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Abstract

We present a new combinational verification technique
where the functional specification of a circuit under verifi-
cation is utilized to simplify the verification task. The main
idea is to assign to each primary input a general function,
called a coordinate function, instead of a single variable
function as in most BDD-based techniques. BDDs of inter-
mediate nodes are then constructed based on these coordi-
nate functions in a topological order from primary inputs to
primary outputs. Coordinate functions depend on primary
input variables and extra variables. Therefore combina-
tional verification is performed not over the set of primary
input variables but over the extended set of variables. Coor-
dinate functions are chosen in such a way that in the process
of computing intermediate functions the dependency on the
primary input variables is gradually replaced with that on
the extra variables, thereby making boolean functions asso-
ciated with primary outputs simple functions only in terms
of the extra variables. We show that such a smart choice of
coordinate functions is possible with the help of the high-
level functional specification of the circuit.

1 Introduction

Implementation verification is to verify whether a gate-
level circuit implements its functional specification given
in a more abstract level. In practice implementation verifi-
cation of a gate-level circuit is often performed by checking
its equivalence with another gate-level circuit whose cor-
rectness has been already established. One class of com-
binational verification methods is to use BDDs or their
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Figure 1: High-level functional specification

derivatives [2]. A drawback of such approaches is blow-
ups of BDDs. Another class of methods is based on exploit-
ing structural similarity between two circuits. Although
such methods can verify examples for which BDDs are pro-
hibitively large, they cannot solve the problem completely
since they rely on a very restrictive assumption on struc-
tural similarity. Circuits are considered structurally simi-
lar if they contain a considerable number of functionally
equivalent points. However, a simple transformation on a
circuit can yield another circuit where no internal node is
functionally equivalent to any node in the original circuit.
It is more natural to consider two circuits structurally sim-
ilar if they are produced from the same high-level func-
tional description by different sequences of local transfor-
mations. The problem, however, is that after reducing the
original implementation verification problem into equiv-
alence checking of two gate-level networks the original
high-level information is completely lost. In this paper we
present a new approach to combinational verification where
this high-level functional specification is utilized to sim-
plify equivalence checking.

We explain our approach by the example of verifying
a cascade circuit composed of two large combinational
blocks in Figure 1. For the sake of simplicity suppose that



m � n holds and for any vector y = (y1; : : : ; ym) 2
f0; 1gm there exists x = (x1; : : : ; xn) 2 f0; 1gn such
that unit1(x) = y. Note that even if there exist small-size
BDDs for unit1 and unit2 separately in terms of their in-
put variables, a compact BDD may not exist for the entire
circuit under any ordering of x.

Our approach is still based on BDDs, but unlike most of
the existing techniques the function associated with each
primary input xi is a general function Xi called a coordi-
nate function instead of a single variablexi. BDD construc-
tion is done starting from the coordinate functionsat the pri-
mary inputs. The coordinate functions depend on primary
input variables x1; : : : ; xn and extra variables y1; : : : ; ym.
Intuitively each extra variable yi corresponds to output fi
as we will see later. As a result of this generalization
the verification problem of functions h1(x); : : : ; hk(x) is
translated into that of functions h1(X); : : : ; hk(X), where
X = (X1(x;y); : : : ; Xn(x;y)). To make the verification
ofhi(x) equivalent to that ofhi(X),Xmust be a surjective
mapping from the boolean space f0; 1gn+m to f0; 1gn, i.e.

8x; 9(x0;y0) s.t. X(x0;y0) = x: (1)

As it will be shown later, in case all signal patterns are ob-
servable at f1; : : : ; fm, we can always construct functions
Xi so that

8i; fi(X1; : : : ; Xn) = yi: (2)

We are interested in finding functions Xi satisfying (1)
and (2) that have small BDD representations. Although
finding such functions is not easy in general, the knowledge
on the high-level functional specification of unit1 consid-
erably simplifies this process as we will see later.

Let us illustrate how the idea of coordinate functions
helps verify the equivalence between an implementation
shown in Figure 2 and its high-level functional specifica-
tion in Figure 1.
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Figure 2: An implementation of the high-level functional
specification

We make the following basic assumption about imple-
mentation circuits.

In any implementation circuitN there exists a set
of m0 gates forming a cut C of N such that the

function f 0i(x1; : : : ; xn) realized by the i-th gate
of C can be represented as a simple composition
of functions f1; : : : ; fm and x1; : : : ; xn, i.e.

f 0
i
(x1; : : : ; xn) = simple function

i
(f1; : : : ; fm; x1; : : : ; xn)

(i = 1; : : : ;m0)

(3)
As explained below one needs this assumption to guaran-
tee that introducing extra variables simplifies the represen-
tation of functions at internal nodes.

