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Abstract
We present an integer-linear-programming-based

approach for estimating the maximum instantaneous cur-
rent through the power supply lines for CMOS circuits. It
produces the exact solutions for the maximum instanta-
neous current for small circuits, and tight upper bounds for
large circuits. We formulate the maximum instantaneous
current estimation problem as an integer linear program-
ming (ILP) problem, and solve the corresponding ILP for-
mulae to obtain the exact solution. For large circuits we
propose to partition the circuits, and apply our ILP-based
approach for each sub-circuit. The sum of the exact solu-
tions of all sub-circuits provides an upper bound of the
exact solution for the entire circuit. Our experimental
results show that the upper bounds produced by our
approach combined with the lower bounds produced by a
genetic-algorithm-based approach confine the exact solu-
tion to a small range.

1. Introduction
With increasing demands for high reliability in modern

VLSI designs, accurate estimation of the maximum instan-
taneous current during the design process is becoming
essential. Excessive instantaneous current through the
power and ground (P&G) nets may result in performance
degradation due to large voltage drops along the P&G nets
and circuit failures due to electromigration.

For CMOS circuits, instantaneous current is mainly
due to signal switching, which, in turn, depends on the
input patterns applied to the circuits. To cause signal
switching, a two-vector sequence,V = (v1,v2), has to be
applied at the inputs. One way to find the maximum instan-
taneous current would be to simulate all possible patterns.
For a circuit withn primary inputs, this would require sim-

ulation of 4n patterns. This is practical only for circuits with
a small number of primary inputs.

Several approaches have been proposed for maximum
instantaneous current estimation [6][5][4]. Kriplaniet al.
[6] present a pattern-independent algorithm (iMax algo-
rithm) to find an upper bound on the maximum instanta-
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neous current. Krsticet al. [5] propose a timed ATPG
algorithm and a probability-based algorithm to estimate the
maximum instantaneous current. In the timed ATPG [5]
approach, a set of signals whose simultaneous switching
produces high current is assigned transitions and timed
ATPG is used to derive test patterns. In the probability-
based approach, a set of selected gates is assigned weights
based on their possible current contribution at the given
time. Next, these weights are propagated backwards to the
primary inputs, and the patterns for maximum instanta-
neous current are derived using these values. A genetic-
algorithm-based approach for finding lower bounds for the
maximum instantaneous current has been proposed in [4].
This approach applies a genetic algorithm to identify pat-
terns causing high instantaneous current through iteratively
generating new patterns for simulation. The new patterns
are generated using genetic operations, based on “good”
patterns derived in the previous iterations. All techniques,
except [6], target finding a lower bound of the exact solu-
tion. They are heuristic procedures and the quality of the
lower bounds can not be precisely measured. The algorithm
proposed in [6] for estimating maximum instantaneous cur-
rent obtains an upper bound of the exact solution. However,
due to the assumption that all signals (primary inputs and
internal signals) are uncorrelated, the estimated maximum
instantaneous current for most circuits represents a loose
upper bound.

In this paper we propose an integer-linear-
programming-based technique to obtain theexact solutions
for the maximum instantaneous current for small circuits,
and tight upper bounds for large circuits. We model the
problem as an integer linear programming (ILP) problem.
Solving the corresponding ILP formulae allows us to obtain
the exact solutions. However, this approach may not be
suitable for large designs because of the large number of
variables involved. Therefore, we propose to partition a
large circuit into sub-circuits, and then obtain the exact
solution of each sub-circuit by solving its corresponding
ILP formulae.Since the worst-case solution for each sub-
circuit can be computed, the sum of the worst-case
solutions of all sub-circuits corresponds to an upper bound
of the worst-case solution for the entire circuit.



