
Exploiting Symbolic Techniques for Partial Scan Flip Flop Selection

F. Corno, P. Prinetto, M. Sonza Reorda, M. Violante

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy

Abstract

Partial Scan techniques have been widely accepted
as an effective solution to improve sequential ATPG
performance while keeping acceptable area and per-
formance overheads. Several techniques for flip-flop
selection based on structural analysis have been pre-
sented in the literature. In this paper, we first propose a
new testability measure based on the analysis of the
circuit State Transition Graph through symbolic tech-
niques. We then describe a scan flip flop selection algo-
rithm exploiting this measure. We resort to the identifi-
cation of several circuit macros to address large se-
quential circuits. When compared to other techniques,
our approach shows good results, especially when it is
used to optimize a set of flip-flops previously selected by
means of structural analysis.

1. Introduction

The computational effort required to compute a set
of test vectors for highly sequential large circuits is
often prohibitive. Several Design for Testability (DfT)
techniques have been developed to ease the test genera-
tion process [ABFr90]. A common approach consists in
transforming the circuit by resorting to full scan. How-
ever, area and performance overhead required by full
scan is often unacceptable; designers must balance the
testability versus area and performance trade-off by
transforming a subset of the circuit flip-flops, only,
accounting to the partial scan technique. The problem is
thus to select the minimum number of flip-flops to scan
giving the maximum testability enhancement. Several
algorithms have been proposed.

In [ChPa90] the problem is formulated and solved as
an optimization one using three testability criteria. The
first criterion deals both with the minimization of the
number of cycles in the S-graph of the circuit and with
the reduction of the circuit sequential depth. The second
is based on the SCOAP controllability/observability
measures, while the third deals with the reduction of the
test sequence length. Results show a significant im-

provement in fault coverage when the first or the second
testability measure are used.

In [HBFu96] Fucks et al. suggest to transform the
flip-flops that are either difficult or impossible to set to
ease the state justification operation. The methodology
suggests to add a primary output for each flip-flop, then
to perform a test generation process. Untestable faults
on the new POs identify unsettable flip-flops, while
aborted faults on the new POs point out those flip-flops
difficult to set. Results show that the identification of
states difficult to reach can effectively drive the selec-
tion of flip-flops for scan insertion.

In [BoFu96] the goal is to identify which transitions
can be added to the State Transition Graph (STG) of the
circuit, in order to traverse more easily the states of the
machine. The methodology requires to run the ATPG
and to observe which faults cannot be detected due to
the inability of either propagating a fault effect to a
primary output or justifying the desired state. A transi-
tion (called pseudo transition) from a reachable state to
the nearest desired reachable states is then added to the
STG. The flip-flops to scan are thus the ones needed to
obtain the desired pseudo transitions. Results show that
these techniques allow a good improvement both in
fault coverage and in test generation time.

Another approach that relies on information gathered
during the test generation process is presented in
[XVFP96] and [XiPa96]. A testability measure based
on the density of encoding is used to select an initial
solution, and a variety of techniques is then used to
select an optimal set of flip-flops to scan. The rationale
behind these papers is to selectively break the cycles in
the S-graph using circuit state information. Experimen-
tal results show the feasibility of the approach and that
significant reductions in the number of flip-flops to scan
can be achieved.

For a more comprehensive survey on partial scan
techniques, problems, and solutions, the reader may
refer to a special issue of the JETTA journal [Jett95].

In this paper we present a new testability measure
and a new algorithm to solve the problem of flip-flop
selection for partial scan. The main contribution of this
work consists in a new approach to flip-flop selection

that does not rely on information gathered during the
ATPG process. We analyze how a scanned flip-flop
affects the circuit behavior by working on the State
Transition Graph of the circuit (STG) represented by
means of BDDs [Brya92]. The testability measure is
based on the notion of state distribution of a STG. Sev-
eral techniques to complete an approximate STG tra-
versal are presented to deal with large sequential cir-
cuits. By resorting to our technique, we expect to select
a set of flip-flops for scan insertion able to reduce the
time spent during the test generation and to increase the
fault coverage. Experimental results show the effective-
ness of our approach and the ability to obtain good
results both in terms of fault coverage and ATPG time.

