
A CONSTRAINT DRIVEN APPROACH TO LOOP PIPELINING AND REGISTER BINDING

Bart Mesman1,2, Marino Strik1, Adwin H. Timmer1, Jef L. van Meerbergen1 and Jochen A.G. Jess2

1Philips Research Laboratories, WAY4, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
2 Section ICS, Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

.

Abstract

Code generation methods for DSP applications ar e
hampered by the combination of tight timing constraints
imposed by the performance r equirements of DSP
algorithms, and r esource constraints imposed by a
hardware ar chitecture. In this paper , we pr esent a
method for register binding and instruction scheduling
based on the exploitation and analysis of resource- and
timing constraints. The analysis identifies sequencing
constraints between operations additional to the pr ece-
dence constraints. Without the explicit modeling of these
sequencing constraints, a scheduler is often not capable
of finding a solution that satisfies the timing , resource
and register constraints. The presented approach results
in an ef ficient method of obtaining high quality
instruction schedules with low register requirements.

1 Introduction
In recent surv eys [14], the most significant trend

indicated by DSP design groups and embedded processor
users is the increasing use of application domain specific
instruction set processors (ASIPs) [7] as a k ey design
building block. ASIPs are tuned to wards specific appli-
cation domains and ha ve become popular due to their
advantageous trade-off between fle xibility and cost.
Because of the importance of time-to-mark et, software
for these ASIPs is preferably written in a high-le vel
programming language, thus requiring the use of a
compiler. In this paper we will address one of the
compiler issues that have not been addressed thoroughly
yet: the problem of register binding and scheduling under
timing constraints. The reason is that most of the
currently available software compiling techniques have
originally been de veloped for General Purpose
Processors (GPPs), which have characteristics different
from those of ASIPs:

GPPs most often have a single large register file, acces-
sible from all functional units, thus pro viding a lot of
freedom for both scheduling and re gister allocation.
ASIPs usually have a distributed register file architec-
ture (which increases access bandwidth) accompanied
by special-purpose registers. Register allocation is
severely hampered by this type of architecture.
ASIPs are mostly used for implementing DSP func-
tionality that enforce strict real-time constraints on the
schedule. GPP compilers use timing as an optimization

criterion, but do not take timing constraints as a guide-
line during scheduling.
Designing a compiler comprises making a trade-of f
between compile time and code quality. Typically, GPP
software should compile quickly and code quality is of
minor importance. For embedded software (that is, for
an ASIP) ho wever, code quality is of utmost impor-
tance, which may require intensive user interaction and
longer compile times.
As a result of these characteristics, compiling

techniques originating from the GPP w orld are less
suitable for the mapping problems of ASIP architectures.
The field of High-Le vel Synthesis [5], concerned with
generating application specific hardware, has also been
engaged in the scheduling and register binding problem.
Because the resource-constrained scheduling problem
was proven NP-complete [6], most solution approaches
from this field have chosen to maintain the following two
characteristics:

Decomposition in a scheduling and register allocation
phase. Because these phases ha ve to be ordered, the
result of the first phase is a constraint for the second
phase. A decision from the first phase may lead to an
infeasible constraint set for the second phase.
The use of heuristics in both phases.
Heuristics for register binding and operation sched-

uling are run-time ef ficient. When used in an ASIP
compiler however they are unable to cope with the inter-
actions of timing, resource, and register constraints. The
user often has to pro vide pragmas to help the scheduler
satisfy the constraints. Furthermore, in order to obtain
higher utilization rates for the resources and to satisfy the
timing constraints, software pipelining [2], also called
loop pipelining or loop folding, is required. Pre viously
[15], we showed that a heuristic lik e list scheduling for
loop pipelining is unable to satisfy the timing and
resource constraints even for simple examples.

Rau et al. [11] successfully perform re gister binding
tuned to pipelined loops. The y mention that for better
code quality “Concurrent scheduling and re gister
allocation is preferable”, but for reasons of run-time
efficiency the y solv e the problem of scheduling and
register binding in separate phases.

Some approaches have been reported that perform
scheduling (with loop pipelining) and re gister binding
simultaneously. Eichenberger et al. [12] solv e some of

the shortcomings of the approach used by Go vindarajan
et al. [13], but both try to solve the entire problem using
an ILP approach, which is computationally too expensive
for practical instances of the scheduling and re gister
allocation problem. Summarizing,

on one hand, the combination of timing, resource, and
register constraints does not describe a search space
that can be suitably traversed by simple heuristics, and
on the other hand, practical instances of the total prob-
lem are too large to be efficiently solved with ILP-based
methods.