The contributions of our ILP-based approach for the
estimation of the maximum instantaneous current are
twofold. First, the exact worst-case solutions derived by
our approach for small circuits can be used to evaluate the
estimation quality of other approaches for the maximum
instantaneous current. Second, the upper bounds of the
worst-case solutions for large circuits, together with the
lower bounds derived by other approaches give designers
proper guidelines for estimating the exact worst-case
solutions. Our experimental results show that our approach
produces, on the average, an upper bound on the maximum
instantaneous current which is 47% tighter than the one
obtained by iMax algorithm [6]. Also, the upper bounds
derived by our approach, combined with the lower bounds
derived by a genetic-algorithm-based approach [4] confine
the exact solutions to a small range. To our knowledge, the
ILP-based technique is the first reported methodology for
obtaining the exact solution on the maximum instantaneous
current.

The rest of this paper is organized as follows. In Sec-
tion 2, we first introduce the current model used in this
paper. We, then, present a set of transformation rules from
logic gates to ILP formulae, and propose a transformation
rule used for modeling the maximum instantaneous current
problem as an ILP problem. In Section 3, we formulate the
maximum instantaneous current problem as an ILP prob-
lem. The partitioning strategy for large circuits is given in
Section 4. Section 5 gives the experimental results. Section
6 concludes the paper.
2. Preliminaries
 2.1 Current model

Our methodology for estimating the maximum instan-
taneous current operates at the gate level. Therefore, we
need a gate level current model. For estimating the maxi-
mum instantaneous current, we use the current model pro-
posed in [6]. This model assumes that the current drawn
from the supply lines during switching of a signal is of a
triangular form as shown in Figure 1. The peak current is

assumed to coincide with the transition at the input of the
gate. The value of the peak current and the duration of the
current pulse are dependent on the gate type and the load
capacitance of the gate.
 2.2 The transformation rules from logic gates to ILP
formulae

To apply the ILP-based approach for estimating the

maximum instantaneous current, we derive a set of trans-
formation rules for converting the logic functions of primi-
tive gates into ILP formulae. Using these rules, we
transform the logic description of a circuit into a set of
integer linear constraints. Then, maximizing instantaneous
current corresponds to optimizing an objective function
with respect to the set of linear constraints. In the follow-
ing, we describe our transformation rules.
Rule 1. The logic function of anm-input OR gate can be
represented as:y≤x1+x2+...+xm≤m*y, wherex1, x2, ..., xm
are the inputs of the gate, andy is the output of the gate.
The values ofx1, x2, ..., xm and y are limited to 0 and 1.
Rule 2. The logic function of anm-input AND gate can be
represented as: m*y≤x1+x2+...+xm≤y+(m-1), wherex1, x2,

..., xm are the inputs of the gate, andy is the output of the
gate. The values ofx1, x2, ..., xm and y are limited to 0 and
1.
Rule 3. The logic function of an inverter can be repre-
sented as:y = 1-x, wherex is the input of the gate, andy is
the output of the gate. The values ofx and y are limited to 0
and 1.
Rule 4. The logic function of a two-input XOR gate can be
represented as:±(x1 - x2)≤y≤x1+x2≤2-y, wherex1 and x2

are the inputs of the gate, andy is the output of the gate.
The values ofx1, x2 and y are limited to 0 and 1.

The following example illustrates the above rules.
Example 2.1 Consider the circuit in Figure 2(a). The inte-
ger linear constraints obtained after applying the transfor-
mation rules are shown in Figure 2(b).

For CMOS circuits the current through the supply
lines is mainly due to the switching on the signals. Based
on the general-delay model, and using theiMax algorithm
[6] we can obtain all possible switching times for each sig-
nal and calculate current contributions of all gates at all
times. The instantaneous current at timet corresponds to
the sum of the current contributions of all gates at timet.
The instantaneous current at each time instance can be
modeled as a single function, and the instantaneous current
for all time instances can be represented as a multi-func-
tion. Since the ILP package that we use [7] can optimize
only a single objective function, we need to transform the
optimization of a multi-function into the optimization a

gate delay
input

transition
output

transition
current

waveform
duration of the current pulse

Figure 1: Current model.
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Figure 2: The transformation from logic gates to ILP formula.



single function. We use the following proposition to per-
form this transformation.
Proposition 1. For anm-output multi-function with out-
puts c1, c2, ..., cm, the maximum value can be found by
solving the following ILP formulae:

Maximize k1+k2+...+km (1)
Subject α1+α2+...+αm = 1; (2)

ci - ki≤L*(1-αi), 1≤i≤m; (3)
0≤ki≤αi*L, 1≤i≤m; (4)
ki≤ci, 1≤i≤m; (5)

wherek1, k2, ..., km are real numbers, andL is a large posi-
tive real number whose value is greater than or equal to any
possible value of thec1, c2, ..., cm. The values ofα1, α2, ...,
αm are limited to 0 and 1.

