
Design of Fault-Secure Parity-Prediction Booth Multipliers

M. NICOLAIDIS, R.O. DUARTE
TIMA Laboratory, Reliable Integrated Systems Group

France

ABSTRACT: The basic drawback of parity prediction
arithmetic operators is that they may not be fault secuw for
single faults. In a recent work we have proposed a theory
for achieving fault secure design for parity prediction
multipliers and dividers. This paper has not considered the
case of Booth multipliers using operand recoding. This case
is analyzed here. Parity prediction logic and fault secure
implementation for this scheme is derived.
Keywords: Self-checking circuits, Booth multipliers

I. INTRODUCTION: Since arithmetic units (i.e. adders,
ALUs, multipliers and dividers) are essential elements of
computers, designing efficient self-checking arithmetic
units is mandatory for designing self-checking and fault
tolerant computers. Early schemes for self-checking
arithmetic units were based on arithmetic residue codes
[AVl73]. The parity prediction scheme was also proposed
for the same purposes [SEL66].The basic drawback of this
scheme is that it may not achieve the fault secure property
because single faults propagate on output emxs of random
multiplicity which are undetectable by the parity code.
[NIC 971 proposed a design technique allowing to achieve
the fault secure property in parity prediction multipliers and
dividers, by constraining propagation of single faults into
output errors of odd multiplicity. This work considers
multipliers that do not use operand recoding. Since Booth
multipliers are among the most popular multiplier schemes,
we are extending OUI previous work in the case of these
schemes. The proposed solutions are implemented into a
macroblock generator and integrated into our framework of
CAD tools for data path design [WA 971. These tools today
include macroblock generators for various self-checking
adders and ALUs, shifters for single and multiple position
shifts, register files, dividers, parity prediction multipliers,
arithmetic code based multipliers, as well as the related
parity, double-rail, and arithmetic code self-checking
chedkers.
II. Multipliers with a Recoded Operand

In 1951. A.D. Booth presented a sisned binary
multiplication technique that is used nowadays in a largk
number of multiplier structures [Mm911 [Sat911 [Burg41
[Yu95] (Mak961. The Booth algorithm reduces the number of
partial products by recoding the multiplier (A). As it was
originally proposed, the Booth algorithm performs the
recoding serially [Boo51]. Therefore, the Modified Booth
Algorithm - Booth2 [McSGl] which performs the recoding in
parallel is used. Booth2 provides a reduction of partial
products from n2 to n x @+I)/2 (a decreasing of the number
of dots to be added in the dot diagram). This reduction
however is not a complete saving, since the partial product
selection circuit is more complex than a single AND gate. In
Booth2 algorithm, the multiplier (A) is patiitioned into
overlapping groups of 3 bits. Each of these groups is
decoded in parallel to select a single partial product

according to table 1. In table 2 is presented the relationship
between the partial product and the recoded signed bits and
table 3 gives the truth table for partial products.

Figure 1 shows an 6x6 Booth2 signed multiplication
example. Note that the input operands (A and B) and the
result (R) are in a signed two complement notation. The
same topology (hardware structure) can be used to perform
non signed multiplications. Figure 2 presents the non-
signed multiplication. Note that, to pelform non-signed
multiplication an extra bit is necessary for the multiplier and
for the multiplicand (see figure 2).

There are also, Booth3 and Booth4 multipliers that
were further proposed but they do not provide significantly
better results than Booth2 due to the complexity of the
decoding and selection circuit and the irregularity of routing
for diverse topologies [Twa95]_ In this work will be
considered only Booth2 recoding implementations.

Table 1 - Partial Product Selection Table

Table 3 - Truth Table for Partial Products

bit of partial products

Let us now detail the different decoder and selector
schemes that produce the partial products. From table 2
and table 3, in order to select the correct bit of the
multiplicand, we need four signals (ml, m2. pl and p2
meaning: minus one, minus two, plus one and plus two
respectively) This way we obtain equations 1 and 2. for the
partial products.
ppj = (pl bj) + (p2 bj-1) + (ml ‘bj) + (m2 ‘bj-I) Equation 1.
addl=ml+mZ Equation 2.
Figure 3 shows the corresponding implementation [Ara89],
where signals ml, m2. pi and p2 are generated by the
decoding cell.

