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Abstract
Common approaches to hardware implementation of

networking components start at the VHDL level and are
based on the creation of regression test benches to perform
simulative validation of functionality. The time needed to
develop test benches has proven to be a significant bottle-
neck with respect to time-to-market requirements. In this
paper, we describe the coupling of a telecommunication
network simulator with a VHDL simulator and a hardware
test board. This co-verification approach enables the de-
signer of hardware for networking components to verify
the functional correctness of a device under test against
the corresponding algorithmic description and to perform
functional chip verification by reusing test benches from a
higher level of abstraction.

1 Introduction
One of the main challenges of future design practice is

the integration of point tools that address different areas of
hardware and software design. Recent studies have shown
that the digital system design industry loses approximately
$4.5 billion each year in nonproductive time due to a lack
of interoperable tools [1]. Common approaches for vali-
dation of VHDL-based hardware models [2] and the final
hardware implementation are based on the creation of re-
gression test benches to perform verification of timing and
functionality by simulation [3]. Although formal verifica-
tion methods evolve [4] [5] that can symbolically prove the
correctness of an implementation, there is still a problem
in state explosion for complex systems. Thus simulation
is still the traditional way of verifying implementations of
models, both at the system level and at the implementa-
tion level. The time needed to develop test benches for
both, VHDL simulations and functional hardware test has
proven to be a significant bottleneck (up to 50% of the de-
sign time). The increase in test vector complexity about
100x every year compared to an increase of design com-
plexity about 4x over the same period will further aggra-
vate the problem of test vector generation and evaluation.
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The complexity inherent in telecommunication systems
requires the design and evaluation of system aspects at dif-
ferent levels of abstraction. Furthermore, the hardware
and software which make up the system have to be de-
signed concurrently [6]. Yielding high performance of
ATM equipment requires to realize most functions op-
erating on the ATM cell stream in dedicated hardware,
e.g. ASIC or FPGA. ATM is the application that drives
the ASIC technology as well as state-of-the-art design and
verification methodologies to its limits [7]. This is because
HW functionality, that includes the largest part of ATM
traffic management and physical layer tasks, is interact-
ing with the complexity of embedded control software, that
implements higher-layer functionality, such as call admis-
sion control agents and signaling protocols. Furthermore,
the HW functionality itself is distributed over a number of
hardware devices. The verification over several layers of
functionality and different time scales is one of the great-
est challenges for ATM hardware designers and has to be
performed at each level of model abstraction [8]. In or-
der to overcome the existing verification gap for hardware
designs in the networking domain it becomes necessary to
provide a link between state-of-the art network simulators,
HDL simulation tools and the hardware prototype [9]. The
main motivation is to model and reuse test benches at a
higher level of abstraction in order to cope with the increas-
ing test bench complexity.

This paper is organized as follows. In section 2 an ap-
proach for functional verification of ATM hardware against
algorithmic behavioral descriptions in a telecommunica-
tion network simulator is presented. Section 3 describes
the coupling of the network simulator OPNET from Mil3
with Synopsys’ VHDL System Simulator (VSS) and a
hardware test board that connects the prototype hardware.
Major points in this section are the provisioning of abstrac-
tion interfaces and proper mechanisms for simulator syn-
chronization. Finally, we discuss the implementation and
present our conclusion.

2 ATM Co-Verification Environment
Figure 1 illustrates the co-verification environment for

ATM hardware design. State-of-the-art network simu-
lation tools provide means for modeling and simulating
the operations of complete networks [10]. Tools that
fall into this category include the Block Oriented Net-
work Simulator (BONeSTM) by Cadence Design Systems,
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Figure 1: Environment for System-Level Co-Verification

