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ABSTRACT

Research on cloud-based Big Data analytics has focused so
far on optimizing the performance and cost-effectiveness of
the computations, while largely neglecting an important as-
pect: users need to upload massive datasets on clouds for
their computations. This paper studies the problem of run-
ning MapReduce applications when considering the simulta-
neous optimization of performance and cost of both the data
upload and its corresponding computation taken together.
We analyze the feasibility of incremental MapReduce ap-
proaches to advance the computation as much as possible
during the data upload by using already transferred data to
calculate intermediate results. Our key finding shows that
overlapping the transfer time with as many incremental com-
putations as possible is not always efficient: a better solution
is to wait for enough to fill the computational capacity of the
MapReduce cluster. Results show significant performance
and cost reduction compared with state-of-the-art solutions
that leverage incremental computations in a naive fashion.
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1. INTRODUCTION
In recent years, big data analytics has proven an indis-

pensable tool in transforming science, engineering, medicine,
healthcare, finance and ultimately business itself, thanks to
the unprecedented ability to extract new knowledge and au-
tomatically find correlations in massive datasets that nat-
urally accumulate in our digital age [10]. In this context,
the MapReduce [7] model and its open-source implementa-
tion, Hadoop [20], were widely adopted by both industry
and academia, thanks to a simple yet powerful program-
ming model that accelerates the application development
while inherently enabling a high throughput and scalability
for processing large volumes of data.

However, an important limitation of the original MapRe-
duce model is the constraint of having all data available
before a job can be started. This limitation can become
a serious problem especially when the input data is mas-
sive and needs to be uploaded from an external source,
which involves large data transfers over network links of

limited capacity: under such circumstances, even the best
MapReduce implementation cannot stop the overall time-to-
solution from growing to unacceptable levels. Still, due to
its perceived simplicity, the most widely used approach en-
countered in practice does consist in uploading all necessary
data to a MapReduce cluster before running the correspond-
ing MapReduce job.

To cope with the challenges posed by the need to process
massive input data, a possibly better solution would consist
in overlapping data transfer with data processing. Although
apparently straightforward, such a solution is not trivial, as
it requires the ability to perform efficient incremental com-
putations, i.e., leverage older results when new data is added
to an existing dataset in order to save time in the calculation
of the new overall result. In this case, all the time required
to perform the data transfers can be leveraged to calculate
intermediate results that simplify the computation once the
data transfer is finished. In the context of MapReduce, one
way to apply this idea is to modify the application to ex-
hibit incremental behavior. This however is difficult and
undesired, both because of added complexity and of per-
formance issues (e.g., because intermediate results need to
persist in the storage layer).

Luckily, a whole family of extensions to MapReduce and
its implementations have recently emerged in order to facili-
tate efficient incremental computations (e.g. Hourglass [9]).
However, such extensions are mostly designed for a scenario
when the amount of data is unknown in advance, but inter-
mediate results are desired at known moments in time (e.g.,
daily statistics). In our case, the exact opposite is true: the
total amount of data is known in advance and the moment
when intermediate results are generated is not important:
they are only needed as long as they help reduce the com-
plexity of the computation once the data transfer is finished.

This novel perspective on incremental MapReduce com-
putations is further complicated by the rise of cloud comput-
ing [19]: since most users cannot afford buying and main-
taining their own big data infrastructure, they often prefer
the pay-as-you go utility model of cloud computing where
the costs are proportional to the amount of computational
resources used by the application. In this context, it is not
enough to minimize the time-to-solution (which implies the
need to minimize the compute time after the data trans-



fers have finished); in addition, another important goal is to
reduce the overall costs required to obtain the solution!

In this paper, we explore how to optimize incremental
MapReduce computations specifically for the case when a
large dataset needs to be transferred and processed on a re-
mote cloud. In a nutshell, our approach advances the com-
putation during the data transfers as much as possible, but
with the minimal possible effort. This improves the time-
to-solution while minimizing the cost necessary to do so. To
this end, we show that it is not always efficient to attempt to
overlap the transfer time with as many incremental compu-
tations as possible, but rather a trade-off is involved: some-
times it is better to wait for more data to accumulate before
starting any incremental computation.