1 Multiplier
Table 2 - Relationship Between Paltial Product and Recoded Siqned Bits

Partial Products ad Remarks

multiplicand (6) I o I I o I o I =-7s
multiolier (A)01 I I 001 0=114

1 1 0 1 1 1 1 1 0 0 0 1 1 0 1 0 = -8550

dot diagram

MSS LSB

Figure 1 -A 8x8 Booth2 Signed Multiplication

multiplicand 0 1 0 1 1 0 1 0 1 = 181
multiplier 001110010=114 dot diagram

0 1 1 0 1 0 0 1 0 1 0 1 B s soooo~o~~g

1 1 0 1 0 1 1 0 1 0 1 t rDa,.maDmy

1 0 1 0 1 0 0 1 0 1 0 t S....*.*..
s

1 1 0 1 1 0 1 0 1 0 - 5&4ahb&ab$

0 0 0 0 0 0 0 0
+ 0

***we**?

0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 = 20634
MS8 LSB

Figure 2 - A 8x8 Booth2 Non-Signed Multiplication

a Zi-1
:a *i

-a *i+l

PP; PI+ add 1

row of partial products

Figure 3 - First Implementation lor the Decoder + Selector Sooth2 Circuit

B “-1 82 adapted to the non-signed multiplication. Note from
a2i_, figure 1.b that the partial products from one row to

another are physically shifted two positions left due to
=a the recoding process. Also, a sign extension is

Qi+l necessary to Produce correct results (represented by

‘PP” PP”., PP, P&
row of partial products

Figure 4 - Compact Version for the Decoder and Selector
Booth2 Circuits

An alternative way of generating the partial products is
represented in figure 4 [Wes94]. This circuit presents a
more compact decoder + selector circuit implementation,
but it introduces a slight additional delay on the partial
product generation. m, 2m and s represent respectively:
add the multiplicand, multiply by 2 the multiplicand and
complement the obtained bits.

II.1 Booth Recoding with Carry-Save Topologies
From now on, we will concentrate on the signed
multiplication scheme represented in figure 1. since this is
the general notation adopted for implementing Booth

multipliers. However, our solutions are trivially

the nor&oldeb surrounded digits - in fi&ie 1).
The dot diagram (figure 1) is mapped directly in a carry-save
topology. However this direct mapping is hardware costly,
since the sign extension provide a multiplier with a trapeze
shape and the problem becomes more serious when the
number of bits grows. This sign extension problem is solved
using two techniques. The Signal Propagate and The Signal
Generate reported in [Ara89]. These techniques provide
hardware reduction and a multiplier implementation with
appropriate rectangular shape. Summarizing, it consists on
propagating the signal (most significant bit) of one row to
the tw most significant bits of the next row. In addition we
need to eliminate the influence of the carry, generated by
the adder cell that generates the signal, on the two most
significant bits of the following row. Figure 5.a represents
the complete carry-save implementation of a 8x8 Booth2
multiplier using the decoder and selector circuits of figure 3.
Figure 5.b shows the same multiplier for the decoder and
selector circuits of figure 4. The shaded squares represent
HAS and the blank squares FAs. The cl blocks represent
the selector circuits and c2 block the add 1 signal from
equation 2. The last adder stage is a ripple-carry adder
(RCA).

0 FA
HA

E3 decoder cell

!I blockcl
q block c2

r16 r15 r14 r13 r12 rll r10 r9 r6 r7 r 6 r 5 r 4 r 3 r 2 rl r0

(a)
cl FA

HA

0 decoder cell

r~ b l o c k bl

0 b lock b2

rl 6

(b)