Therefore we will try a different approach based on the
analysis of the constraints without exhaustively exploring
the search space. T immer et al. [4] successfully
performed constraint analysis on a schedule problem
using bipartite matching, but this w ork is dif ficult to
extend to register constraints. Instead, this paper extends
our previous work [15]. This work is based on finding the
longest paths in the precedence graph. Necessary timing
constraints are added as a result of resourceconflicts. In
this paper we pro vide necessary additonal timing
constraints to sequentialize value lifetimes.

In Section 2 the problem statement is gi ven, and a
global solution strategy is proposed. In Section 3.1 we
describe the method of analysis for non-folded schedules.
Section 3.2 generalizes the analysis to include loop
folding. Section 4 shows how the results of analysis are
used to determine a re gister binding and in Section 5
some results will be presented.

2 Problem statement and approach
Before the problem is stated, let us briefly discuss the

assumptions made:
All operations have been mapped to functional units.
This is often the case because instruction selection is
done prior to the scheduling phase (see for e xample
[10]), thus providing a resource binding.
All values have been mapped to register files. In ASIP-
architectures, a register file is often bound to a func-
tional unit or to a specific use, both of which are fix ed
after instruction selection. Within a re gister file there
are multiple registers however, and the assignment of
values to these registers remains to be performed.
The controller is microcoded. One consequence is that
in a folded loop a value cannot reside in a certain regis-
ter for a period longer than the initiation interval, which
is the period of initiating the schedule for a loop itera-
tion. Another restriction is that a loop-body execution is
the same for each loop index. This is not the case in e.g.
the Phideo toolset [3], where potentially better sched-
ules can be obtained.
The initiation interval II for each hierarchical le vel is
fixed prior to scheduling. Most often it is set by the
designer. Otherwise, we start with a lower bound based

on loop-carried dependencies [9] and a vailable
resources. When this II is not feasible, it is incremented
by one clock cycle. Profiling suggests that the optimal
II is usually only one or two clock cycles away from the
lower bound.
A DSP algorithm is represented as a hierarchical cyclic
directed precedence graph, as given in Figure 1. It con-
sists of a set V of vertices representing operations, and a
set of arcs, called precedence edges or
sequence edges, representing precedence relations
between operations. For let s(v) denote the start
time of operation v. An arc (vi, vj) with weight d indi-
cates that . Two dummy operations
are added to the precedence graph: a source and a sink.
The source operation is al ways the first operation to
execute, and the sink the last one. In this graph model, a
restriction of II clock cycles on the lifetime of a value x,
produced by operation A and consumed by operation B
is represented using an edge B->A with delay -II. Simi-
larly, a restriction l on the latency is modelled using an
edge from sink to source with delay equal to -l (Figure
1). With these edges the precedence graph is cyclic and
connected. Details can be found in [15].
Our general problem statement for finding a feasible

schedule and register assignment, is as follows.
Problem 1: Given a cyclic signal flow graph (SFG), a
binding of operations to functional units, a set of re-
source conflicts (including bus access, memory access,
and instruction conflicts), a binding of values to register
files, a latenc y, and an initiation interv al (II), find a
schedule and an assignment of values to registers.
Because it is difficult to make a register binding and a

schedule simultaneously, we decompose the problem in
three separate phases as depicted in Figure 2. The central
part, the schedule analyzer, generates additional prece-
dence constraints that are implied by the combination of
all constraints. The new precedence constraints are such
that the re gister binding is guaranteed: all lifetimes
between values residing in the same re gister have been
sequentialized. We ha ve thus completely replaced the

A V V

v V

s v j() s vi() d+

BA

C

G

sink

source

0

1

1

1

0

1

ED

F
1

11

u v

w

x y

z

II=2
latency=7

Resource conflicts:
A-D
B-E
C-F
D-G

Register binding:
reg1: u,x
reg2: v,y
reg3: w,z

Figure 1 Example of a precedence graph

-7

0

register-binding constraints by precedence constraints.
An advantage of this ne w approach is that in practice a
simple off-the-shelf scheduler can be used to complete
the schedule. Although the existence of a schedule is not
strictly guaranteed after the schedule analyzer, a schedule
has always been found in practice. As the scheduler and
its heuristics are not critical in this approach, we will not
focus on them in this paper.