SES/Workbench by Scientific and Engineering Software
and OPNET Modeler from MIL3. These tools are opti-
mized to support the modeling of traffic sources [11] and
the performance evaluation of abstracted higher-layer pro-
tocols and distributed communication devices. We chose
OPNET because of its ATM model suite and library of
traffic models. In this environment the algorithm design
is carried out by building system level descriptions at dif-
ferent hierachical levels (called network-, node and pro-
cess domains). The network domain specifies the topol-
ogy of a networking architecture in terms of high-level de-
vices (called nodes) such as switches and traffic sources,
and communication links between them. Within the node
domain each node’s capability is described in terms of pro-
cessing, queueing and communication interfaces. The pro-
cess domain specifies the behavior of processing nodes as
communicating extended FSMs. System behavior and per-
formance can be analyzed by means of discrete event simu-
lations. Effective traffic modeling [11] for system analysis
has become crucial for the design process of networking
hardware from algorithm design to implementation. Be-
cause there exists strong dependencies between decisions
at the system level and hardware costs of their actual imple-
mentation there is no one way (top-down) transition from
higher to lower levels of abstraction. Since both, algorithm
and system architecture affect end-to-end performance of
user traffic they can not be considered separately and have
to be analyzed within the network context. Therefore, al-
gorithms and architecture have to be optimized for cost,
size, complexity and reliability within an interactive and
iterative design process.

VHDL (VHSIC Hardware Description Language) is
used for the hardware design at the behavioral and RT-
level. Functional verification of VHDL models is per-
formed using Synopsys’ VHDL System Simulator (VSS).

In order to preserve consistency between the more ab-
stract system level description and the HDL-based imple-
mentation we are developing CASTANET, aConfigurable
ATM Simulation TestbenchApplying Network Simula-
tions. CASTANET establishes a coupling of the network
simulator OPNET from Mil3 to the VSS and to a hard-
ware test board for co-verification. In general, our interface
models could be coupled to any discrete event based net-
work simulator. The OPNET-VHDL simulator coupling
enables the designer of hardware for telecommunication
networking components to verify the functional correct-
ness of a VHDL description against the corresponding al-
gorithm reference model in OPNET that has been used to
evaluate the performance of the system. Functional chip
verification can be performed by interfacing to a hardware
test board that allows to stimulate the hardware under test
with real-time test patterns. These can be either stochas-
tic traffic models or simulated real-world traces, for ex-
ample MPEG traces in order to investigate the hardware’s
behavior under various environmental scenarios. Another
category of stimuli is targeted towards testing of hard-
ware properties through customized or standardized con-
formance test vectors.

This approach significantly reduces the time to con-
struct test benches because it reuses existing test patterns
and model descriptions that are available in the network
simulation environment. In addition to enabling the model-
ing of software components at a higher algorithmic level in
C or C++, it descreases simulation time compared to pure
VHDL-based test benches. For example, the simulation
run time for processing 10:000 ATM cells arriving at an
ATM switch consisting of four ports modules, one global
control unit on an UltraSparc (Solaris2.5) is approx. 30
seconds. This is equivalent to approx. 8.300 clock cycles
per second. Taking the simulation time needed to simu-
late solely an RTL representation of the global control unit
this results in approx. 300 clock-cycles per second. The
proposed co-verification environment offers the following
advantages:

� Functional verification of VHDL models and hard-
ware in the system environment by reusing existing
test patterns and traffic models from network simula-
tions.

� Access to powerful analysis capabilities available in
existing network simulation tools for the representa-
tion of errors and results, and in HDL simulators for
depicting waveforms.

� Ability to model, simulate and analyze the system en-
vironment at the most appropriate level of abstraction.

� Support of iterations between system and
implementation-level design tools to explore the
design trade-offs.

3 Functional Hardware Verification
Figure 2 shows the concept and realisation of CAS-

TANET. The coupling will be done by a special OPNET
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Figure 2: Functional Verification using Co-Simulation and
Hardware in the Simulation Loop

interface model that steers either a VHDL simulation or
the hardware test board with test-patterns from the network
simulation. The CASTANET interface process in OPNET
manages the proper initialization of the VHDL simulator
and the hardware test board and handles the message ex-
change via standard UNIX inter process communication
(IPC) and SCSI-bus respectively. For this task it uses API
(application programming interface) functions of the CAS-
TANET library. In the VSS simulation a C-language based
co-simulation entity [12] is instantiated, that receives mes-
sages from OPNET-side interface process. It also performs
signal conditioning, e.g. mapping a data structure to bit
or word-level signal streams and generation of additional
control signals. The responses from the device under test
(DUT) are sent back to the CASTANET interface node and
can be compared to the reference model’s responses at the
system level. Of course, it is possible to run the simulation
in the background while dumping the output data into a file
and to re-run previously generated test vectors.