We present our new testability measure in section 2
and the flip-flop selection algorithm in section 3. Sec-
tion 4 describes how our approach can be extended to
deal with large sequential circuits, while section 5 re-
ports some experimental results to demonstrate the
feasibility of our approach. Finally, we draw some con-
clusions in section 6.

2. STG Testability Measure

Great efforts are spent by test generation programs to
traverse the State Transition Graph of highly sequential
circuits. For instance, in HITEC [NiPa91] state justifi-
cation is a very time consuming operation: a significant
amount of time is used by the ATPG algorithm while
trying to identify an input sequence able to transfer the
circuit to a desired state from which a propagation path
exists. If the desired state is an invalid one a significant
amount of time is wasted to detect such a condition.
Furthermore, in deeply sequential circuits, the amount
of time required to justify a state can exceed the avail-
able time limit. In such a situation the ATPG produces a
relatively high number of aborted faults.

The justification process can be viewed as a search
on the circuit STG to find a path from an initial state,
either the unknown or the reset one, to the desired state.
Through the use of scan, we control the value loaded in
a flip-flop, so we are able to force a state transition by
applying an input vector. Therefore, by scanning a flip-
flop, we add some new transitions to the circuit STG
and we obtain an Extended State Transition Graph (E-
STG) which, due to the increased connectivity, is easier
to traverse and has a smaller sequential depth.

Working on the E-STG, the justification algorithm
can choose among more paths to drive the circuit from
the initial state to the desired state. As a result, the
ATPG process is simplified. Furthermore, a circuit
having a small sequential depth requires the ATPG to
spend less time to justify any valid state, and the num-
ber of aborted faults is reduced. It is also important to

consider that a reduced sequential depth allows the
ATPG to spend less time in trying to justify an invalid
state. The best flip-flops to scan are thus the ones that
allow the APTG to easily reach all the desired states
and that reduce the circuit sequential depth. Two results
are expected: the reduction of the CPU time to perform
the test generation, and an increased fault coverage.
Other papers use similar considerations to propose
alternative DfT strategies [HsPa95].

In order to select the flip-flops to scan using these
concepts, a new testability measure able to address both
the number of reachable states and the circuit sequential
depth is defined. We first give the definition of state
distribution of a State Transition Graph. Intuitively, it
measures the average number of STG levels that must
be explored to reach all the reachable states. It is a real
number defined as:

SD
l RS

RS

l
l

l
l

=
⋅∑

∑
(1)

where RSl is the number of states having minimum
distance l from the initial state. In (1) we start comput-
ing the reachable states from the reset state. The literal l
measures the STG level currently explored, the distance
being measured in clock cycles. The state distribution
SDg for the unmodified circuit is first computed, where
no transformation is performed over its memory ele-
ments during the computation.

In our testability analysis, we assume that a scanned
flip-flop is fully controllable from a PI, and fully ob-
servable at a PO. We define SDi as the state distribution
of a circuit in which the flip-flop i is scanned. It is com-
puted on the corresponding E-STG. Therefore, by com-
paring SDg and SDi we are able to evaluate the effect of
a scan flip-flop insertion over the circuit behavior.

The weight of the flip-flop i is thus defined as:

W
SD SD

SDi
g i

g

=
−

(2)

This measure allows to relate the behavior of a cir-
cuit where a single flip-flop is scanned with the behav-
ior of the unmodified circuit. A flip-flop having a high
value for Wi allows to reduce the circuit sequential
depth and to increase the probability for the ATPG to
reach all the desired states. Conversely, a flip-flop hav-
ing a low value for Wi is not well suited for scan inser-
tion.

It is important to note that, unlike the majority of the
other approaches ([XiPa96], [XVFP96] and [ChPa90]),
we work on the circuit behavior represented by the
STG, only.

As an example, Figure 1 represents the State Transi-
tion Graph of a circuit having two flip-flops. The STG
(a) in Figure 1 has four reachable states and three lev-
els; by applying (1) we obtain that SDg = 2. Suppose
that modifying the circuit in order to scan the flip-flip A
gives the STG (b): the value of SDA is 1.75; on the other
side, scanning the flip-flop B the STG (c) is obtained,
having SDB equal to 2. The weight of the flip-flop A is
WA=0.125 while the B one is WB=0, as stated by (2).
This result means that by scanning the flip-flop A we
obtain a global improvement of the circuit testability
while by scanning the flip-flop B no benefits are ex-
pected.