r0

Figure 5 - Carry-Save Implementations for a 8x8 Booth2 Multiplier

III. Parity Prediction in Booth Multipliers
Practical multiplier designs, are implemented by a circuit
generating the partial products and a network of full and half
adders performing the summation of the partial products.
Since the sum output of a full or half adder cell is equal to
the mod& 2 sum of its inputs, this output gives the parity
of the inputs of the cell. Thus, we can find trivially that the
module sum of the multiplier outputs (output parity Pout), is
equal to (parity of the product terms) XOR (parity of the
carries of the full and half adder cells). That is
Pout=PppXORPC. When operand recoding is not used, the
partial product ppij is equal to aih aj. We find trivially that
the module 2 sum of the terms ai,aj is equal to (PAAPE),

and Pout=(PAhPB)aPC. Where PA, PB are the parities of
the input operands and PC is the parity of the internal
carries. The Booth multipliers are also composed of a partial
product generator and a network of adder cells. Thus, the
relationship Pout = Ppp XOR PC still holds. However, the
computatina Pup is more complex, due to the operand
r&ding. - ”

We saw previously that the partial product generator
in a Booth multiolier is cornnosed of a set of decoder cells
and a set of ‘selector r&s, each selector row being
controlled by a decoder cell. Figure 6 presents the block
diagram of these parts together with the adder-cell network
(Sum of Partial Products).

In order to generate the parity of the Ppp of the
partial products, we will first generate the parity of the
partial products of each row. We have to elaborate the
solution for the two approaches of partial product
generation shown respectively in figures 3 and 4.

The mod& 2 sum of the partial products of a row i
(i.e. the module 2 sum of the terms of equation 1 over j and
of the sign extension), can be expressed as:

Pppi =F’ ppij =z’ (pli bj v p2i bj-1 v mli‘bj v mZi’bj-1)
i=U i=O

a:g ‘-(pllbn 1 v pZibn-1 Y mli‘bn-1 v mZi’bn-1)

Since only one of the terms pli. pZi, mli, and m2i can be
equal to 1 at a time, this sum can be expressed as:

(mli v m2i).
Note that mli v m2i is also added since it gives the bit add1
(equation 2). For n by n multipliers we have 2” inversions in
the 3rd and 4th terms, and they disappear from the module
2 sums. By taking also into account that by, = 0, we obtain:

Ppp i = [pli(PB@:g bn-1) v pZi(PBB:g bn-1) v mli

(PBe2y bn-1) v m2i (PEZD
j=n

:,g bn-l)]@(mlivmZi)

= [(pli v mli)(PB~‘~ bn-1) v (p2i v mZi)(PB@
j=n :g b”-l)l@

(mli v mZi), where PB is the parity of the multiplicand.

Figure 6 - Booth2 Multiplier - Block Diagram

I Pppi

(4 (b)
Figure 7 - Row Parity Prediction Circuit for Booth2

F o r n eve” we f ind: Pppi = [(pli v mli)(PB) v (p2i v
mZi)(PB@bn-1)) Q (mli v m2i).

For n odd we find. Pppi = [(pli v mli)(PBabn-1) v (p2i v

mZi)(PB)] @ (ml i v m2i).
I” the following we consider the usual case where n is eve”
and we obtain the circuit of figure 7.a.

Similarly, for the compact decoder circuit of figure
4 and n eve”, we obtain the following parity prediction
equation: Pppi = [miPB v Zmi(PBQbn-I)] (8 si (with si = a,,,,).
This equations is implemented in figure 7b.
The parity Ppp of the partial products is computed as the
mod& 2 sum of the partial product row parities Pppi =

[$]-I

2 ,“’
Pppi This IS Implemented by a network of XOR

gates having as inputs the r (n+l)/Zl - 1 Pppi terms.

IV. Fault-Secure Implementation for Array
Booth Multipliers
We saw that there are two different forms of implementing
the decoder + selector circuit. The fault-secure solution
proposed and analyzed in this section is the same for both
implementations.