We summarize our contributions as follows:

• We introduce a series of design principles that facil-
itate efficient incremental MapReduce computations
during ongoing data transfers. In particular, we es-
tablish a correlation between the capacity of the com-
pute cluster and the amount of incremental data to
be processed. It serves to decide when to initiate an
incremental computation and when to wait for more
data to accumulate (Section 3.1).

• We show how to materialize these design principles in
practice through a series of algorithmic descriptions
(Section 3.2) illustrated by a prototype architecture
(Section 4) and implemented in practice using theHour-
glass [9] framework (Section 5).

• We evaluate our approach in a series of extensive ex-
periments conducted on the Grid’5000 [4] testbed, us-
ing a real-life MapReduce application. They demon-
strate significant benefits for our approach in terms of
cost and compute time after the data transfer has fin-
ished, both when compared to a simple incremental
approach and to a serialized approach that waits until
the data transfer has finished (Section 6).

2. RELATED WORK
The MapReduce model and its implementations have been

recently extended to better fit a variety of application re-
quirements. Examples of such extensions include interactive
analytics, job pipelining, iterative processing and the sup-
port for incremental computations. We focus on this latter
direction. Previously proposed frameworks try to cope with
incremental workloads in two ways: 1) by reusing the results
of prior computations transparently through iterative pro-
cessing, at the cost of additional overhead brought by loop
control mechanisms; 2) by introducing new programming
models to store and use state across successive runs so that
only the necessary sub-computations need be performed. In
contrast, our approach maintains the clean programming
model of MapReduce and does not add any component for
centralized control.

A class of research efforts leverage iterative frameworks
for incremental processing, attempting to reuse the results of
previous computations and targeting applications that reuse
a working set of data across multiple parallel operations.
Spark [21] was developed to optimize iterative and interac-
tive computations. It uses caching techniques to improve
performance for repeated operations. Spark exposes a func-
tional programming interface that can be used interactively

as a general-purpose language to process large datasets on a
cluster. Rather than proposing new high-level programming
languages, our optimizations rely on the simple MapReduce
model, enhanced to support the overlap of transfers and
computations, so that they can be easily adopted by the
existing applications without any modification.

Several systems introduced support for iterative MapRe-
duce processing. As Hadoop does not support iterative pro-
cessing by design, HaLoop [5] was built on top of it with
this purpose. It relies on a loop-aware task scheduler and
on loop-invariant data caching. Besides HaLoop, other so-
lutions accelerate iterative algorithms by maintaining iter-
ation state in memory. Twister [8] employs a light-weight
MapReduce runtime system and uses publish / subscribe
messaging-based communication instead of a distributed file
system. iMapReduce [22] and MapIterativeReduce [17] ex-
tract common features of iterative algorithms and provide
support for them. All of these frameworks target applica-
tions with iterations across MapReduce jobs and require ad-
ditional components and programming efforts to automati-
cally aggregate their input and output. We specifically ad-
dresses this issue by scheduling map jobs as soon as their in-
put data is available; map and data transfer jobs can thus be
interleaved and the usual barrier between these two phases
be eliminated.

More recently, dedicated solutions were proposed for in-
cremental processing. Using basic arithmetic, they can up-
date the output from the previous computations by adding
and subtracting input data, instead of re-executing the whole
processing. Hourglass [9] is developed at LinkedIn and tar-
gets computations over sliding windows. For these types of
computations, the input data is partitioned in some way,
usually according to time, and the range of input data to
process is adjusted as new data arrives. It runs on unmod-
ified Hadoop and provides an accumulator-based interface
for programmers to store and use state across successive
runs. In the database world, Google’s Percolator [14] allows
transactional updates to a database through a trigger-based
mechanism. Similarly to Hourglass, the system provides a
metaphor to keep track of the state of the incremental com-
putation, called observer: piece of code that is invoked by
the system whenever a user-specified column changes. The
main drawback of these systems is their focus on particu-
lar use cases, which makes them difficult to get adopted by
a larger, scientific community: their were written for some
precise goals (e.g. dashboard statistics, web index updat-
ing) and incorporate some of the application semantics into
the programming model (e.g. in Hourglass, the input data
needs to be portioned by days).