Note that a main characteristic of our approach is that
we perform register binding prior to schedule analysis.
The reason for this is related to the mechanics of our
constraint satisfaction approach: when more constraints
are provided to the analysis, it becomes more accurate,
and a register binding provides additional constraints to
the analyzer. Furthermore, the accuracy is increased most
when the method of analysis can e xploit the interactions
between the various types of constraints. Therefore we
want to analyze these interactions in a single model, so
all the different types of constraints are integrated in one
single model (the precedence graph).

There is however a problem when the register binding
is performed prior to the schedule analyzer: because the
value lifetimes are not yet fixed, a binding decision may
be taken that inevitably yields an infeasible result. It is
therefore necessary that the schedule analyzer is able to
indicate a change in the register binding that may yield a
feasible constraint set. The problem statement for the
schedule analyzer is therefore as follows.

Problem 2: Given a c yclic SFG, a re gister binding, a
set of resource conflicts, a latency, and an initiation in-
terval, find either a partial order of operations satisfying
the register binding (if the constraint set is feasible) or a
smallest infeasible subset of register-binding decisions.

The schedule analysis is based on finding the longest
paths in the precedence graph.

Definition: A path of length d from operation vi to op-
eration vj is a chain of precedences vi -> vk ->...vl ->vj
that imply

A path in the graph thus represents a minimum timing
delay. F or e xample, in Figure 1 the path A->C->D
indicates a minimum timing delay of 2 clock c ycles
between the e xecution times of A and D. When the
minimum timing delay is not feasible as a result of a
resource conflict, a ne w timing constraint (a sequence
edge) is subsequently added to the graph model. F or
example, D cannot execute exactly 2 clock cycles (= II)

after A because the second e xecution of A w ould
coincide with the first execution of D, whereas A and D
have a resource conflict. Therefore the minimum delay
between A and D must equal three clock c ycles. In
previous work [15], we showed how this approach often
prevents a scheduler from making wrong decisions. In
this paper we wish to extend the scope of the approach to
incorporate conflicts as a result of re gister bindings, and
solve problem 2.

In Section 3 we will show how to analyze the register
binding constraints. Section 4 pro vides a method for
finding a smallest infeasible subset of re gister-binding
decisions when the binding turns out to be infeasible.

3 Register constraint analysis
3.1 Non-folded schedules

In this section we will sho w how sequence edges are
used to pro vide necessary and suf ficient timing
constraints for the scheduler to satisfy the gi ven register
binding. In the following, we will give some lemmas that
indicate when a sequence edge is necessary to solv e a
register conflict. These lemmas rely on the concept of
distance in the precedence graph.

Definition: The distance d(vi, v j) is the length of the
longest path from operation vi to operation vj.

In the following examples a path is indicated using a
dashed arc labelled with the length of the path. Sequence
edges are dotted. Standard delay (if not labelled) for a
sequence edge is zero clock cycles, for a data dependence
it is 1 clock cycle.

Lemma 1: Let v ariable v1, produced by operation p1
and consumed by c1, and variable v2, produced by op-
eration p2 and consumed by c2, reside in the same reg-
ister. If we can add a sequence edge
(c1,p2) with weight 0 without e xcluding any feasible
schedules.

Lemma 1 is illustrated in Figure 3. The v ariables v1
and v2 are bound to the same register. If there is a path of
positive length from P1 to P2, then the whole lifetime of
variable v1 has to precede the lifetime of v2. This is made
explicit by adding a sequence edge from the consumer C1
to the producer P2. A similar lemma is v alid when there
is a path between the consumers of the variables.

schedule
analyzer

register
binder

precedence
resource constraints
register binding

feasible? yesno

list of candidate changes

scheduler
timing

Figure 2 Global approach

timing

resource constraints
precedence

s v j() s vi() d+

d p1 p2,() 0

C1

P1 single reg

C2

P2
C1

P1

C2

P2

v1 v1

v2

v2

Figure 3 Lemma 1 for sequentializing variable lifetimes

When there is a path between the producer of one
variable and the consumer of the other , we can only
exclude a possibility if the delay of the path is strictly
greater than zero. Otherwise the alternative sequentiali-
zation (c2->p1 with delay 0) could still yield a feasible
schedule when P1 and C2 are scheduled in the same
clock cycle.

