
VHDL Modelling and Analysis of Fault Secure Systems

Jason Coppens, Dhamin Al-Khalili, and Côme Rozon
Department of Electrical and Computer Engineering

Royal Military College of Canada
Kingston, Ontario K7K 7B4

 Abstract
This paper presents an analysis process targeted for the
verification of fault secure systems during their design
phase. This process deals with a realistic set of micro-
defects at the device level which are mapped into mutant
and saboteur based VHDL fault models in the form of log-
ical and/or performance degradation faults. Automatic
defect injection and simulation are performed through a
VHDL test bench. Extensive post processing analysis is
performed to determine defect coverage, figure of merit for
fault secureness, and MTTF.

 1. Introduction

For systems where security and reliability are critical,
the design must be tolerant to defects. These tolerant
designs must identify conditions where the correct opera-
tion of the system is compromised, then react to maintain
system integrity. Testing for functionality or performing
conventional fault simulation are insufficient to ensure
correct operation of these systems. Any verification of crit-
ical designs must be comprehensive and satisfy certain
requirements. A measure of the level of confidence that
one can place in a system’s ability to remain fault secure
becomes the deciding factor in the selection of the desired
design. Therefore, the analysis methodology and the cir-
cuit modeling techniques, in conjunction with realistic
operational scenarios are the main ingredients for reliable
results.

There have been studies aimed at developing statisti-
cal metrics which can be applied to critical logic blocks for
the determination of their fault security [1,2]. These met-
rics can be extracted early in the design cycle. However,
the determination of the parameters used in the metric cal-
culation is often unclear and too general, leaving in doubt
the results of these calculations.

The use of fault injection has been advocated by stud-
ies to carry out verifications for fault tolerant systems
[2,3,4]. Fault injection involves the deliberate introduction
of faulty behavior into a circuit, which is then monitored

for a response through simulation. However, most of the
proposed techniques do not address the problem at the
physical defect level and the implication on circuit behav-
ior.

In contrast to the above previous approaches, the pro-
posed process carries out automatic defect injection into
the circuit allowing for technology specific analysis of sys-
tem behavior in a multi-fault environment. This environ-
ment include both logical faults and performance
degradation. The proposed methodology meets the goal of
developing a realistic technique for the verification of the
critical blocks of fault secure ASIC designs.

2. Faulty behavior and security analysis

The progression of circuit behavior from defect to
failure can be illustrated by the flow of states shown in
Figure 1. If the detection scheme detects the error on the
output and flags it as unreliable, then the system is said to
have failed secure. Otherwise, if the system’s checking
scheme does not flag the erroneous output as being unreli-
able, then the system has failed insecure. Unexcited
defects (either due to defect size or input pattern excita-
tion) are considered dormant, and unexcited faults remain
latent. The detection abilities of the checking hardware
determines if the transition will be to a secure or insecure
failure state

The analysis process proposed here has two thrusts:
assurance of the fault security defects, and highlight of
areas for design improvement. The requirement for an
evaluation scheme is to obtain a level of confidence in the

Defect Fault Error

Fail
Secure

Insecure
Fail

Figure 1. Defect path to failure

dormancy latency

detection

no-detection

system’s ability to maintain fault security in the presence
of defects. The level of confidence obtained by this verifi-
cation is best represented by the probability of the design
not failing given by equation (1). This probability repre-
sents the figure of merit of the system.
 P{Secure Operation} = 1 - P{Failure}

= 1 - P{Failure | defect} • P{defect}

= 1 - [P{Failure | Error}• P{Error | Fault}•
 P{Fault | defect} • P{defect}] (1)

Figure 2 contains the diagram of a probability state
model for life cycle analysis in the proposed process where
the state transition probabilities are assumed to be Mark-
ovian [1]. There are two entries to this model. If a circuit is
certified as defect free then it starts in the “DF” state. If
however, there exists the possibility of a dormant defect in
the circuit, then the circuit starts in the dormant or latent
defect “L” state. States “FS” and “FUS” represent the
failed secure and failed insecure states respectively. For
this Markov model,λ is the defect arrival rate, andt repre-
sents time.