1

3

4

2

1

3

4

2

1

3

4

2

(a) (b) (c)

A B

Figure 1: An example of State Transition Graph

3. Selection Algorithm

The testability measure defined so far assumes the
availability of the circuit State Transition Graph. Since
we are working on a gate-level description, we have to
build the STG starting from the netlist. A first feasible
approach is to obtain the valid states of the machine by
means of logic simulation, as done in [XiPa96]. This
approach is not exact because it depends both on the
time spent for the simulation and on the input pattern
distribution. As a result, a significant amount of simu-
lation efforts can be required to traverse all the valid
states of a large sequential circuit.

To apply our methodology we should also be able to
evaluate equation (1) several times: once for the un-
modified circuit and once for every E-STG that can be
obtained from the original State Transition Graph by
transforming each flip-flop. This requires to modify the
circuit, to rebuild the STG and to compute the required
value.

To efficiently perform such operations we resort to
BDDs [Brya92] and symbolic traversal techniques. The
circuit is modeled as a Finite State Machine, and is
represented by the Boolean functions δ and λ. Function
δ computes the next state y from the current state s and
the current input x: y = δ(s, x); function λ computes the
output z starting from the same information: z = λ(s, x).
The techniques resort to the adoption of characteristic

functions [Brya92] to represent sets of inputs χX(x), set
of states χS(s), the state transition relation TR(s, y), and
the output function χλ(z, x, y).

The transition relation is defined as follows:

TR s y x s x yj j
j

(,) (,)= ∃ ⊕

∏δ (3)

It is true for every couple (s,y) for which an input x
exists that satisfies y=δ(s, x), i.e., whenever y is a valid
successor to s under some input value x. The algorithm
has to compute the set of reachable states, thus it works
on the TR function, only. We save memory space by not
representing the λ function.

// onset(c): size of the on-set
// of characteristic function

compute_SD(i)
{
 TR = build_TR(); // eq.(3)
 if(i != NULL)
 TR = ∃si ∃yi (TR); //scan FF
 l = 0; // seq. depth
 Ni = 0; // sum in eq.(1)
 end = FALSE;
 current = ResetState;
 reached = ResetState;
 do {
 new = ∃s(current ⋅ TR(s , y));
 current = new-reached;
 if(current == 0)
 end = TRUE;
 else
 {
 l++;
 Ni += l*onset(current);
 reached = reached+current;
 }
 } while(end != TRUE);
 return(Ni/onset(reached));
}

Figure 2: Algorithm to compute the reachable states

Figure 2 reports the algorithm used to compute the
reachable states of the circuit; two aspects deserve
greater detail: how the required circuit transformations
are performed and how the transition relation is com-
puted.

The circuit transformations can be easily performed
by means of BDD operators. A scanned flip-flop i is
functionally equivalent to a pair composed of a PI and a

PO. In terms of BDDs this can be computed by apply-
ing the existential quantification operator to the transi-
tion relation TR(s,y) with respect to the variables si and
yi:

()TR s y s y TR s yi i′ = ∃ ∃(,) (,) (4)

To describe how the transition relation is computed,
let us consider the following expression:

χ δδ (, ,) (,)s x y s x yj j
j

= ⊕∏ (5)

The number of BDD variables required to compute
(5) is equal to twice the number of flip-flops plus the
number of inputs. Whenever this value exceeds a
threshold related to the available memory, the resulting
BDD cannot be held in memory; as a result, equation
(5) cannot be computed. Two solutions can be devised:
we can reduce the number of state variables, s and y, or
we can reduce the number of input variables, x. The
former solution resorts to the decomposition of the
circuit in macros and is described in more detail in
section 4. The latter solution consists in ignoring the
contribution of some input variables when computing
equation (5). This can be done by defining an approxi-
mated next state function δ* that takes into account the
first L input variables, only:

()δ δj h L h js x x s x* (,) (,)= ∃ ≥ (6)