In the cloud data management ecosystem, a popular so-
lution is upload data to generic cloud storage services (e.g.,
Amazon S3 [1], Azure Blobs [6], etc.), after which the com-
putations are started. Typically, they are not concerned
by achieving high throughput, nor by potential optimiza-
tions, not to mention their inability to overlap transfers and
computations. A number of alternative solutions aim to
improve the cloud data transfers throughput by exploiting
the network and the end-system parallelism or a hybrid ap-
proach between them. Multi-hop path splitting solutions
[18] replace a direct TCP connection between the source and
destination by a multi-hop chain through some intermedi-
ate nodes. Multi-pathing [15] employs multiple independent
routes to simultaneously transfer disjoint chunks of a file to



its destination. These solutions come at some costs: under
heavy load, per-packet latency may increase due to timeouts
while more memory is needed for the receive buffers.

Due to a clear separation between the the data staging
phase and the computation, the state-of-art approaches pre-
sented before focus on either one or another of the phases.
Thus, to our best knowledge, this is the first approach that
simultaneously focuses on both data upload and processing.
By keeping resources idle in order to have ”enough”data, our
approach has the potential to drastically reduce costs in the
context of the next generation Resource-as-a-Service clouds
[3]. With this emerging model, compute and I/O resources
will be rented and charged for in fine-grain, dynamically
changing amounts and not in fixed bundles, as on today’s
IaaS clouds. Our proposal aims to become a building block
of this new paradigm.

3. SYSTEM DESIGN
This section describes the design principles and algorithms

behind our approach (Sections 3.1 and 3.2), while the next
ones show how to apply them in a cloud architecture (Sec-
tion 4) and finally how to efficiently implement them in prac-
tice (Section 5).

3.1 Design Principles
Our proposal relies on the following key ideas:

Advance the computation during data transfers using
asynchronous incremental jobs.

One of our main goals is to minimize the computation
time after the data transfer has finished, which ultimately
minimizes the time-to-solution for our problem. To achieve
this, we propose to advance the computation as much as
possible during the data transfer by computing intermediate
results asynchronously in order to leverage them after the
transfer has finished. This is an iterative process: when a
certain amount of data was collected, a new incremental job
is started to obtain the result for the data received so far.
While the job is running, new data is accumulated in the
background. When the job has finished and enough new
data is accumulated, a new incremental job is started that
computes the new result and combines it with the previous
result to obtain the overall result. The process is repeated
as long as the data transfer is not finished or there is still
unconsumed data left. Using this approach, the complexity
of the problem at the moment when the data transfer has
finished is reduced to the complexity of the last incremental
job that needs to process the remaining data.

Wait to accumulate enough data to fill the computa-
tional capacity ("wave size").

A naive implementation of the iterative process described
above is to start a new incremental job as soon as the pre-
vious one has finished, regardless of the amount of accumu-
lated data. Such a solution is optimal when the completion
time for a jobs is equal to the sum of the completion times
for an arbitrary decomposition into sub-jobs. However, in
our context this is hardly the case, because MapReduce jobs
are highly parallelizable. To illustrate this point, consider
the completion time for a trivial job that involves a single
map task and its corresponding reducer. If we were to dou-
ble the size of the problem, we would need two mappers

that generate two times more output. However, if we have
enough resources to run these mappers in parallel and use
two reducers to handle the aggregation in parallel as well,
then the completion time should remain virtually unchanged
(assuming there is an even distribution of the values among
the reducers). Starting from this observation, an intuitive
generalization is that the completion time for an incremental
job remains roughly the same as long as the data involved fits
into the computational capacity of the MapReduce cluster
(henceforth called wave size). Based on this intuitive gen-
eralization, it is easy to notice that starting an incremental
job before wave size was accumulated in the background is
sub-optimal, because it increases the compute time unnec-
essarily. This has two negative consequences: (1) there is
an obvious risk to increase the time-to-solution (which is
not mandatory if the computation can be masked by the
overlap with the data transfer); and (2) a longer compute
time means more operational costs due to resource utiliza-
tion. Thus, an obvious conclusion is to wait until enough
wave size data was accumulated in the background, such as
to leverage the entire computational capacity at its full po-
tential. Note that overhead of reading and combining the
previously accumulated result with the output of the latest
incremental job is handled during the reduce phase of the
latest incremental job. Thus, it is not necessary to explicitly
dedicate computational resources for this task. However, in
a typical MapReduce setup, it is necessary to reserve a num-
ber of extra resources for the purpose of running speculative
tasks towards the end of the job (e.g., in order to deal with
slow mappers). Thus, for practical purposes, wave size is
slightly smaller than the total computational capacity.