The fault-secure propetiy will be shown by
considering the following parts:
a) The decoder cells;
b) The parity prediction block;
c) The block Sum of Pat&l Products;
d) The selector cells;

bus A

Figure 8 - Duplication Scheme for Decoder Cells in Booth
Multipliers

a) A fault in a decoder cell provokes one or more
erroneous decoded lines. These erroneous line(s) enter in
all cells of a row of selection cells. This situation will result
in multiple erroneous partial products. The multiple
erroneous partial products create multiple erroneous inputs
for the adder cell network. These multiple input errors will
destroy the fault secure property. To cope with that we will
use a duplication scheme to check the decoder cells. For
each decoder cell its dual counterpart is also implemented,
and the two parts are checked by a double-rail checker.
This checker [Car681 produces two outputs FO, Fl,
indicating detection of eventual errors (see Figure 8).

b) The parity prediction part. Under a fault in this part, only
the parity Pout is affected by the eventual errors, and the
error is always detected.
C) Faults in the adder cells network. The analysis for
this part is based on the results obtained in [NIC 97). These
results are summarized below.
Single-Cell-Fan-out Networks: Let us call single-cell-
fan-out network any cell-network in which each output of a
cell enters exactly one input of exactly one cell. Many
networks of full and half adders used in arithmetic operators
verify this property.

As we have seen, the parity of an adder-cell network can be
predicted using the equation Pout = Ppp 6B PC. The parity
PC of the carries of the adder cell network is generated by
using a network of XOR gates receiving as inputs the carry
signals. In order to achieve the fault secure property, [NIC
971 shown that the full and half adder cells must verify some
constraints. Two such cells was obtained. The one [figure
9) requires to use complete carry duplication and also
implements the sum output by a separate circuit. The one of
the duplicated carries is used for performing the addition
function, while the second is used for parity prediction. The
second cell (figure lo), is more compact since it was shown

that the constraints can be relaxed to have the propagate
signal (P= A XOR 6) shared between the duplicated carries
C. CP and the sum output S.

CP

Figure 9 - Full- and half-adder cells for fault secure multiplier
design.

, u
Figure 10 - Compact full-adder cell for fault secure multiplier

design using logic sharing.

Theorem 1 and theorem 2 [NIC 971: Two basic
theorems [NIC 971 show that a single-cell fan-out network
composed of full- and half-adders of figures 9 and 10. and
checked by the parity prediction, meets the fault secure
Property

We have ?.een two possibilities for implementing the block
Sum of Park4 Products of figure 6.

C-l) Implementation using a network of adder cells
arranged in a trapeze shape. .This implementation is a
direct mapping of the partial products of figure 1 in an array
of full and half adder cells arranged in a trapeze shape. The
resulting circuit is a single-cell fan-out network and the fault
secure property holds. However, as it was discussed
before, this structure has a high hardware cost.

C-2) Implementation using a network of adder cells in a
rectangular shape. This is the optimal solution in terms of
hardware cost, since it eliminates the extra hardware
required for generating the extension of the signal bit. For
this case, the networks of figure 5 are analyzed. The
analysis is similar for the implementation of figure 5.a and
5.b. Thus, in the following, we will only refer to figure 5.a.
Unfortunately this circuit is not a single-cell fan-out

network. This property is not respected by the part
concerning the signal extension. This part is amplified in
figure 11. As we can observe there, there are two carries
entering two cells each, two sum signals entering three
cells each, and one sum signal entering two cells. To take
care of this network we will consider our previous results
obtained in [NIC 971 for multiple-cell fan-out networks. The
following theorem holds when any output of a cell enters an
odd number of inputs of other cells (odd-cell fan-out
network).
Theorem 3 [NIC 971: An odd-cell fan-out network
composed of full- and half-adders of figures 9 and IO. and
chedked by the parity prediction, m&s the fault ?.ecure
p’0pw _

,16 115 04 r13 r12 r11 r10 r9 r8
Figure 11 - Details of the Signal Extension Part of the
Booth2 Multiplier of Figure 5

For networks with even-cell fan-outs the fault secure
property is lost [NIC 971. A solution proposed in [NIC 971
consists on duplicating and checking the signal with even-
cell fan-out and all its predecessors. In figure 11, we have
two carries and one sum signals with even-cell fan-out.
Applying the above solutions to the sum signal entering the
two left-most cells of the bottom row, will require to
duplicate the whole array excepting the bottom row. This is
because the outputs of all other rows are predecessors of
this sum signal. This solution has an excessive hardware
cost. For further analyzing this problem, let us first recall
the concept of a sum path introduced in [NIC 971.
Sum-path: Consider a path starting from an input of an
adder cell, finishing to an output of the network, and
including only sum outputs of the network cells. Such a
path will be called a sum-path.