Lemma 2: Let v ariable v1, produced by operation p1
and consumed by c1, and variable v2, produced by op-
eration p2 and consumed by c2, reside in the same reg-
ister. If we can add a sequence edge
(c1,p2) with weight 0 without e xcluding any feasible
schedules.

Lemma 2 is illustrated in Figure 4. The overall method
of analysis is demonstrated in Figure 5. In this figure,
variables A1 and A2 reside in the same re gister, as do
values B1 and B2. Because operation 1 consumes v alue
A1 and operation 7 consumes v alue A2, the lifetime of
A1 has to precede the lifetime of A2 as a result of the
precedence 1->7. Therefore the sequence edge 1->8 is
added. Now there is a path 2->1->8 from the consumer of
B1 to the consumer of B2. The sequence edge 2->9 is
added as a result. Any schedule heuristic can now find a
schedule without violating the register binding, which is
not true if the sequence edges were not added.

3.2 Folded schedules

When schedules are not folded it is relatively simple to
avoid overlapping lifetimes of variables residing in the
same register. When loop iterations o verlap in time, we
also have to take care that the ith lifetime of value v does
not o verlap with the i+1th lifetime of v alue w. This
means we have to sequentialize value lifetimes belonging
to different loop iterations. The graph model ho wever,
makes no dif ference between operation A i and A i+1
(where Ai denotes the ith execution of A), because it has
no notion of loop iteration. This suggests that a timing
relation between Ai and B i+1 has to be translated to a
timing relation between A i and B i. This translation is
straightforward because , so that
the relation is translated to the
relation , which is equi valent
to a sequence edge B->A with delay II+d. Lemma 1 is
now easily generalized to lemma 3:

Lemma 3: Let v ariable v1, produced by operation p1
and consumed by c1, and variable v2, produced by op-
eration p2 and consumed by c2, reside in the same reg-
ister. If we can add a sequence edge
(c1,p2) with weight without excluding any feasi-
ble schedules.

Lemma 3 is illustrated in Figure 6.

Lemma 2 is generalized to lemma 4:

Lemma 4: Let v ariable v1, produced by operation p1
and consumed by c1, and variable v2, produced by op-
eration p2 and consumed by c2, reside in the same reg-

C1

P1 single reg

C2

P2
C1

P1

C2

P2

v1 v1

v2

v2

Figure 4 Lemma 2 for sequentializing variable lifetimes

d 1

d p1 c2,() 1

s Bi 1+() s Bi() II+=
s Ai() s Bi 1+() d+

s Ai() s Bi() II d+ +

0

1

5

7

8

9

A1

A2

B2

Figure 5 Example demonstrating lemmas 1 and 2

B1-B2

3

2

4

B1

0

15

7

8

9

A1
A2

B2

A1-A2

3

2

4

B1

0

1

5

7

8

9 A1

A2

B2

3

2

4

B1

10

10

10

d p1 p2,() k II
k II

C1

P1 single reg

C2

P2
C1

P1

C2

P2

v1 v1

v2

v2

Figure 6 Lemma 3 for sequentializing variable lifetimes

d k II

k II

ister. If we can add a sequence
edge (c1,p2) with weight without excluding any
feasible schedules.
In Figure 7, a partial schedule is derived using lemma

4 for the register conflicts, and a lemma from [15] for the
resource conflicts. In this figure, v alue V is communi-
cated from operation A to B, and v alue W is communi-
cated from operation C to D. W e bound V and W to the
same re gister. The deri vation of the schedule is as
follows:

from a to b: If the minimum distance of 3 clock cycles
between operations A and D is maintained in the sched-
ule, A1 would coincide with D0, while they have a re-
source conflict. Therefore the minimum distance from
A to D cannot equal 3 clock cycles, but must be at least
4 (see lemma 1 in [15]). Therefore the sequence edge
A->D is drawn.
from b to c: Value V is produced by A and consumed
by B. Value W is produced by C and consumed by D.
Because of lemma 4 and we
can add a sequence edge (B,C) with weight
without excluding any feasible schedules.

In Figure 8 a folded ASAP schedule is gi ven that
satisfies the ne wly added precedence constraints, and
thus also the resource constraints and the re gister
binding. In Figure 8, the leftmost column indicates the
time potential (schedule time modulo II), so operation C
is scheduled in clock cycle 4, D in 5 etc. Notice that the
constraints have forced a g ap of 2 clock c ycles between

operations B and C. A greedy scheduling approach does
not put gaps between operations, and would never have
found a schedule that satisfies all constraints.