Optimize the number and size of increments according
to wave size.

Although it may happen that the total size of the data to
be uploaded is a multiple of wave size, for the vast major-
ity of cases this does not hold. Thus, if we were to wait in
the beginning until the wave size is reached before starting
the first incremental job, we would be left in the end with
less than wave size for the last job. However, since the last
job takes the same time to finish regardless of the remain-
der size, a much better strategy is to wait in the beginning
only until the remainder is reached, such that a full wave
size remains for the last incremental job. Using this strat-
egy, the overall time-to-solution is reduced, because starting
the first incremental job with less data means less wait time
in the beginning, that cannot be overlapped with the com-
putation. Furthermore, once the first incremental job was
launched and the rest of the data is guaranteed to be a mul-
tiple of wave size, it is possible to receive more than twice the
wave size before a concurrent job has finished. If that is the
case, we propose to set the increment size for the next job as
the largest multiple of wave size smaller than the size of the
newly received data. Using this optimization, we minimize
the number of “fully loaded” incremental jobs necessary to
process the difference, which avoids the unnecessary over-
head resulting from running multiple successive incremental
jobs (as exhibited by a naive approach that simply fixes the
increment size to the wave size).

3.2 Algorithms
In this section, we zoom on the design principles presented

in Section 3.1 by providing an algorithmic description. We



ignore the data transfer itself and assume that it is an ex-
ternal process initiated by the user that is completely de-
coupled from the computation and satisfies two properties:
(1) the total size of the data to be transferred to the cloud
storage (denoted D) is known in advance; and (2) there is
a mechanism to query how much data was transferred so
far (primitive QueryProgress). Furthermore, we assume that
the wave size (denoted W ) is proportional to the number of
slots allocated for mappers and reducers (denoted N), mi-
nus a small number of reserved slots K (configurable value)
used for running speculative mappers. More specifically,
W = C · (N − K), where C denotes the chunk size (typ-
ically 64 MB).

Algorithm 1 Algorithm to minimize the number of incre-
ments and align them to wave size

procedure OptimizedIncComputation(D,N,K,C)
W ← C · (N −K)
wait until QueryProgress() ≥ D mod W
Head← ⌊ QueryProgress() /W ⌋+D mod W
Result← AsyncIncrementJob(0..Head, ∅)
while Head < D do

wait until AsyncIncrementJob done
wait until QueryProgress() −Head ≥W
Diff ← ⌊(QueryProgress() −Head)/W ⌋
PrevHead← Head
Head← Head+Diff
Result← AsyncIncrementJob(PrevHead..Head,Result)

end while
wait until AsyncIncrementJob done

end procedure

Algorithm 1 illustrates how to materialize the design prin-
ciples presented in Section 3.1. Given D,N,K and C as in-
put, the first step is to calculate W . Then, the next step
is to wait until at least D mod W data was transferred. If
more thanD modW was transferred, then it makes sense to
enlarge the increment beyond D mod W such that it packs
together as many full waves as possible beyond the remain-
der. Once the optimal size for the first increment was es-
tablished, the corresponding asynchronous incremental job
is started. For simplicity, we assume that the transferred
data is streamed and stored as single unstructured sequence
of bytes in the storage layer of the MapReduce deployment
(e.g., a file in HDFS [2] or GPFS [16]). By convention,
we delimit the data corresponding to an increment as X..Y ,
where X is the offset of the first byte and Y is the offset of the
last byte in the sequence. However, this is only a simplified
conceptual structuring that is by no means a requirement:
in practice, the data corresponding to X..Y may be stored
in multiple files or even be part of a higher level abstrac-
tion (e.g. sharded and indexed in a custom fashion). The
asynchronous incremental job is responsible both to process
the data X..Y and to combine the result with the previous
intermediate result (which initially is ∅). The new interme-
diate result is stored into Result. Note that Result needs
not be stored into the storage layer: this detail is left to the
implementation of the incremental MapReduce middleware,
which may choose to use a different location optimized for
non-persistent data (e.g. local storage devices where inter-
mediate mapper output is written).