In a single-cell fan-out there is exactly one sum-path
starting from any input of any cell.
The following proposition and properties complete the
results obtained in [NIC 971 and simplifies our search for a
more compact solution. Prior to this proposition let us
introduces the following concept.
Sum-path parity: A signal has an odd sum-path parity if
it is connected to the outputs of the network through an odd
number of sum paths, it has an even sum-path parity
otherwise.
Proposition 1: In a network using the adder cells of
figures 9 and 10. if each signal has an odd sum-path parity.
then, the fault secure property is reached.
This proposition is proven similarly to theorem 3 in [NIC 971.
Thus, the proof is omitted here.

When a signal has an odd- (resp. even-) cell fan-out, and all
its swce~sor sum signals have odd-cell fan-out, then, the
sum-path parity of the signal remains odd (resp. even).
However, if some of its successor sum signals have even-
cell fan-out, then, we can show easily that the sum-path
parity of the signal is determined by the following
properties.
Property 1: An odd-cell fan-out signal which is
predecessor of an odd number of sum signals with even-cell
fan-out, has even sum-path parity.
Property 2: An odd-cell fan-out signal which is
predecessor of an even number of sum signals with even-
cell fan-out, has odd sum-path parity.
Property 3: An even-cell fan-out signal which is
predecessor of an odd number of sum signals with even-cell
fan-out, has odd sum-path parity.
Property 4: An even-cell fan-out signal which is
predecessor of an even number of sum signals with even-
cell fan-out, has even sum-path parity.

In figure 11. there is one sum signal with even-cell fan-out.
This signal is labeled Seven in the figure. From Propelty 3.
its predecessors with even-cell fan-out have odd sum-path
parity. There are exactly two predecessors of Seven having
even-cell fan-out. Thus, these signals verify the structure
required from Proposition. These signals are the carry
outputs of the left-most cells of the first and second rows in
figure 11. From Property 1, all the other predecessors of
Seven will have even sum-path parity and do not verify
Proposition 1. For avoiding to duplicate and check all these
sianals. we will modify the network to meet the following two
p&ts:
1) Remove the even-cell fan-out from signal labeled Seven.
This wav. this sianal and all its predecessors with odd-cell
fan-out will rea&the requirements of Proposition 1.
2) The transformation of point I- will modify from odd to
even the sum-path parity of the two carry signals with even-
cell fan-out. To avoid this new problem, we will modify the
cell fan-out 01 these signals from even to odd by
incrementing it.
3) Do not modify the cell fan-out of the remaining signals.

i-:2- and
For meeting point 1.. the logic generating the signal Seven
is duplicated. This signal is the sum output of a full adder
cell. Thus the duplicated logic consists on a 3-input XOR
gate.
This duplication will modify from odd to even the sum-path
oaritv of the sum output of the cell feeding the duplicated
logic: To avoid this p&?m and meet poini 3- we duplicate
the complete sum path of the multiplier passing from Seven.
In the example of the 8 by 8 multiplier this requires to add
two XOR gates. Two of the inputs of these gates come from
duplicated selector cells (in bold) and its predecessor XOR
gate. Thus. non of the existing sum signals of the multiplier
enters any of the duplicated cells, and their sum-path parity
is maintained. At the same time we use the carry signals
with even sum-path parity as inputs to the duplicated logic.
Thus their sum-path parity is modified from even to odd. and
point 2. is met.
After these modifications, it is easy to check in figure 12
that the resulting circuit performing the Sum of Partial
Products is an odd-cell fan-out network. This network uses

the adder cell of figure 9 or 10. It also uses some cells
which are not adders (the three XOR gates). However, as
shown in [NIC 971 theorems 1, 2 and 3 hold if the cells of the
network verify the following requirements:
Any error on a single input of a cell is propagated to the one
output of the cell (say, the “sum’ output). This error
propagation implies that the ‘sum” output is computed as
the XOR or XNOR function of the cell inputs. No particular
property is required for the function of the other output.