4 Register binding
4.1 Initial binding

It is clear from Figure 1 that an initial register binding
has to be made to start the iteration of the schedule
analyzer, given the binding of values to register files. We
choose the binding such that each re gisterfile holds 1
register. In this w ay, all v alues bound to a re gisterfile r
need to have their lifetimes sequentialized. This choice is
made for two reasons: first, it produces the least hardware
when ASICs are concerned, and pro vides useful user
feedback when programmable platforms are concerned.
Second, the schedule analyzer produces more accurate
results when the constraints are more severe.

Starting from this minimum binding, some changes
can be made tri vially based on the hierarch y of basic
blocks. For example: if value v is produced before loop l
and consumed after loop l, v alue v occupies a re gister
during the entire execution of loop l. Because the analysis
is performed blockwise, the re gister binder reserves a
register for value v during the analysis of loop l. Another
trivial decision is based on data flo w. In the precedence
graph in Figure 9, v alues v and w cannot reside in the
same re gister because the v alue lifetimes cannot be
sequentialized.

4.2 Infeasibility analysis
When the schedule analyzer detects that the re gister

binding together with the constraint set yields an infea-
sible result, it should be able to indicate how the register
binding must be changed. More precise, we w ant the
analyzer to give a smallest infeasible subset of register-
binding decisions. That is, a subset of re gister decisions
that together cause infeasibility. Identifying such a subset
of decisions is tightly related to detecting infeasibility .
The schedule analyzer detects infeasibility based on
longest-path information in the following way: When the
longest-path algorithm finds a path from an operation v to
itself (a cycle in the precedence graph), and this path has
a positive length, the operation v is forced to e xecute
strictly before its o wn execution time, which is clearly
not possible. So a precedence c ycle of strictly positive
length indicates infeasibility.

The cause of infeasibility lies directly in the w ay that
the positive length c ycle came into e xistence. For
example, if in Figure 7 the latenc y was constrained to 6

d p1 c2,() k II 1+
k II

B

A

D

C

E

II=3
resource conflicts:

a) b) c)
sink

source

1

1

1

1

1

0

Figure 7 Derivation of a partial schedule

A-D
B-D

V

W

B

A

D

C

E

sink

source

1

1

1

1

1

0

V

W

B

A

D

C

E

sink

source

1

1

1

1

1

0

V

W

4
3

d A D,() 4 1 II 1+=
1 II 3=

A
B

0
1
2

pot

-

-

C
D

E

Figure 8 Folded ASAP-Schedule for Figure 7

B

A

v
C

D
w

Figure 9 v and w cannot be in the same register

clock cycles, there was a sequence edge from the sink to
the source with a delay of -6 clock c ycles. In Figure 7c
that would yield a positive delay cycle. Most edges in the
precedence cycle involve data precedences, one involves
the latency, and one in volves a re gister conflict. The
sequence edge B->C is a result of two components: 1) the
register conflict V-W, and 2) a path of length 4 from A to
D. The path from A to D consists of one sequence edge
that is added as a result of the resource conflict A-D and a
path A->D of length 3 that consists entirely of data prece-
dences. We can thus conclude that infeasibility is caused
as a result of the follo wing combination of factors: 1) a
register conflict V-W, 2) a resource conflict A-D, 3) the
latency constraint, and 4) data precedence. When all
constraints are fixed except for the re gister binding, we
conclude that the decision to put the v alues V and W
together in a single register is the cause of infeasibility.

Another example is the graph depicted in Figure 1.
The constraint set is infeasible with the re gister binding,
which is derived as follows. The infeasibility analysis is
graphically depicted in Figure 10. Each block represents
a path, and each downward arrow represents an inference.
The derivation is top do wn. The path D->G of length 2
(=II) and register conflict w-z lead to the sequence edge
D->F of weight II=2 as a consequence of a v ariation of
lemma 1 (the path is between the consumers of the
conflicting values). The downward arrow show that this
sequence edge is part in the path underneath. The second
block from the top indicates a path C->F of length 3.
Together with the re gister conflict a-d this yields a
sequence edge C->D of weight 2 as a result of the
consumers variation of lemma 1. In the third block the
conflict u-x is used again with the C->F of length 4 to add
the sequence edge C->D of weight 4. The block at the
bottom shows that this sequence edge causes a positi ve
precedence cycle C->D->C with a delay 4 + (-2) = 2
clock cycles. The edge D->C with delay -2 is added
because the lifetime of each v alue (in this case v alue c)
cannot exceed II clock cycles, so the consumer (D) must
execute within 2 clock cycles after the producer (C). As a
result of this positive precedence cycle we conclude that