3. Micro-defect modeling

Our work lead to the generation of a MOS transistor
model containing nine generic defects. Parasitic circuit
elements were used to create a representation of each of
the nine defects. Most shorts and opens could be modeled
using straight forward resistive and capacitive elements.
Modeling of the gate oxide pinholes behavior required
special considerations [5].

Two defect classes were studied: (1) “Hard” defects
which represent severe physical conditions. Defects of this
category manifested faults usually logical in nature, such
as stuck-at conditions or changes in the logic function per-
formed by the gate; (2) “Soft” defects which represent
abnormalities in the making. Typically, gates with a soft
defect exhibits a performance degradation, such as
reduced noise margin, change in output voltage swing, or
increased propagation delay. The critical circuit parame-
ters (resistances for shorts and opens), defining the bound-

L

DF FS

FUS

Figure 2. Probability model of a fault secure system

Pfs λt

Pfus λt

Plfs λt

Plfus λt

Pl λt

1

1

1 - λt

Pl λt

ary between these two classes of defects were determined
through extensive simulations [6,8].

Having established a transistor level defect model
suitable for CMOS technologies, the response of various
gate structures influenced by each of the nine defects was
determined. Results were obtained for both “Hard” and
“Soft” ranges of defect parameters. From these responses,
defect-to-fault mappings was determined for each gate
structure.
Nortel’s 0.8µm CMOS standard cell library was used to
provide a foundation for the defect-to-fault mappings.
Analog simulations, including an exhaustive input pattern
and defect injection conducted with common gates,
yielded the set of generic fault categories appearing in
Table 1. The last two columns of the table list the set of
logical and performance degradation faults obtained for a
typical D-latch gate injected with 108 hard defects and 108
soft defects.

Table 1. D-latch defect-to-fault response

Note that a single defect may result in multiple faults
as demonstrated in the bar chart of Figure 3. This type of
data provides the basis for the defect-to-fault mapping
which will be part of the VHDL models of defective gates.

4. VHDL fault modeling

Faults are injected into VHDL models of the design

Numbers in Category

Fault Category Hard Defects Soft Defects

Stuck At 82 19

Iddq Increases 68 60

Delay 0 66

Noise Margin
Reduction

3 42

Unobservable Fault 16 27

101

75

28
20

35
43

logic
& Iddq & Iddq & Iddq & Iddq Detected

logic delay delay NM Not

 & NM

100

50

N
um

be
r

of
 D

ef
ec

ts

Faults

Figure 3. Defect-to-fault mapping for D-latch

and excited by a set of input patterns. The basic methods
appear in Figure 4. The first involves the addition of asab-
oteur. This entity is placed external to the existing logic
gate and can be used without altering the existing gate
models. Saboteurs can be used to model most faults and to
simulate environmental conditions such as noise or ESD.
However, because they have no input pattern discrimina-
tion, saboteurs cannot model faults below the gate level of
abstraction. The second method is referred to asmutant
injection. A mutant is a model which contains dormant
code blocks within the normal gate description. These
blocks of code are activated by injecting faults, altering the
operation of the logic device itself. Because the fault
response is generated internally within the model, any
level of abstraction for fault injection is possible. How-
ever, the use of mutants requires that the original gate
models be replaced by the new mutant models.

 In our analysis process, the defect injection into the
gates is carried out using controllable mutants for defect-
to-fault mappings. Saboteurs are used to model intercon-
nect bridging between signal lines external to the logic
gates.