Since the concerned cells are XOR gates, their output
verifies the requirements of the “sum” output. Since there
are no requirements for the other output of the cell, the cell
requirements are met in the case of the XOR cell, where this
output is missed.

From the above the fault secure property is reached
for faults affecting the Sum of Partial Products network.

d) The selector cells. A fault in any selector circuit
provokes an error on a single patiial product. As we can
check in figure 5, one partial product enters three cells and
each other partial product enters a single cell. Thus partial
products can be viewed as odd-cell fan-out signals in an
odd-cell fan-out network. Thus the fault secure property
holds also for faults in the selector cells.

0 FA with Cd

A with Cd

El SUM cell til,

The complete fault-secure solution for the optimal
Sooth2 multipliers (figure 5) are shown in figure 13. Figure
13.a shows the topology for the decoder + selector cell Of
figure 3 and figure 13.b shows the topology for the decoder
c selector cell of figure 4.

0 FA vim Cd

• j Hewilhcd

0* SUM cell

0 dec CBII

q b,OCk Cl

. Ias, Cl d”P

r,e r15 r14 r13 r12 r11 r10 rg ra
Figure 12 Solution for the Network Part due to the Signal

(b)
Figure 13 - Fault-Secure Solution for Carry-Save Topologies with Sooth2 Recoding

V. Cost Reduction obtained the following equation predicting the parity of row i
Next we are exploiting the 2.rail checker controlling the of partial products when we use the decoder of figure 3:
duplicated decoder cells, in order to remove the circuit
predicting the parity for partial products. In section Ill we

For n even: Pppi = [(pli v mli)(PS) v (p2i v m2i)(PB@bn-1)]
eD (mli v m2i). Since only (pli v mli) or only (p2i v m2i) can

be equal to 1 at a time, we find Pppi = [(pli v mli v p2i v

m2i)PB 8 (p2i v m2i) bn-1] @ (ml i v m2i). Again, since only
one of the terms pli, mli, p2i, m2i can be equal to 1 at a
time we can replace the OR function by the XOR function.

Thus we find Pppi = [(pli QI mli @ p2i 8 m2i)PB f?+ (p2i @

m2i)bn-I] @ (mli e m2i).
The mod& 2 sum of the terms Pppi over the set of rows i
gives the parity Ppp of the partial products. That is, Ppp =

y Pppi = y (pli Q mli e p2i Q m2i)PB @ (p2i @ IX. CONCLuSlONS
;n i-n In this work we have analwed the structure of Booth

we obtain: Ppp = (Pm@P2m)PB@P2m bn-l)]@Ps. Where
Pm, P2m and Ps are the parities of the terms mi, 2mi, and
si. As in the previous case, we can use the outputs of the
modules of the double-rail checker to obtain the parities Pm
and P2m and Ps. We find that we need to add only two AND
and one XOR gate to the double-rail checker in order to
obtain the parity of the product terms. It results in a
significant cost reduction.

1-1 .-”

m2i)bn-1 @ (mli @ m2i)

3 P p p = (P p l @ Pm1 @ Pp2 0 Pm2)PB m (Pp2 e

Pm2)bn-1 @ (Pm1 @ Pm2).
Where Ppl, Pml. Pp2, Pm2 are the parities of the terms
pli’s, mli’s, p2i’s, m2i’s. To compute these parities we can
exploit the propenies of a double-rail checker in order to
use this checker for both check a set of double-rail signals
[NIC 931 and generate their parity. The two outputs of the
double-rail checker will indicate any discrepancy on the
double-rail signals. At the same time one of the checker
outputs provides the parity of these signals. To exploit the
checker verifying the decoder cells (figure 8). we will
implement it by using four double-rail checker trees. These
trees check respectively the terms pli, mli. p2i and m2i.
Thus, using one output of each of them we obtain the
parities Ppl. Pml, Pp2 and Pm2. Three double-rail checker
cells combine the outputs of the trees to generate the error
indication for faults in the decoder cells. The signals Ppl,
Pml, Pp2 and Pm2 are used to generate the parity Ppp of
the partial products (figure 14). As we see there we only
need to add two AND gates and two XOR gates for
generating Ppp. This reduces considerably the cost since
the cells of figure 7 and the parity tree combining the Pppi’s
are eliminated.