Once the first increment was processed, the remainder
Head..D is processed in increments that span as many full

Figure 1: A simplified cloud architecture that inte-
grates our approach

waves as it was possible to transfer while AsyncIncrementJob

was running. Note that since Head..D is a multiple of W ,
the loop will always finish. Finally, a final wait is neces-
sary for the last incremental job to finish, after which the
algorithm completes.

4. ARCHITECTURE
We depict a simplified cloud architecture that integrates

our approach in Figure 1. The cloud client holds a large
dataset that needs to be processed using a MapReduce job.
It has access to an analytics cloud that employs a MapRe-
duce deployment capable of supporting incremental compu-
tations. There are no constraints on the incremental MapRe-
duce deployment itself: it can either be a custom installation
on top of virtual machines in an IaaS cloud or a provider-
managed PaaS. The only requirement is that the MapRe-
duce deployment exposes its storage layer (e.g. HDFS [2] or
GPFS [16]) externally to the cloud client, so that there is
a direct way to upload the dataset while running the incre-
mental MapReduce jobs at the same time.

Typically, the storage layer will comprise a set of data
nodes (denoted DN ), which are used at the same time as
compute nodes for the MapReduce jobs. Thanks to this
architectural feature of MapReduce deployments, the data
nodes will mostly serve local I/O requests (e.g. issued by
mappers scheduled close to the data), which minimizes the
network bandwidth utilization and thus any potential inter-
ference with the data upload. Thus, exposing the storage
layer to the user is not only efficient because it enables di-
rect uploads, but also because it is well suited by design for
our scenario.

The algorithm presented in Section 3.2 is implemented as
a runtime control module that runs on the master node (de-
notedMN ) and is responsible to coordinate the data transfer
and initiate the incremental MapReduce jobs. It can be de-
ployed either by the user directly, or it can be exposed by
the cloud provider as a service in itself. Thanks to the de-
coupling of the data transfer from the computation, there is
no constraint with respect to when or in what order to start
the two. If the computation starts before the data trans-
fer, then it will wait until D mod W data was gathered.



If it starts after the data transfer, the initial optimization
(that packs together as many full waves as possible beyond
the reminder for the first incremental job) can efficiently
handle even a scenario where a large part of the data trans-
fer is already complete. Even at the extreme, when the data
transfer is already finished before the computation is started,
our algorithm gracefully reduces the computation to a sin-
gle job, without splitting the computation unnecessary into
multiple increments. Thus, users can take advantage of this
flexibility to optimize when to start the data transfer and
the computation, depending the dynamicity of cost model
(e.g., delay until the price of the bandwidth utilization or
the VM instances reaches a desired level).

5. IMPLEMENTATION
We have chosen to implement our approach on top of

Hourglass [9], an incremental MapReduce framework specif-
ically designed to make computations over sliding windows.
These sliding windows typically correspond to temporal data
partitioned on a per-day basis and are particularly useful in
two scenarios: (1) the length of the window is set to some
constant number of days and the entire window moves for-
ward as new data becomes available (e.g., a daily report
summarizing the the number of visitors to a site from the
past 30 days); and (2) the beginning of the window stays
constant, but the end slides forward as new input data be-
comes available (e.g., a daily report summarizing all visitors
to a site since the site launched).

In our case, the second scenario applies: the window rep-
resents the data transferred so far, for which an updated
result is needed. Since Hourglass requires the input data
to be partitioned on a per-day basis, we decided to asso-
ciate the notion of day to chunk size, such that the smallest
possible increment that can be processed by an incremental
job is a chunk. This level of granularity is also reported by
the QueryProgress() primitive used in Algorithm 1 (i.e. the
data transfer is reported to have made progress only when
at least a full chunk was transferred to the storage layer).