The number of variables required to represent equa-
tion (6) is thus equal to the number of flip-flops plus L,
i.e., the maximum number of inputs taken into account.
The value of L is empirically chosen, according to the
available memory. The new state transition relation,
TR*(s,y), is defined as follows:

()TR s y x s x yj j
j

* *(,) (,)= ∃ ⊕∏ δ (7)

Such an approach allows us to keep reasonably low
the BDD size but introduces some approximations: by
removing an input variable we may add transitions in
the STG. As a result, the number of reachable states
computed by our algorithm is larger than or equal to the
one computed over the unmodified STG. This approxi-
mation has minor effects over the flip-flop selection
process because Wi is computed in (2) as a relative
number over SDg and SDi, both affected by the same
over-estimation of the reachable states.

The algorithm used to identify the best flip-flops to
scan, described in Figure 3, performs its task in three
steps: it computes the state distribution for the unmodi-
fied circuit, then computes the state distributions of the
STGs obtained by individually transforming each flip-
flop in a PI; finally, it computes the flip-flop weights
using (2). The last operation performed is the sorting of
the weight array in decreasing weight order. The first

flip-flops in such a ranking, having the higher weights,
are the ones best suited for scan.

weight_FFs_to_scan()
{

SDg = compute_SD(NULL);
for(every FF i)
{

SDi = compute_SD(i);
W[i] = (SDg-SDi)/SDg;

}
sort(W);

}

Figure 3: Algorithm to compute the FF weights

4. Addressing larger circuits

In this section an approach to address large sequen-
tial circuits is described. To apply symbolic functions to
large sequential circuits in section 4.1 we propose an
approach based on the identification of some macros
inside the circuit: several macros are used to represent
the connected components of a circuit, then the algo-
rithm in Figure 3 is applied to each macro. The adoption
of several macros for enabling BDDs to be used on
large circuit is also found in [CGPS95], where this
technique was used to enhance the performance of
topological ATPG. In section 4.2, we describe how to
use structural information to identify which circuit flip-
flops should never be selected for scan insertion, then
we show how to apply our symbolic approach to iden-
tify which of the remaining flip-flops are the ones best
suited for scan.

4.1. Circuit Partitioning

Symbolic techniques are very efficient, but their ap-
plicability is limited to circuits with a few tens of flip-
flops. In order to address larger circuits, we split the
circuit in several macros and we apply the BDD com-
putation to each macro separately. Every macro is a
connected component, i.e., a portion of the circuit where
flip-flops are connected to each other through combina-
tional logic, and is small enough to be handled by sym-
bolic techniques.

Ideally, macros should be selected according to some
high-level information, where the registers with the
higher sequential depth are easily identified. However,
when working on gate-level benchmarks, one has to
resort to heuristic analysis of the netlist.

We build a macro in three steps: we first select a set
of flip-flops (they will become the memory elements of

the macro), then we chose the combinational logic to
insert in the macro, and finally we identify the macro
inputs and outputs. Figure 4 sketches a simple macro,
which is identified by a single flip-flop. The combina-
tional logic is computed by exploring the input and
output cones of every memory element of the macro.
All the combinational gates that both influence the
macro flip-flops and are influenced by them are se-
lected. In Figure 4 the imaginary macro boundary, de-
picted as a dashed line, crosses several nets. A net going
from a gate outside such a boundary to a gate inside the
macro is a macro input. Conversely, a net coming from
a macro gate to a gate outside the macro boundary is a
macro output.

FFn1

n2

n3

Figure 4: A simple macro

The idea behind macros is to project a State Transi-
tion Graph too large to fit in memory into several
smaller STGs. Several sets of reachable states are thus
identified and elaborated by applying our algorithm to
every macro.

The memory elements are selected in such a way that
all the flip-flops in a macro are closely related, i.e., the
S-graph representing them must have at least one cycle.
If this requirement is not satisfied the output of the
symbolic calculations is useless: in fact, for most cases
in a set containing n unrelated flip-flops all the 2n states
configurations are valid, and all the flip-flops would
thus have the similar weights.

