density, the number of pixels in the image. The granularity
is the size of a macro-pixel side, it controls how clustered
the pixels are and thus the minimum size of a connected
component.

In the case of LHCb’s VELO detector, simulation data
have shown that densities of hits in the sensors are very low
and granularity is around 2. This is due to charge sharing in
the silicon, when a particle hits the border between 2 or 4
pixels.

Table II shows the time, in microseconds to process one
image of 768 x 256 pixels, for state-of-the-art dense CCL
algorithms [4] and sparse CCL algorithms. We observe, that
while these algorithms are well optimized, a simple flood fill
looking only at active pixels is 10 times faster at a density of
1%.

| [0% [ 1% |
LSL(dense) 2353 | 3199
Rosenfeld+DT (dense) 2703 | 3154
Flood fill (sparse) 0.0 29.9
SparseCCL (ordered) 0.0 31.5
SparseCCL (row table) 0.0 17.4
SparseCCL (Super-pixels) | 0.0 25.0

TABLE 11
PROCESSING TIME OF 768 X 256 PIXELS IMAGES — IN MICROSECONDS —
OF DENSE AND SPARSE ALGORITHMS AT GRANULARITY g = 1, ON AN
INTEL XEON GOLD 6126 @2.6GHz.

In this benchmark, we measure the time in cycles per pixel
(cpp). Normalizing by the number of active pixels allows to
see the real impact of the increasing density: the more the
connection of pixels impacts the speed, the bigger the slope
of the plot will be. Normalizing by the frequency of the

machine allows to abstract the frequency of the CPU for a
better comparison of architectures.

We evaluate four algorithms. The first one is a flood fill
algorithm as described in section II-A. While the flood fill
is generally inefficient on dense images, we found that it
outperforms fast implementations of iterative and two-pass
algorithms on sparse images. This is due to its ability to use
the pixel list information as a starting point for its connected
component mapping. The other three algorithms we evaluated
are variant of our algorithm: SparseCCL. The ordered by row
variant is the simple case where the input is an ordered list of
single pixels. The row table variant is the algorithm described
in section III-B that can take an unordered list of single
pixels as input. The last variant is the specialization of the
algorithm for super-pixel encoding described in section III-C
where we assume the list of super-pixel ordered.

Figure 7 shows the measured time in cpp for the four
algorithms, for 364 x 768 pixels images of varying densities
from 0% to 2.5% and a granularity g=1. The number of pixel
n is given by the formula n = ﬁdo X w X h, where d is the
density, w the number of columns and h the number of rows.
In our test configuration, the number of pixels ranges from 0
to 6988. We observe that for a granularity of 1, the ordered
SparseCCL working on pixels has the best behavior at low
density. The Super-Pixels variant is slower at low densities
because each SP is more likely to contain only 1 pixel. It
presents no advantage over the pixel versions. The row table
variant starts higher than the ordered one because of the cost
of table reset. The flood fill algorithm is significantly slower
than other version at low density, but scales better with the
number of pixels and eventually becomes faster for densities
> 1.8% on Intel and > 2.5% on AMD.

70

—— Floodfill (sparse)
SparseCCL (ordered)

10 —— SparseCCL (row table)

—— SparseCCL (Super-Pixels)

0.0 05 1.0 15 2.0 2.5
density (%)

Fig. 7. Cycles Per Pixel (cpp) for the four algorithms depending on the
density of the image, with a granularity g=1 on an Intel Xeon Gold 6126
@2.6GHz

Figure 8 shows the same algorithms, but with a granularity
g=2. The flood fill algorithm benefits from the data locality
induced by the increased granularity. On the contrary, the
pixel based SparseCCL variants are slowed down by it as the



number of tests they have to perform is slightly higher. Thanks
to the Super-Pixel encoding, the last variant of SparseCCL
specialized for the LHCb experiment speeds up.

70

—— Floodfill (sparse)
SparseCCL (ordered)

10 —— SparseCCL (row table)
—— SparseCCL (Super-Pixels)
0L : : : : :
0.0 0.5 1.0 1.5 2.0 2.5

density (%)

Fig. 8. Cycles Per Pixel (cpp) for the four algorithms depending on the
density of the image, with a granularity g=2 on an Intel Xeon Gold 6126
@2.6GHz

Following the method described in [8], we wrote an AVX-
512 version of sparseCCL. The SIMD version of the algorithm
uses AVX-512’s scatter and gather instructions to implement
the union-find operations. For low densities, the cost of control
flow is greater than the gain due to SIMD parallelism, making
this SIMD version slower than the scalar one.

V. CONCLUSION

This article introduced a new parameterizable connected
component labeling and analysis algorithm for sparse images,
and a specialization of this algorithm for a practical applica-
tion. We studied the impact of different versions on images
of varying densities and granularities and showed that at low
densities our algorithm performed better than state-of-the-art
dense CCL algorithms and flood fill optimized for sparse
images.
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