One can identify three major points that needs to be ad-
dressed for the realization of the proposed co-verification
approach. These are

� the synchronization of simulators running in parallel,

� the conversion of high-level abstract information
flows to bit-level signal representations in VHDL-
based hardware models, and

� the scheduling of hardware test-cycles to the hardware
device under test taking into account a proper map-
ping of bit-level signals to the HW device pins.

3.1 Synchronization of OPNET and VHDL Sim-
ulators

The simultaneous execution of OPNET with a VHDL
simulator is a special case of parallel distributed discrete-
event (DE) simulation [13] [14]. A difficult problem in

distributed DE simulations is the avoidance of deadlock.
DE simulators manages their events via an event list that
represents the event distribution over time and maintains
a proper time-ordering. Events are executed in a mono-
tone nondecreasing order of time stamps that are associ-
ated with each event. Thus, they may be generated for any
future time, or the current time but never for past times. Be-
cause both simulators are event-driven and therefore both
have a notion of time, one has to ensure that neither of them
produce events in the past of the other simulator’s time ba-
sis, see for example figure 3. Synchronization mechanisms
for distributed computation or simulation can be classified
in conservativeandoptimisticapproaches. In the class of
conservative methods [13] the independent advancement
of the local clock is prohibited. Advancement of the lo-
cal clock is granted only when it is ensured that the dis-
tributed computation is globally correct up to that point in
time. Optimistic methods, on the other hand, do not ex-
clude causality errors. Local time is allowed to advance
independently until a causality error occurs. This implies
that a simulator has to be resynchronized leading to a roll-
back of the simulation time [15]. Despite the fact that op-
timistic methods potentially can achieve a larger speed-up,
the memory requirements for the storage of the simulator
turns out to be very large.
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Figure 3: Scheduling of events in a parallel DE simulation

Therefore we selected a conservative synchronization
protocol for the communication between OPNET and the
VHDL simulator that is based on the computation of tim-
ing windows. This synchronization protocol is tailored to
the application-specific co-simulation problem. Commu-
nication between both simulators is based on the exchange
of time-stamped messages updating the receiving simula-
tor with the current simulation time of the originator. For
each input message type the co-simulation entity maintains
a time-stamped message queueI j . Furthermore, for each
message type the maximum number of clock cyclesδ j that
it takes to process the message has to be specified by the
user. Because events (messages) for different input mes-
sage queues arrive sequentially, the co-simulation entity
has to ensure that no other VHDL port receives data before
advancing its simulation time. Upon receipt of a message
with a time stamptk for input queueI j andtk > tcur (tcur -



current simulated time) the VHDL simulator is allowed to
process all events with a time stamp smaller thantk, but not
equal. Following, the current simulation time is updated to
tcur = tk. The message at queueI j remains queued until
all other input queues received messages with time stamp
tk or an event with a greater time stamp arrives at an arbi-
trary message queue. In the first case the local simulation
time is advanced by the minimum of each message type’s
processing delayδ j . Applying this strategy the simulated
time of the VHDL simulator always lags behind OPNET’s
simulated time. The use of this specific conservative syn-
chronization protocol resolves the possibility of deadlock.

3.2 Abstraction Interfaces
An important point which needs to be considered for

the co-simulation of system level network simulators and
implementation level HW simulators is the different gran-
ularity of time scales. Time units in network simulations
can be derived from cell time, whereas the time unit in HW
systems is fixed by the HW clock steering bit-level opera-
tions. Considering Asynchronous Transfer Mode (ATM)
as an example application, one can identify time-periods
where idle cells are inserted into the ATM cell (one cell
comprises 53 octets) stream. This means that there is a
ratio of 1:100 for a simulation time step in OPNET and
VSS. Incorporating the HW-clock into the OPNET inter-
face model would unnecessarily slow down the system-
level simulation. Therefore, intelligent abstraction inter-
faces are needed that cope with the different granularity of
time scales.
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Figure 4: Mapping of ATM packets to VHDL ports

In a network simulator processes communicate through
the exchange of abstracted information described for ex-
ample as C-structures. The communication is instanta-
neous, e.g. when an event occurs the complete informa-
tion is available for further processing. At the implemen-
tation level communication interfaces are represented by
their structure, e.g. number of signals and pins, and their
timing behavior, e.g. number of clock cycles to process in-
put or output values and additional handshake protocols.
As an example, the mapping of an OPNET packet that

arrives on the input communication channel of the CAS-
TANET interface process to a 8-bit wide VHDL port signal
is illustrated in figure 4. The complete ATM cell comprises
53 bytes, therefore it takes 53 clock cycles within the hard-
ware simulator to read the cell. Additionally, the interface
model generates control signals such as a cell synchroniza-
tion signal that indicates the start of a new cell. The user
has to specify how high-level protocol data units and ab-
stract data types has to be mapped to bit-level signals us-
ing appropriate conversion functions that are provided in
the CASTANET library.