Figure 14 - Exploiting the double-rail checker for generating
Ppp for the case of the decoder of figure 3.

Similarly for n odd we find: Ppp = (Ppl i QI Pmli eD Pp2i

@ Pm2i)PB 6? (Ppli @ Pmli)bn-1] QI (Pmli @ Pm2i).Thus we
use a similar implementation for generating the parity of the
partial products.

Similarly, for the compact decoder cell of figure 4 and for n
even, from the equation Pppi = [miPB v 2mi(PBeDbn-l)]msi,

multipliers and derived the pkity prediction equations and
circuits. Then, on the basis of a theory proposed recently
[NIC97], we have derived the fault secure implementation
for these designs. Some extension of this previous theory
and some specific modifications of the multiplier was
necessary in order to cope with even-cell fan-out signals.

REFERENCES
[ARA89] M. Annaatone. “Digital CMOS Circuit &sing’. Kluwer
Academic Publishers. 1989
(AVl731 Avizienis A., ‘Arithmetic Algorithms for Error-Coded
Operands’ IEEE TC, Vol. C-22, No. 6, pp.567-572. June 1973.
[80051] A.D. E?c&, “A signed Binary Multiplication Technique”,
Quarterlv Journal of Mechanics and &plied Mathematics. N-4. PP.
x3.-240,~June 1951
[BUR94]B. Burgess, M. Alexander. Y.-W. Ho. S.P. Litch, an3 Cal?..
“The ~ower~~~~ Ma Microprocessor: A High Performance, Low
Power, Superscalar RISC Microprocessor’, Design Automation
Conference DAC’94, pp. 330.3061994
[CAR681 WC Carter, P.R. Schneider, “Design of Dynamically
Checked Comouters’. in Proc. IFIP Conf.. Edinburoh. Scotland. Aua.

irano. S. f&Y& M. Nod.3 d
l,ompurerr, I” ,nc, pp. 0,.:
[MORI)l]J. Mori. M. Nagamatsu, M. H ~, ~, ,,
al., “A 10.“~ 54x54 Paral et Stwctured Full Array MultIplIer with 0.5hm
CMOS Technology’, IEEE Journal of Solid-State Circuits, vol. SC-26
N”4, pp. ljlJ@fj~,5 &“.il 1901
INIC931 tacoi& Me’Efficient Implementation of Self-Checking

Js’. Prcc 2% Fault Tolerant Comwtina Svmwsium.

[NIC 97] Nicolaldis M.. Duarte R.O.. Manich S., Figueras J.. “Fault
Secure Parity Prediction Anthmetic Operators”. IEEE Design and Test
of Computers AprilJune 1997.
[SAT911 T. Sat% N. Nakajima. T. Sukemura. G. Goto, “A Re#+rly
Structured 54.Sit Modified Wallace-tree Multiplier”. VLSI eslg”
Conference, pp. 1.1.1 4 ’ n *n-rI.I.J. lcw,

[SEL58] Sellers F.1 I. at $t, ‘Error Detecting Logic for Digital
Computers’, New-Yarn: MC tiraw -Hill 1968.
[TWA951 H. Al-Twaijry and M. FI! (nn,~“pellorma”celArea Tradeoffs in
Booth Multipliers”. Tech”. Rep.: CSL-TR-95.684, November 1995
]WES94] N.H.E W&e, K. Eshraghian, Priciples o f C M O S VLSI
Design A Systems Perspective - sand edition, Addison-Wesley
P,,hli*inr ^- .a-’, w., 1554

IYU951 R.K. Yu an3 G.S Zvner. “167 MHz Radix-4 Fhxtina Point. .
Multiplier’, in Proc. 14ti Sym~osi~rr- on Computer Arithmetic, pp. 149.
154,1995

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