Proof. Since the values ofα1, α2, ...,αm are limited to
0 and 1, to satisfy constraint (2), one α must be set to 1,
and others to 0. Constraints (3), (4), and (5) ensure that if
αi is set to 1, thenki is equal toci; otherwiseki is equal to 0.
The four constraints ensure that only one k can have a non-
zero value, while others are equal to zero. Therefore, maxi-
mizing the objective function (1) results in the maximum
value of the multi-function.
3. ILP Formulation for the Maximum Instantaneous
Current

Before introducing our ILP formulation for the maxi-
mum instantaneous current we define the following nota-
tions:

G is the set of all gates.
gi is the gate with indexi.
gi(t) the output value ofgi at timet.
T is the set of all time instances.
T(gi) is the set of all possible transition times of the

 output of gategi.

= 1, if a switching of gategi occurs at timem.

= 0, otherwise.

[T(gi)]
j is the set of switching times of gategi such that
   these transitions contribute to the instantaneous
   current at timej.

is the current at timej contributed by gategi.

is the current value at timej contributed by the

                   output switching at timem of gategi.
I(j) is the total instantaneous current at time j (for

                  the entire circuit).
The maximum instantaneous current problem can be for-

mulated as follows:

Maximize (6)

Subject to

; (7)

, for 1 ≤ j ≤ ; (8)

, for 1 ≤ j ≤ ; (9)

, for 1 ≤ j ≤ ; (10)

, for 1≤i≤ ,

, ; (11)

, for 1≤i ≤ , 1 ≤ j ≤

, ; (12)

, for 1 ≤ j ≤ ; (13)

whereL is a large real number whose value is greater than
or equal to any possible value of the instantaneous current
at all time instances, and the values ofα1, α2, ..., αm are
limited to 0 and 1. The objective function (6) states that we
are going to maximize the instantaneous current. Con-
straints (7), (8), (9), and (10) implement the multi-function
optimization (see Proposition 1). Constraint (7) states that
the maximum instantaneous current appears only at one
time instance. Constraint (11) states that the switching of
gategi at time tk happens when the output values of the
gate is different at timestk andtk-1. Constraints (12) refers
to the instantaneous current at timej contributed by gategi.
The operation,Max can be expressed as integer linear con-
straints. (This transformation is tedious, and the details are
omitted here.) This current corresponds to the maximum of
all possible current contributions that gategi can have at
time j. Constraint (13) states that the instantaneous current
for the entire circuit at each time instance is derived by
summing up the current contributions of all gates at the
corresponding time instance. The optimal solution of the
objective function represents the maximum instantaneous
current.
4. Partitioning-based approach

The time required for solving the ILP formulae grows
rapidly with the increase of the size of the circuit. We pro-
pose a partitioning-based approach to obtain upper bounds
of the worst-case solutions for larger circuits. This
approach partitions a large circuit into sub-circuits, and
applies our ILP-based approach for each sub-circuit to
obtain the worst-case solution for each sub-circuit. After
these worst-case solutions are obtained, the summation of
the solutions of all the sub-circuits represents an upper
bound of the worst-case solution for the entire circuit. In
this section, we investigate the partitioning issues in order
to achieve tight upper bounds of the worst-case solutions.
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 4.1 Modeling the maximum instantaneous current
Our partitioning-based approach for obtaining a tight

upper bound on the maximum instantaneous current, in the
first step, uses the iMax algorithm [6] to produce an upper
bound of the instantaneous current at each time instance.
As mentioned before, the bound given by iMax for each
time instance is a loose upper bound. Then, all time
instances with non-zero upper bound of the instantaneous
current are put in the processing list. This list is next sorted
in descending order of the corresponding upper bound.