5. The analysis process

Our security fault analysis process consists of four
major phases: setup, modelling, simulation and analysis. A
complete flow diagram is shown in Figure 5. Thesetup
phase establishes the modeling environment (test vectors,
defect analysis) according to the target technology and
generates a structural VHDL description of the design or
system blocks of interest. Themodeling phase prepares
the injectable models for VHDL simulation by placing
mutants and saboteurs constructs. Previously established
VHDL models can also be imported from a fault security
analysis (FSA) gate library by default, if the case applies,
removing the need to replace the gate models. In thesimu-
lation phase, the defect injectable model is placed within
a simulation test bench. Two output files are generated by

Primary Inputs

Normal Gate

Fault injection
control

Saboteur
Fault free
output

Altered
output Output

Model Normal Gate
Model

Fault injection
control

Primary Inputs

Mutant Gate
Altered

Output

Normal Gate
Model

Output

a) Using saboteurs

b) Using mutants

Figure 4. Fault injection methods

the simulation. One file contains the results of IDDQ moni-
toring, while the other contains response mismatches from
output monitoring data. Finally, in theanalysis phase the
data is compiled to obtain defect coverage and failure sta-
tistics. Using the statistical calculations, figures describing
the probability of fail safe operation are generated.

6. Benchmark application

As a proof of concept of the proposed process, analy-
sis was conducted on two versions of a benchmark. It is an
eight bit ALU, synthesized from a behavioral VHDL

description to a structural architecture, with two types of
error checking schemes: parity and complementary. Both
checking systems and the ALU block were designed using

Defect

Failure data
Coverage

Defect

TPG
Technology

Defect

VHDL Simulation
(Defect injection)

Design

Calculated

VHDL
Extraction

Design
Netlist

& Fault
Database

Analysis

Input
Test

Vectors

VHDL
Design in

Gate Model
Replacement
& Bridge
Placement

Defect

Model

Fault Model
Generation

FSA
Model

Library

Injectable

Post Processing

Testbench
Controller

Statistical
Analysis

Attributes
& Figure

of Merit

Output
Files

Setup

Modeling

Simulation

Analysis

Figure 5. Process flow diagram.

Nortel’s 0.8µ BiCMOS process. The block diagram of the
benchmark circuit is presented in Figure 6.

An exhaustive defect injection was employed. The
circuit was stimulated with a set of 250 pseudo-random
input vectors to provide high fault excitation. Two simula-
tion scenarios were conducted. The first scenario injects
single defects throughout the entire benchmark. Data
obtained from this scenario can be used to generate defect
coverage statistics of the test pattern set, and a figure of
merit for a single defect environment. The second simula-
tion scenario targets the checking hardware block to look
for error masking by defects injected within the checker.
Such a situation would be analogous to a multiple defect
environment.

7. Results and performance analysis

7.1 Defect coverage and failure statistics

The chart of Figure 7 illustrates the single defect
injection results. These statistics represent the defect cov-
erage of the benchmark blocks for the input vectors. Per-
centages are given for those defects which caused a logical
error on the circuits outputs (logic errors) and those which
caused an unknown or intermediate value on the circuit’s

output (possible errors). Failure statistics for the two
checking schemes are presented by the chart of Figure 8.
The shaded portions represent an intermediate value on the
circuit’s output which may or may not trigger theGood/
Fail flag.

The graph of Figure 9 illustrates the percentage of
defects generating an increase in IDDQ draw, representing
the potential defect coverage of an IDDQ test for each
block. The defect coverage of an IDDQ test is insufficient
to ensure fault secure operations. However, it can be used
in combination with another fault detection method. Error
masking statistics, which represent failures, are provided
in Figure 10. White portion represents a condition of a
logic error being masked by the defective checker. The
shaded region represents logical errors from the critical

Operation

A

B

Result

Critical Block

Checking Hardware

ALU

Good/Fail Flag

ALU

Result

Checker

To next blocks

Figure 6. Benchmark block diagram

 .

block (the ALU) which could possibly be masked by the
defective checking hardware

7.2 Figures of merit

From the results obtained in the first scenario, and
using equation (1), it is possible to determine the figures of
merit for both the parity checker and complementary
checker of the benchmark. Table 2 presents the results for
single defect, combined IDDQ monitoring and multiple
defects. The addition of current monitoring improves the
figure of merit. For a multiple defect environment, there
was accounting for defects in the checking hardware
masking a “fail” flag.Therefore the effect of error masking
is to increase the probability of a system failing to an inse-

ALU

Parity Checker

Complementary
Checker

Design Block

50% 100%

65%

82%

68%

52%

70%

38%

Logical errors Possible errorsLegend:

Percentagedefect coverage

Figure 7. Single defect coverage statistics

Parity Checker

Complementary
Checker

Design Block

Logical failure Possible failure

5% 10%

14%
17%

1%
.8%

Legend:

 Failure

Figure 8. Single defect failure statistics

Parity Checker

Complementary
Checker

ALU

50% 100%

64%

67%

69%

Figure 9. IDDQ Test defect coverage

Percentage defect coverage

Design Block

cure state. The decrease is more pronounced for the com-
plementary checker because of its larger size compared to
the parity checker.