The task of selecting the flip-flops to insert in a
macro is carried out using a small amount of resources,
by performing a Depth First Search (DFS) of the flip-
flops, starting from the POs. The list of flip-flops is then
ordered. The i-th flip-flop is usually related to the (i+1)-
th one in such a list because adjacent flip-flops are in
the input cone of the same PO. Therefore, several sets
of flip-flops can be extracted by splitting the list in sets
of adjacent elements. Every set represents the memory
elements of a macro. The size of these sets is selected in
such a way that the number of gates in the correspond-
ing macro can be managed by means of symbolic pro-
cedures either in an exact or approximate way.

When all the STG partitions are not overlapping, i.e.,
each flip-flop appears at most in a macro, it is possible

to have some invalid states included in our computa-
tions since interactions between macros are not properly
taken into account. To improve the results of this ap-
proach we force the macro flip-flop selection algorithm
to insert every flip-flop in at least two macros. There-
fore, the obtained subsets are partially overlapped. This
ensures a higher probability to avoid computing invalid
states.

The algorithm of Figure 3 is used to compute the
weight for each flip-flop in every macro, and then the
results coming from the different macros are gathered to
fill a final ranking. We assign to each flip-flop the high-
est weight obtained across the macros in which it is
included. At the end of this process we still have a
sorted array holding a unique weight for each flip-flop
of the circuit.

4.2. Flip Flop Preselection by Structural
Analysis

The macro based approach allows us to increase the
affordable size, but circuits exist that cannot be man-
aged using such techniques. The macros obtained by the
DFS exploration have too many gates to be handled by
symbolic procedures. Trying to split the macros in
smaller ones produces bad results, because too few flip-
flops are held in the new macros. We have a high prob-
ability to obtain a State Transition Graph with few cy-
cles, or none at all, for a macro holding four or less flip-
flops, therefore our symbolic manipulations produce
meaningless results when using such macros.

The idea behind the approach described in this sec-
tion is to use a structural analysis to identify which flip-
flops are not well suited for scan insertion, to allow the
symbolic procedure to work over a reduced set of flip-
flops.

We proceed as follows:
1. identify a set S of flip-flops having a known

high impact on testability
2. apply a DFS ordering to S to extract the struc-

tural adjacency between flip-flops
3. split S in several macros using the approach

described in section 4
4. apply the algorithm of Figure 3 to the macros.

The rationale behind this procedure is to use our se-
lection algorithm as an optimization tool over a subset
of flip-flops that are known to heavily influence the
circuit testability. We first roughly identify which flip-
flops are nearly useless for scan insertion by performing
a testability analysis, for example by computing the
SCOAP measurements [Gold79] or, as in our experi-
ments, by using OPUS [ChPa90]. We then analyze the
remaining flip-flops to identify which are the ones best
suited for scan insertion. By reducing the number of

flip-flops to analyze, we have obtained a problem solv-
able by means of symbolic calculations proposed in the
previous sections.

It is important to emphasize that the described
structural analysis for macro selection could be success-
fully avoided if higher-level information about the cir-
cuit behavior were available. By incidence, preliminary
experimental results show that for circuits composed of
Control Units and Data Paths, selecting the former ones
as macros is a very effective choice.

5. Experimental Results

We have developed a prototype tool, called
SDSCAN, to test our algorithm. To present data on
well-known benchmarks, we adopted the ISCAS’89
circuits [BBKo89], including the Addendum ones
[Adde93].

In order to compare our results with the ones pro-
vided by OPUS [ChPa90], we adopted the HITEC
[NiPa91] test generation tool, and took as evaluation
parameters the required CPU time and the attained Fault
Coverage on the circuits modified according to
SDSCAN and OPUS, respectively. For the sake of
comparison, the number of flip-flops being scanned,

FFS in the tables, has been selected according to
[XiPa96].

Section 5.1 reports the results obtained by SDSCAN
when the methodology described in section 4.1 is used,
while section 5.2 reports the results obtained when
structural and behavioral information are combined to
obtain an optimal set of scan flip-flops, as described in
section 4.2.