We select the time instance with the highest upper
bound from the processing list and extract the part of the
circuit which contributes to this upper bound. We then
apply a partitioning algorithm K-MAFM [1] to partition
the part of the circuit into sub-circuits. The maximum num-
ber of gates allowed in each sub-circuit is chosen as 300 in
our experiment. Empirically, this value gives tighter upper
bounds in a reasonable CPU time for our ILP-based tech-
nique. After partitioning the extracted circuit into sub-cir-
cuits, we apply the ILP-based approach to each sub-circuit
and then sum up the exact solutions for the sub-circuits.
The result represents a new, tighter upper bound (tighter
than the bound obtained by iMax) of the instantaneous cur-
rent at the given time because the signal correlations in
each sub-circuit are considered. If the upper bounds for
some time instances in the processing list are already lower
than the newly obtained upper bound, we do not need to
process those time instances, and remove these time
instances from the processing list. The above process con-
tinues by selecting a time instance with the next highest
upper bound on the instantaneous current, and ends when
the processing list is empty. The maximum value of the
new upper bounds at all time instances is referred to a tight
upper bound of the maximum instantaneous current of the
entire circuit. Figure 3 shows the summary of our algo-
rithm.

5. Experimental Results
To characterize the gate delays for different types of

gates and different loads, we have built lookup tables using
a transistor-level simulator DelayMill [3]. Also, lookup
tables obtained by PowerMill [2] are used for estimating
the values of the peak current and the duration of current
pulse for different types of gates and different loads. Our
experimental results are derived based on these delay and
current tables, as well as the gate-level current models
shown in Section 2.1. We compare our results for the
maximum instantaneous current, to the results obtained by
a genetic-algorithm-based approach [4] which produces a
lower bound of the solution, and to a random approach
which generates a set of weighted random patterns with
primary input switching probability of 0.9. The number of
input patterns generated by genetic-algorithm-based and
random approach is 9600. Also, we compare our results to
the results obtained by iMax algorithm [6]. We use a com-
mercial tool LINDO [7] to solve the ILP formulae.

We chose 9 small MCNC benchmark circuits and the 8
largest ISCAS85 benchmark circuits. Table 1 shows the
estimated maximum instantaneous current for the 9 small
MCNC benchmark circuits. All the instantaneous current
values are normalized with respect to the exact solution
obtained by ILP. In Table 1, Columns 2-3, 4-5, 6-7, 8-9
show the maximum instantaneous current and normalized
values estimated by (1) iMax algorithm, (2) ILP-based
approach, (3) genetic-algorithm-based approach (4)
random approach, respectively. The values estimated by
genetic-algorithm-based and random approaches corre-
spond to lower bounds, and the values estimated by iMax
algorithm refer to upper bounds. The exact solution can be
derived by our ILP-based approach. The CPU times for the
four approaches are reported in Columns 10, 11, 12, and
13, respectively.

The estimated maximum instantaneous current for the
8 largest ISCAS85 benchmark circuits is shown in Table 2.
Columns 2-3, 4-5, 6-7, 8-9 show the maximum instanta-
neous current and normalized value estimated by (1) iMax
algorithm, (2) ILP-with-partitioning approach, (3) genetic-
algorithm-based approach, and (4) random approach,
respectively. All the normalized values are with respect to
the values derived by our ILP-with-partitioning approach.
Note that the values estimated by iMax algorithm and our
ILP-with-partitioning approach correspond to the upper
bounds, and the values estimated by genetic-algorithm-
based and random approaches correspond to the lower
bounds. The CPU times for the four approaches are
reported in Columns 10, 11, 12 and 13, respectively.

The experimental results show that the ILP-based
approach produces the exact worst-case solution in a rea-
sonable time for small circuits. Also, the ILP-with-parti-

Figure 3: Summary of the algorithm for estimating the
maximum instantaneous current.