The runtime control module (mentioned in Section 4) that
schedules the incremental MapReduce jobs is implemented
as a series of bash scripts. Besides the functionality cor-
responding to Algorithm 1, the implementation also reor-
ganizes the data in such way that it fits the per-day par-
titioning layout expected by Hourglass. More specifically,
Hourglass being implemented on top of Hadoop, it relies on
HDFS as its storage layer and expects a fixed directory and
file structure for the days. This reorganization of data hap-
pens on the client side, before it is uploaded remotely to the
HDFS deployment.

6. EVALUATION
This section presents a preliminary experimental evalua-

tion of our work using a real-life MapReduce application.

6.1 Experimental setup
The experiments were performed on the Grid5000 [4], an

experimental testbed that federates nine sites in France. We
used 11 nodes (interconnected with Gigabit Ethernet) of the
Rennes site, each of which is equipped with two quad-core
AMD Opteron 6164 HE 1.7 Ghz processors, 48 GB memory
and local storage of 250 GB (SATA AHCI Controller).

Out of the 11 nodes, 10 nodes are used for the Hour-

glass deployment and the remaining node corresponds to
the client and is used as the source of data upload. We use
Hourglass v0.1.3 (based on Hadoop v1.2.1) on the 10 nodes
in the following configuration: all nodes serve the role of
slaves, running a co-located TaskTracker and HDFS DataN-
ode process using 12 slots for mappers and reducers. In
addition, one node also serves the role of master, running
a JobTracker and a HDFS NameNode (for a small deploy-
ment such as ours, the management overhead incurred by
the master role is small enough to justify co-location with
the slave role). The chunk size is fixed at 64 MB. Thus, the
total capacity of the cluster is N = 120 slots, out of which
K = 10 are reserved, resulting in a wave size W = 7040 MB.
Furthermore, the runtime control module that implements
our approach (described in Section 5) is also running on the
master node.

An important part of our study is to understand how the
computation and the data transfer can be overlapped when
using different upload speeds. This aspect is important, be-
cause cloud clients may have different upload capabilities
depending on network quality or even cost (e.g., they would
prefer to use a low upload throughput in order to pay less for
bandwidth utilization). To this end, we use Traffic Control
(TC) to limit the outgoing traffic from the client node to a
desired throughput. For our setup, we achieved a maximum
write throughput into HDFS of 17.4 MB/s (using the stan-
dard replication factor of three). Thus, in our experiments
we vary the upload throughput from 1 MB/s to 17.4 MB/s.

The computation itself is a real-life MapReduce applica-
tion that counts the number of events for a given id and is
part of the Hourglass distribution. It is conceptually similar
to WordCount, but has different input format: a big text
composed of lines, with each line corresponding to an event
(which is frequently the case of log files). The input data for
this application is (unless otherwise specified) 20 GB and
was generated using a random generator that is part of the
Hourglass distribution. This results in a minimum of three
waves necessary to complete the computation.

6.2 Methodology
We compare three approaches throughout or evaluation:

Serialization of upload and computation.
This approach is non-incremental: first, the dataset is up-

loaded into HDFS. Once the upload has finished, the compu-
tation is performed using a single job that covers the whole
dataset. For the rest of this paper, we refer to this approach
as simple.

Start next incremental job as soon as the previous one
finished.

This approach implements a naive incremental strategy
that starts the computation right away, waiting only for a
minimal amount of data to accumulate for the first incre-
ment. Then, it accumulates new data in the background
while the incremental job is running and starts the next in-
cremental job as soon as the previous one finished. For the
rest of this paper, we refer to this approach as greedy.

Our approach.
This approach minimizes the number of increments and

optimizes their size to be as close as possible to a multiple
of computational capacity, according to the algorithm dis-
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cussed in Section 3.2. For the rest of this paper, we refer to
this approach as our−approach.

These three approaches are compared based on the fol-
lowing metrics:

• Time-to-solution is the total time elapsed between
the moment when the data transfer has started and the
moment when the overall results are obtained. This
metric represents the absolute performance as observed
by the end user.