7.3 Life cycle analysis

To perform life cycle analysis, the Markov model pre-
sented earlier is used. The various transition probabilities
between states can be calculated by extracting the neces-
sary parameters from the simulation data. Once the model
is established, a plot can be used to show the dependency
between a desired probability of secure operation and the
mean-time-to-failure (MTTF) of the system. Such a plot
appears in Figure 11 for the parity checker for defect
arrival ratesλ to represent best case (10-7defects/hr),
worst case (10-3 defects/hr), and average value (10-
5defects/hr) [1,7]. For the latter value ofλ and a desired
95% fault security, the MTTF for the parity checker is
found to be 5 years, compared to 50 years for the comple-
mentary checker. This shows the importance of the selec-

Table 2. Figures of merit

Checker
circuit

Single defect Multiple
defects

Without
IDDQ

With
IDDQ

Parity 83% 83.2% 82.9%

Complementary 99% 99.6% 98.5%

Parity Checker

Complementary
Checker

ALU

50% 100%

64%

67%

69%

Figure 9. IDDQ Test defect coverage

Percentage defect coverage

Design Block

Parity Checker

Complementary
Checker

1.5%

1% 2%

1.3%

.7%

.7%

Design Block

 Failure

Logical masks Possible masks

 Figure 10. Failures due to masking errors

Legend:

tion of a strong coding scheme to obtain high fault security
for a system.

8. Conclusion

This paper has presented a technique suitable for con-
ducting fault security analysis with emphasis on integrated
circuit technologies. It is believed that this analysis pro-
cess fulfills the requirements necessary for the verification
of highly fault secure or high reliable digital designs. The
use of the VHDL simulation environment to achieve statis-
tical results has introduced automation into the analysis.

References

[1] “ Fail-Safe Design and Evaluation Techniques”, US Depart-
ment of Defence Contract #MDA904-93-C-4027 Final
Report, Research Triangle Institute, Sept. 1994.

[2] J. Arlat, M. Auguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C.
Laprie, E. Martins, and D. Powell, “Fault injection for
Dependability Validation: a Methodology and Some Appli-
cations”, IEEE Transaction on Software Engineering, Feb.
1990, pp 166-182.

[3] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J. Karlsson,
“Fault Injection into VHDL Models: The MEFISTO Tool”,
Proc. 24th International Symposium Fault-Tolerant Com-
puting, IEEE, 1994, pp 66-75.

[4] T. Delong, B. Hohnson, and J. Profeta III, “A Fault Injection
for VHDL Behavioral-Level Models”, IEEE Design and
Test of Computers, Winter 1996, pp 24-33

[5] J. Soden, C. Hawkins, and A. Miller, “Identifying Defects in
Deep-Submicron CMOS ICs”, IEEE Spectrum, Sept 1996,
pp 66-71.

[6] C. Hawkins, “IC Trends, Quality, Defects, Testing and Reli-
ability”, Internal course, Nortel, 1996.

[7] T. Nanya and T Kawamura, “A Note on Strongly Fault-
Secure Sequential Circuits,” IEEE Trans. on Computers, Vol
C-36, No. 9, Sept 1987, pp1121-1123.

[8] J.M. Coppens, “Logical Fault Analysis of Fault Secure Sys-
tems”, MSc. Thesis, Royal Military College, May 1997.

Time (Hours)

P
ro

ba
bi

lit
y

of
 F

au
lt

S
ec

ur
ity

λ= 0.001 1E-5 1E-7

Figure 11. Time analysis curves forthe parity checker