Perform iMax algorithm to obtain the upper bound of the instantaneous
  current at each time instance;
Put all sorted time instances in the processing list;
While the processing list is not empty
{
   Select the time instance with the highest upper bound of the
     instantaneous current;
   Extract the part of the circuit which contributes to this current;
   Partition the extracted circuit into sub-circuits;
   Apply the ILP-based approach to each sub-circuit to obtain the
     instantaneous current at this time;
   Sum up the instantaneous current at this time of all sub-circuits;
   Update the upper bound of the instantaneous current at this time;
   Update the processing list;
}



circuit

maximum instantaneous current

CPU time (sec.)upper bound exact solution lower bound

iMax ILP GA random
iMax ILP GA random

(mA) normal. (mA) normal. (mA) normal. (mA) normal.

cm42a 14.4 1.21 11.9 1.00 11.9 1.00 11.9 1.00 8 119 33 33
cm163a 51.1 1.37 37.3 1.00 37.0 0.99 24.6 0.66 12 373 29 29
cm85a 47.3 1.17 40.4 1.00 40.4 1.00 27.0 0.67 6 89 39 39
cmb 38.5 1.04 37.0 1.00 34.8 0.94 26.9 0.73 16 370 46 46
cc 63.0 1.41 44.7 1.00 44.7 1.00 40.0 0.89 18 447 43 43

cm150a 72.1 1.35 53.4 1.00 53.4 1.00 45.5 0.85 21 534 52 52
pcler8 79.7 1.12 71.2 1.00 71.2 1.00 39.3 0.55 24 712 72 72

b9 144.7 1.43 101.2 1.00 99.4 0.98 70.4 0.70 43 994 102 102
c8 51.8 1.20 43.2 1.00 43.2 1.00 37.8 0.88 37 432 112 112

average - 1.26 - 1.00 - 0.99 - 0.77 - - - -

circuit

maximum instantaneous current

CPU time (min.)upper bound lower bound

iMax
ILP with

partitioning
GA random

iMax
ILP
with

partition
GA random

(mA) normal. (mA) normal. (mA) normal. (mA) normal.

C880 124.6 1.11 112.5 1.00 103.2 0.92 82.9 0.74 0.5 38.1 3.5 3.5
C1355 220.3 1.24 177.6 1.00 134.6 0.76 100.9 0.57 0.7 40.5 5.6 5.6
C1908 273.3 1.61 169.9 1.00 136.4 0.80 104.8 0.62 0.9 46.5 6.0 6.0
C2670 223.1 1.21 184.7 1.00 184.3 0.99 130.1 0.70 1.2 88.9 15.1 15.1
C3540 616.4 2.11 292.0 1.00 212.7 0.73 152.1 0.52 1.7 70.7 11.9 11.9
C5315 710.2 1.47 484.0 1.00 335.4 0.69 261.3 0.54 2.3 102.1 22.5 22.5
C6288 1364.2 1.67 816.8 1.00 723.4 0.89 567.2 0.69 3.6 136.4 40.3 40.3
C7552 1138.2 1.37 830.8 1.00 568.9 0.68 449.2 0.54 2.5 123.6 32.8 32.8
average - 1.47 - 1.00 - 0.81 - 0.62 - - - -

Table 1: The estimated maximum instantaneous current for 9 small MCNC benchmarks

Table 2: The estimated maximum instantaneous current for 8 largest ISCAS85 benchmarks

tioning approach provides tighter upper bounds of the
worst-case solutions for large circuits as compared to the
bounds derived by iMax. Note that the upper bounds
derived by our approach are close to the lower bounds
derived by a genetic-algorithm-based approach [4]. There-
fore, the two bounds confine the worst-case solutions to a
small range.
6. Conclusions

We have proposed an ILP-based approach to obtain the
exact solutions for the maximum instantaneous current
estimation. For large designs, we have proposed a partition-
ing strategy to obtain tight upper bounds. The experimental
results show that in comparison with the lower and upper
bounds derived by other approaches, the bounds produced
by our approach are much tighter.
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