• Compute time after data upload is the time re-
quired to finalize the computation after the data up-
load has finished. This metric is important because it
shows how well each of the approaches can overlap the
computation with the data transfer in order to make
progress during the data upload. A low value indicates
better performance.

• Cost efficiency represents a cost estimation for run-
ning the application, using a simple cost model that
differentiates between two states: (1) the MapReduce
cluster is in stand-by, waiting for a new incremental
job to be issued; (2) the MapReduce cluster is busy
processing an incremental job. The cost estimation is
Capproach = Wc ∗ Tc + Wi ∗ Ti, where Wc,Wi are co-
efficients corresponding to the cost perceived per unit
of time when the cluster is busy/idle, while Tc, Ti is
the duration of the two states. A lower value indicates
lower cost.

6.3 Preliminaries
Before running the comparative evaluation, we present in

this section a series of preliminary experiments that aim to
demonstrate the fact that the assumptions we base our de-
sign principles upon (described in Section 3.1) hold in prac-
tice.

To this end, we focus on the evaluation of the weak scala-
bility and strong scalability of the Hourglass application pre-
sented in Section 6.2. Figure 2, depicts the runtime for an
increasing number of reducers corresponding to the dataset
sizes of 0.57 GB, 1.15 GB, and 2.3 GB (which fill the capac-
ity of 9, 18, 36 mappers respectively). Since the mappers are

completely decoupled, the map phase is trivially scalable for
an increasing number of mappers as long as the cluster ca-
pacity is not reached. Thus, the overall weak scalability
of the job largely depends on the scalability of the reduce
phase. As can be observed, when the number of mappers
greatly outnumbers the number of reducers, there are not
enough reducers to efficiently parallelize the reduce phase,
which at the extreme leads to an increase of up to 35% in
runtime (36 mappers and 9 reducers). However, when the
number of reducers is increased to at least the number of
mappers, the difference in runtime becomes less than 5% re-
gardless of the data size. Furthermore, increasing the num-
ber of reducers beyond the number of mappers does not lead
to significant differences in runtime. This can be explained
by the fact that more reducers have a higher parallelization
potential but suffer from higher overhead, because each re-
ducer needs to collect a smaller piece from all outputs of the
mappers (which are distributed). Thus, we conclude that us-
ing the maximum number of reducers and waiting for enough
data to accumulate in order to fill the maximum number of
mappers is enough to achieve a near-optimal solution. Ul-
timately, this confirms our intuition to use incremental jobs
that process data sizes that are multiple of the wave size.

6.4 Performance evaluation
Our next series of experiments focuses on the performance

of the three approaches described in Section 6.2. To this
end, we evaluate each approach for a variable upload speed
that is increased from 1.8 MB/s to 17.4 MB/s (which is
the maximum throughout that the HDFS deployment can
sustain). The upload speed is controlled according to the
mechanism described in Section 6.1.

The results are depicted in Figure 3. The time-to-solution
(depicted in Figure 3(a)) reveals an interesting finding: for
small upload speeds, only comparatively small fraction of
time is needed for the computation. Thus, all three ap-
proaches perform closely, with our−approach being faster than
simple and greedy by 5% and 1% respectively. As the upload
speed increases, the difference between simple and the other
two approaches increases significantly, with our approach up
to 30% faster at the extreme of 17.4 MB/s. However, the
difference with respect to greedy remains still at 1%.

Although in absolute terms the difference between greedy

and our−approach is modest, this is expected because the
throughput of the data transfer is significantly smaller than
the throughput of the computation. However, note that this
is a consequence of the simplicity of the application we con-
sidered: in a more computationally-intensive scenario, the
differences in performance are expected to grow accordingly
in favor of our approach.

To understand this effect better, we focus in Figure 3(b)
on the compute time necessary to achieve the end result af-
ter the data upload has finished. By eliminating the data up-
load from the analysis, the difference between the three ap-
proaches becomes significantly larger and highlights a much
lower computational overhead for our−approach. As it can
be observed, our−approach manages to reduce the compute
time after the data upload has finished by up to 40% when
compared to greedy (with no reduction in some cases) and
between 50%-60% when compared to simple.