5.1. Selecting the Scan Flip Flop Subset

Table 1 shows the results obtained on a subset of
ISCAS’89 circuits when the set of scan flip-flops is
selected by reasoning over the whole circuit, as de-
scribed in section 4.1. We have computed the weight for
all the circuit flip-flops according to equation (2); then,
the best flip-flops have been selected as described in
section 3. In Table 1, FC is the fault coverage computed
by HITEC when the circuit under test has FFS scanned
flip-flops (taken from [XiPa96]); CPU is the time spent
by HITEC to compute the test patterns, while FF is the
number of flip-flops in the circuit. M is the number of
macros used by SDSCAN. The time to compute the set
of scan flip-flops for both OPUS and SDSCAN is neg-
ligible with respect to the one required by HITEC dur-
ing the test generation, thus it has not been reported.

SDSCAN OPUS
Circ. FF FFS FC [%] CPU [s] M FC [%] CPU [s]
s298 14 1 98.1 9.17 1 98.1 4.7
s344 15 5 99.7 0.90 1 99.7 0.33
s349 15 5 99.1 0.87 1 99.1 0.37
s382 21 9 97.5 3.77 1 97.5 3.53
s386 6 5 100 0.72 1 100 0.77
s400 21 9 96.2 3.68 1 96.2 3.73
s444 21 9 94.9 4.13 1 94.9 4.07
s499 22 9 88.2 37.38 1 88.2 38.43
s510 6 5 100 1.18 1 100 0.82
s526 21 3 84.9 144.42 1 89.6 120.17
s641 19 7 99.4 9.05 1 99.4 4.90
s713 19 7 93.1 8.12 2 92.9 7.52
s820 5 2 100 9.12 1 100 9.27
s832 5 2 98.4 9.82 1 98.4 12.63
s953 29 3 99.8 4.40 2 99.9 3.23
s967 29 5 100 2.55 2 100 2.47
s1196 18 3 100 5.38 1 99.8 6.08
s1269 37 6 99.6 19.10 1 99.4 32.97
s1423 74 30 87.0 429.62 18 78.6 755.88
s1488 6 2 99.4 54.57 1 100.0 38.60
s1494 6 3 99.2 25.13 1 99.2 28.55

Table 1: Results of SDSCAN vs OPUS

Table 1 shows that SDSCAN produces results com-
parable with OPUS when dealing with small and me-
dium size sequential circuits. For most of the circuits
taken into account, SDSCAN produces the same results
of OPUS. By using SDSCAN, we have obtained a
speed-up of 42% both for s1269 and s1423, while a
fault coverage improvement of 10% is measured for
s1423. Conversely, OPUS outperforms SDSCAN on
s526 due to a lower number of redundant faults. Our
results are also comparable with the ones obtained by
OPSCAN [XiPa96].

5.2. Optimizing the Scan Flip Flop Subset

Table 2 reports the results obtained by applying the
approach described in section 4.2 to some of the larger
benchmarks. The idea is to identify a set of flip-flops
which are good candidates for scan insertion, and then
to optimize it by means of the symbolic techniques
previously described. The initial set of flip-flops is
computed using OPUS: by means of its testability
analysis we identify 2N flip-flops. We then perform the
optimization step by computing our testability measure
over the initial solution and by selecting the N flip-flops
which have the best weight, according to equation (2).

In Table 2, the column ∆T measures the percent dif-
ference between the two CPU times, while the column
∆FC measures the percent difference between the two
fault coverage values. All the experiments in this sec-
tion have been performed assuming that the circuits
have a synchronous reset signal. The average fault cov-
erage improvement is in favor of SDSCAN by a 3%
factor, while the average time to perform the test gen-
eration is reduced by 38% when the flip-flops for scan
insertion are selected by means of SDSCAN.

6. Conclusion

A new approach to solve the problem of flip-flop
selection for partial scan is presented in this paper,
based on a new testability measure named state distri-
bution. By exploring the State Transition Graph of the
circuit under test, and combining topological and sym-

bolic techniques, the proposed algorithm is able to pro-
duce results comparable with a valid tool such as OPUS
[ChPa90].

To deal with large sequential circuits we devised two
approximations: we limit to L the number of input vari-
ables taken into account during the symbolic analysis of
the circuit behavior and, whenever required, we resort
to the selection of several macros to represent the circuit
STG. To address circuits for which these approxima-
tions are not effective in reducing the BDDs size, we
propose an approach that relies both on structural in-
formation and symbolic analysis.