the register binding is infeasible.
The infeasibility analysis is done in bottom-up

fashion, to identify e xactly those sequence edges and
conflicts which have contributed to the positi ve prece-
dence cycle. The combination of re gister conflicts that
yield infeasibility is identified as 1) a-d on register 1 and
2) c-f on register 3. Note that the conflict b-e on register 2
did not contrib ute to the infeasibility , and thus it is
useless to put the v alues b and e in separate re gisters.
Instead we ha ve to choose to split either re gister 1 or
register 3. Both decisions yield a feasible schedule, as
depicted in Figure 11.

In our approach a simple heuristic chooses the register
conflict to be solv ed based on the a vailability over
registers in a certain register file, the number of times the
conflict appears in the conflict-list, etc.

As the reader may ha ve noticed on the e xamples, the
infeasibility analysis requires a lot of administrati ve
bookkeeping. Almost every path constructed during the
longest path analysis has to be k ept in memory for
reference. A feasible implementation requiring a limited
amount of memory to run an implementation of our
method, is only guaranteed if the storage of a path has a
memory cost of O(1). This is possible with the use of an
adjacency matrix [16], which is based on the follo wing
fact of longest paths: if the longest path from A to C
travels through B, then the part B to C is the longest path
from B to C. As a result, the only administration
necessary for the path from A (ro w of the matrix) to C
(column of the matrix) is the first node on the path after
A. To facilitate the infeasibility analysis, we also admin-
istrate the first edge tra versed on the path A to C. Each
sequence edge on its turn has a pointer to a re gister
conflict (if there is one) and the matrix entry representing
the path that gave rise to the edge. The complexity of the
infeasibility analysis is thus bounded by O(E).

5 Results
Our implementation on a HP 9000/735 has been tested

on the inner loops from 4 dif ferent real life industrial
examples. The results are sho wn in T able 1. The fifth
column represents the number of iterations o ver the
schedule analyzer (see Figure 2) before a feasible
solution was found. The last 2 columns indicate the
schedule freedom [4] or mobility of the operations in

C D
4

-2

u-x
C D

1
F

2

u-x

D F
1

G
1

w-z

Figure 10 Infeasibility analysis for Figure 1

Infeasibility results from conflicts:
1) u-x on reg1
2) w-z on reg3

C D
2

F
2

Figure 11 The only 2 feasible schedules for Figure 1
with changes in the register binding

0
1
2
3
4
5
6

time
0
1
2
3
4
5
6

A B
C

DE
F

G

A
B

C
D

E
F

G

register 3 split up register 1 split up

terms of average number of clock cycles per operation. It
is calculated as ALAP (as late as possible) minus ASAP
(sa soon as possible), based on the precedence graph and
the latency constraint. The 7th column indicates the
mobility before the analysis, the last column after
analysis (what is left for the scheduler to fill in). W ith
respect to the numbers in Table 1 no camparison could be
made to other approaches, because the re gister allocater
and the schedulers available to us (several list schedulers)
are unable to find any solution for the given constraints.

The first experiment concerns an IIR filter of 23 opera-
tions, including fetching the coefficients and data from
memory. The minimum latency is 10 clock cycles, which
equals the latenc y constraint. The other e xperiments
concern FFT applications, the largest of which holds 81
operations. Note in Table 1 that the run-times are mainly
determined by the number of iterations over the schedule
analyzer. The number of iterations is a measure of the
difficulty of finding a register binding because it reflects
the number of changes made to the original binding in
order to get a feasible schedule. In these experiments, the
register binding provided by our method improved upon a
hand-made schedule. Analyses of the minimal v alue
lifetimes suggested that little or no improvement could be
made on on the generated register binding.

The mobility is decreased by a factor ranging from 3.6
(Rad4) to 13.2 (FFTb) as a result of the schedule
analysis. Because this decrease of mobility is due to the
constraints, it is a measure for the analyzers’ capability of
directing the scheduler and pre venting it from making
schedule decisions that violate the constraints.