6.5 Cost estimation
In this section, we estimate the cost necessary to run
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(b) Time needed to finish the computation after the data
upload is complete (lower is better)

Figure 3: Performance results for a dataset size of 20 GB and a variable upload speed. Wave size is 110
mapper/reducer slots and 10 slots are reserved.
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Figure 4: Cost estimation for a a dataset size of
20 GB and a variable upload speed. Wave size is
110 mapper/reducer slots and 10 slots are reserved.

the application according to the cost metric Capproach in-
troduced in Section 6.2. To this end, we monitored in the
previous set of experiments (Section 6.4) for each approach
and each upload speed how much time the Hourglass de-
ployment spends in idle mode and how much time it is busy
with running incremental jobs.

Based on these measurements, we calculated Capproach =
Wc ∗Tc+Wi ∗Ti for each node individually and summed up
the results for all 10 nodes in Figure 4. The coefficients Wi

and Wc were fixed at 50 and 80, based on previous obser-
vations that nodes on Grid5000 consume 50 Wh when idle
and 80 Wh when running MapReduce computations. We de-
cided to use coefficients that reflect energy consumption in
the cost model, because this is representative of the minimal
operational cost incurred by the application. More specifi-
cally, the cloud provider needs to charge its users at least this
amount, otherwise its business would not be profitable. By
using this lower bound, we compare the cost effectiveness of
the three approaches in the worst case, which makes our re-
sults relevant no matter how much the real prices are driven
down by competition and proposals to adopt finer-grain cost
models [3] that bridge the gap between provisioned resources
and their actual utilization.

As can be observed, our−approach incurs the least cost re-
gardless of upload speed, both when compared with greedy

and simple. The largest difference is observable for a slow up-
load speed: in the case of 1.8 MB/s, our approach reduces
the cost by 44% compared with greedy. However, as the up-
load speed increases, the greedy approach becomes increas-
ingly more cost-effective (down to 10%). On the other hand,
the opposite holds for the difference between our−approach

and simple: there is a significant growth from 4% in the case
of 1.8 MB up to 23% in the case of 17.4 MB.

7. CONCLUSIONS
In this paper, we explore how to optimize incremental

MapReduce computations specifically for the case when the
input data is a large remote dataset that needs to be up-
loaded to the cloud first. Our main goal is to advance the
computation as much as possible during the upload phase,
such that the time spent in computations after the upload
finishes is minimized. Furthermore, another important goal
is to minimize the operational cost of doing so.

Unlike state of art approaches that are either optimized
for different purposes or treat the computational problem
independent of the data upload, to our best knowledge, this
is the first approach which simultaneously focuses on both
data upload and processing. In this context, we show that
it is not always efficient to attempt to overlap the transfer
time with as many incremental computations as possible: a
better solution is to wait for enough to fill the computational
capacity of the MapReduce cluster. Based on this idea, we
developed and evaluated a preliminary prototype.

To demonstrate the viability of our prototype in real-life,
we run extensive experiments in a distributed setting that in-
volves a 11-node large incremental MapReduce deployment
based on Hourglass. The results show significant benefits
for our approach when compared with a simple incremen-
tal strategy that starts the next incremental job immedi-
ately after the previous has finished: the time-to-solution
is improved by 1%, the compute time after the data trans-
fer is finished is reduced by up to 40% and the cost is re-
duced 10%-44%. Compared with a serialized strategy that
starts the computation only after all data was transferred,
the time-to-solution is improved by up to 30%, the compute
time after the upload finished is reduced by up to 60% and
the cost is reduced between 4%-23%.

Encouraged by these results, we plan to broaden the scope
of our work and experiment with more applications. We are



also looking at the possibility of dynamically adapting the
wave size to account for fluctuations in processing time or
uneven distribution of values among reducers. Finally, we
considered the cost optimization aspect by making use of a
simple cost model. Using a more complex cost model that
takes fluctuations in the price of resources and I/O band-
width utilization into consideration is a promising avenue
as well. Furthermore, we focused only on the cost from the
perspective of the computation. Thus, an interesting avenue
is to explore the cost also when taking storage into consid-
eration. In this context, we plan to study the viability of
several storage elasticity features introduced by our previ-
ous work [11, 12, 13].
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