Experimental results show that our tool can be ef-
fectively used to select flip-flops for scan insertion and
compare well with other methods previously proposed.
In particular, we have obtained good improvements in
terms of CPU time for test generation and attained Fault
Coverage when applying our technique to the largest
benchmarks circuits.

We believe that the best macro selection can be per-
formed by exploiting functional information coming
from the availability of an RT-level description of the
circuit: our technique could thus benefit from the adop-
tion of a top-down design approach and would fit well
in a design flow including automatic synthesis tools.

7. References
[ABFr90] M. Abramovici, M. A. Breuer, A. D. Friedman:

Digital system testing and testable design, Com-
puter Science Press, New York, NY (USA),
1990.

[Adde93] These benchmark circuits are downloadable from
the address http://www.cbl.ncsu.edu/
www/CBL_Docs/Bench.html.

[BBKo89] F. Brglex, D. Bryant, K. Kozmiski, “Combina-
tional profiles of sequential benchmarks cricuits”,
Proc. Int. Symp. on Circuits and System, 1989,
pp. 1929-1934.

[BoFu96] V. Boppana, W. K. Fuchs, “Partial Scan Design
Based on State Transition Modelling”, Proc. of
the Int. Test Conf., pp. 538-547, 1996.

[Brya92] R. E. Bryant: Symbolic Boolean Manipulation
with Ordered Binary Decision Diagram, ACM

SDSCAN OPUS
Circ. FF FFS ∆FC

[%]
∆T
[%]

FC
[%]

CPU
[s]

M FC
[%]

CPU
[s]

s3271 116 20 2.4 -53.6 99.0 135 11 96.6 291
s5378 179 30 2.7 -19.5 92.7 832 9 90.2 1,034
s13207 669 80 6.8 -57.4 33.7 10,883 23 31.4 25,569
s35932 1728 150 0.1 -22.9 89.9 15,677 59 89.8 20,343

Table 2: Results of SDSCAN on some of the larger ISCAS

Computing Surveys, Vol. 24, Nr. 3, 1992, pp.
293-318.

[CGPS95] F. Corno, U. Gläser, P. Prinetto, M. Sonza Re-
orda, H.-T. Vierhaus: Improving Topological
ATPG with Symbolic Techniques, VTS’95: IEEE
VLSI Test Symposium, Princeton NJ, pp. 338-
343

[ChPa90] V. Chickermane, J. H. Patel, “An Optimization
Based Approach to the Partial Scan Design
Problem”, Proc. Int. Test Conf., pp. 377-386,
1990.

[Gold79] L. H. Goldstein, “Controllability/Observability
Analysis of Digital Circuits”, IEEE Trans. Cir-
cuits and Systems, Vol. 26, pp. 685-693, 1979.

[HBFu96] I. Hartanto, V. Boppana, W. K. Fuchs, “Identifi-
cation of Unsettable Flip-Flops for Partial Scan
and Faster ATPG”, Proc. of the ICCAD, 1996.

[HsPa95] F. F. Hsu, J. H. Patel, “A Distant Reduction
Approach to Design for Testability”, Proc. of the
IEEE VLSI Test Symposyum, pp. 158-163, 1995.

[Jett95] JETTA: Journal of Electronic Testing: Theory
and Applications: special issue on partial scan
methods, Vol. 7, n. 1/2, August/October 1995

[NiPa91] T. M. Niermann, J. H. Patel, “HITEC: A Test
Generation Package for Sequential Circuits”,
Proc. of the European Conference on Design
Automation, pp. 214-218, 1991.

[XiPa96] D. Xiang, J. H. Patel, “A Global Algorithm for
the Partial Scan Design Problem Using Circuit
State Information”, Proc. of the Int. Test Conf.,
pp. 548-557, 1996.

[XVFP96] D. Xiang, S. Venkataraman, W. K. Fuchs, J. H.
Patel, “Partial Scan Design Based on Circuit State
Information”, Proc. of the ACM/IEEE DAC-33,
pp. 807-812, 1996.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