6 Conclusions and further research
In this paper, we presented an approach for re gister

binding and scheduling in the context of loop pipelining,
based on the analysis of precedence, timing and resource
constraints. By making all constraints explicit in a graph
model and calculating the longest paths, we are able to
see the interaction between the different constraints, and
compute the effect on the schedule freedom (mobility)
available to a scheduler . When the combination of
constraints and the re gister binding are infeasible, an
efficient infeasibility analyzer is able to indicate a change
in the binding that is necessary to obtain a feasible
schedule. The results in Section 5 show that our method
is able to find a register binding and a pipelined schedule

in short run times for industrially rele vant designs. We
also showed that the obtained reduction in mobility really
prevents a greedy scheduler from making a wrong
decision. We conclude that analysis tools such as our
implementation are needed in order to obtain a feasible
schedule when f acing resource constraints, register
constraints, and tight timing constraints.

Further research will focus on inte grating speculative
execution in the model.

References
[1] P.G. Paulin and J.P. Knight, “Force-directed scheduling for
the behavioural sythesis of ASIC’s”, IEEE Transactions on
Computer-Aided Design, pp. 680-685, June 1989
[2] G. Goossens, J. V andewalle and H. De Man, “Loop
optimization in register-transfer scheduling for DSP-systems”,
Proc. 26th DAC, pp. 826-831, 1989
[3] W.F.J Verhaegh, P.E.R. Lippens, E.H.L. Aarts and J.L. van
Meerbergen,“Multidimensional periodic scheduling: A solution
approach”, Proc. ED&TC 1997, pp. 468-474, March 1997
[4] A.H. T immer, M.T .J. Strik, J.L. v an Meerbergen and
J.A.G. Jess, “Conflict modelling and instruction scheduling in
code generation for in-house DSP cores”, Proc. 32nd DAC
[5] M. C.SJ. McF arland, A.C. P arker and P . Camposano,
“Tutorial on High-level synthesis”, Proc. 25th DAC, pp. 330-
336, 1988
[6] M.R. Garey, D.S. Johnson, “Computers and intractability:
A guide to the theory of NP-completeness”, Freeman, 1979
[7] R. Leupers, W. Schenk and P . Marwedel, “Microcode
generation for flexible parallel architectures”, Proc. Working
Conf. Parallel Archit. and Compil. Techn., North-Holland, 1994
[8] D.C. Ku and G. De Micheli, “High-le vel synthesis of
ASICs under timing and synchronization constraints“, Kluwer
Academic Publishers, 1992.
[9] R. Reiter, “Scheduling parallel computation”, Journal of
the ACM, vol.15, pp. 590-599, 1968
[10] C.Liem, T.May and P . P aulin, “Instruction-set matching
and selection for DSP and ASIP code generation”, Proc.
ED&TC pp. 31-37, Paris, Feb. 1994
[11] B.R. Rau, M. Lee, P .P. T irumalai and M.S. Schlansker,
“Register allocation for software pipelined loops”, Proc. of the
SIGPLAN ‘92 conf. on Programming language design and
implementation, pp. 283-299, June 1992
[12] A.E. Eichenberger, E.S. Da vidson and S.G. Abraham,
“Opt imim modulo schedu les fo r min imum re g i s t e r
requirements”, Proc. of the int. conf. on Supercomputing, pp.
31-40, Barcelona, Spain, July 3-7 1995
[13] R. Govindarajan, E.R. Altman, and G.R. Gao, “Minimizing
register requirements under resource-constrained rate-optimal
software pipelining”, Proc. of the 27th int. Symp. on
Microarchitecture, pp. 85-94, November 1994
[14] P.G. Paulin, C. Liem, T.C. May, and S. Sutarw ala, “DSP
design tool requirements for embedded systems: a
telecommunications industrial perspective”, J. VLSI Signal
Processing, Vol.9, No.1, 1995
[15] B. Mesman, M.T .J. Strik, A.H. T immer, J.L. v an
Meerbergen, and J.A.G. Jess, “Constraint analysis for DSP code
generation”, Proc. ISSS’97
[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest, “Introduction to
Algorithms”, MIT Press 1990

Table 1 Results of experiments

exper-
iment

oper-
ations II la-

tency
iter-
ations

Run-
time

mobility
before

analysis

mobility
after

analysis

IIR 23 6 10 3 0.2 s 2.70 0.13

FFTa 40 4 13 11 17 s 4.46 0.46

FFTb 60 8 18 20 25 s 6.85 0.52

Rad4 81 4 11 1 0.8 s 4.93 1.38

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