3.3 Functional Chip Verification
As long as one does not run the hardware at the targeted

speed its behaviour can not be fully verified, because tim-
ing violations are not likely to be detected. Thereforereal-
time verificationis essential before integrating components
and subsystems into the target system. State of the art is to
build up dedicated hardware test benches, since there is no
idea of in-field debugging, because of the complexity of
the verification task. This is a very error prone procedure
and increases the effort spent on a design in terms of the
time needed for constructing and validating the hardware
test bench.

In [16] a configurable and flexible hardware test board
has been presented allowing to run consecutive test cycles
at real-time speed. The hardware test board consists of a
control part and multiple memory units for intermediate
data storage of test vector. It provides a bit stream interface
and a clock interface to which the hardware device under
test is connected, see figure 2. The bit stream interface con-
sists of 128 I/O-pins, where each of 16 byte lanes is con-
figurable in direction and speed. In the current implemen-
tation the maximum board clock is 20 MHz. The real-time
verification process consists of repeatedhardware activity
cycles, interrupted by asoftware activity cycle, in which the
hardware is stopped immediately. Onetest cyclecontains
a software activity cycles to generate stimuli, configure the
board and store stimuli to the hardware test board. This is
followed by a hardware activity cycles to run the hardware
under test and a software activity cycle to read the results
back to the simulator. Test cycles run repeatedly until the
simulation is finished.

The hardware that is hooked to the hardware test board
is connected to the OPNET simulation via a CASTANET
interface model that is configurable with repect to the clock
gating factor and the duration of one hardware test cy-
cle. The current memory configuration of the hardware test
board supports test cylce durations between 1 and 32.000
clock cycles. The hardware test board allows to interface
unidirectional hardware ports as well as bidirectional ports,
e.g. µP or bus interfaces. Since bit-level data flows are
generated at an unidirectional single source, bus interfaces
need to be modeled by three bit-level signals – input, out-
put and a control signal indicating the direction through
predefined read/write flags. The duration of each hardware
test cycle is automatically calculated from the actual val-
ues at the control ports. The signal mapping of bit-level
signals to the hardware test board pins is specified in a con-
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figuration data set, see figure 5. The configuration data set
collects the information in terms of byte lane ID, start bit
position and number of bits, provided by the user to au-
tomatically establish the input port mapping, output port
mapping, I/O port mapping and the associated control port
mapping.

4 Summary and Conclusions
We have presented a co-verification environment for

ATM hardware design. The main motivation is to model
and reuse test benches at a higher level of abstraction to
cope with the increasing test bench complexity. Our ap-
proach is to provide a link between a state-of-the-art net-
work simulation tool and hardware simulation tools. For
this task we are developing CASTANET, aConfigurable
ATM Simulation TestbenchApplying Network Simula-
tions. It implements a simulator coupling between OPNET
from Mil3 and Synopsys’ VHDL System Simulator (VSS)
and a dedicated hardware test board respectively. Major
tasks are the provisioning of synchronization protocols be-
tween parallel simulators and the mapping of high-level ab-
stract information flows to bit-level signals and hardware
device pins. With these communication and synchroniza-
tion mechanisms a wide range of applications, especially in
ATM traffic management sector, can be covered. We have
used CASTANET for the functional verification of an ATM
accounting unit. To support the development of interface

modules for OPNET and VHDL simulators in the future
proper interface description needs to be developed. Based
on this description, core interface models can be automat-
ically generated. Building blocks will be taken from a li-
brary of generic protocol classes and conversion routines.
Because of the time scale problem, event-driven VHDL-
simulators are obviously a bottlenck in the co-verification
process. Moreover, the number of events that event-driven
simulators have to evaluate is an order of magnitude higher
compared to the system-level simulation in OPNET. Thus,
the integration of cycle-based simulation techniques is re-
quired, as well the development of design methodologies
that make cycle-accurate modeling sufficient.
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