Let N0 be a gate-level circuit which is obtained directly
by replacing the high-level functional descriptions of mod-
ulesunit1 andunit2 with their gate-level implementations.
Since an implementation N is typically generated by opti-
mizingN0, we cannot guarantee that the originalm bound-
ary points are completely preserved in terms of function-
ality in N . However, by our assumption we can roughly
divide the set of gates in N into two subsets UNIT1 and
UNIT2 corresponding to unit1 and unit2 respectively so
that functions realized at the border of the two subcircuits
are “close” to f1; : : : ; fm. From (2) and (3) it follows that

f 0
i
(x1; : : : ; xn) = simple function

i
(y1; : : : ; ym; x1; : : : ; xn)

(i = 1; : : : ;m0)

(4)
Expression (4) shows that introducing extra variables
y1; : : : ; ym is effective in reducing the complexity of func-
tion representations. Note that implementationsN 0 andN 00

satisfying (3) may not have any functionally equivalent in-
ternal nodes. So the class of implementation circuits sat-
isfying the basic assumption is much broader than that of
circuits verifiable by methods exploiting functional equiv-
alence of internal nodes.

The verification procedure is organized as follows.
First, functions X1; : : : ; Xn are represented as BDDs over
variables x and y. Then intermediate functions imple-
mented by the gates of the circuit are computed in a topo-
logical order by function composition until primary out-
puts are reached. While the size of BDDs over variables x
typically increases as we move from inputs to outputs, the
size of BDDs over variables x and y behaves differently;
it has the first peak somewhere in UNIT1, but starts de-
creasing as we approach the boundary betweenUNIT1 and
UNIT2. Once the boundary is passed, the size increases
again to primary outputs. Intuitively the introductionof co-
ordinate functionsX1; : : : ; Xn replaces the dependency on
x with the dependency on y in boundary functions.

This paper is organized as follows. In Section 2 we de-
scribe the relationship between the proposed method and
other verification methods based on domain transforma-
tion. We then prove the correctness of the verification for-
mally in Section 3. Section 4 discusses how to construct
coordinate functions. In Section 5 we consider as an ex-
ample the special case where unit1 is an adder and show



how effective coordinate functions can be constructed from
the high-level functional specification of unit1. Section 6
gives experimental results and Section 7 concludes the pa-
per.

2 Combinational Verification using
Domain Transformations

The method presented in this paper can be classified as
a domain transformation method, originally proposed by
Meinel et al. [1]. The basic idea of domain transforma-
tions is to transform a given function to a “simpler” func-
tion and represent the transformed function using BDDs.
Meinel showed that some functions whose BDD sizes are
proven to be exponential under any variable ordering have
polynomial-size BDDs after carefully constructed transfor-
mations.

Let h(x1; : : : ; xn) be a completely specified function.
[1] proposed to use a bijective transformation f =

(f1(x); : : : ; fn(x)) : f0; 1gn 7! f0; 1gn. Let z =

(z1; : : : ; zn) be the variables corresponding to the trans-
formed domain. Given a transformation f , h(x) is trans-
formed intoH(z) = h(f�1(z)). By choosing an appropri-
ate transformation, it is possible to switch over to a simpler
function with a compact BDD.

An advantage of this type of transformations is that a
transformation maps a functionh(x) to another completely
specified function H(z). Since H is uniquely determined
by f , any canonical representation of H serves as a canon-
ical representation of h. However, so far only local do-
main transformations have been investigated [4] since the
bijective restriction on transformations sets the number of
transformation functions to the number of primary inputs.
On the other hand, intuitivelygood “global” transformation
functions can be found only when a structural representa-
tion of h is investigated. Therefore, the number of transfor-
mation functions should depend on the structure of h rather
than the number of primary inputs.

In [3] we considered the case where the number of
transformation functions f = (f1; : : : ; fm) is greater
than n. Transformation functions give an injective map-
ping from f0; 1gn 7! f0; 1gm. The main idea of [3]
is that a high-level functional specification of h typically
has some auxiliary functions to simplify the description
and that those functions are good candidates for transfor-
mation functions. In particular we investigated transfor-
mations of the form f = (x1; : : : ; xn; gn+1; : : : ; gm),
where gn+1(x); : : : ; gm(x) are auxiliary functions used in
the functional specification of h.

Since f�1 is not fully specified in this case, a function
h(x) is transformed into an incompletely specified func-

tion H(z). More specifically H(z) is not specified if vec-
tor z is not satisfiable, i.e. if there exists no x such that
f (x) = z. Instead of choosing a completely specified func-
tion compatible with H we represent H itself canonically
using a three-terminal BDD where the third terminal node
represents a don’t care. We further showed that the class
of functions having polynomial size BDD representations
of H subsumes the classes of functions having polynomial
size representations in other canonical BDD extensions.

On a practical side, however, experiments on benchmark
circuits showed that if one uses intermediate functions of
existing nodes in a network as transformation functions, the
size of the three-valued BDD for H is often larger than that
of the BDD for h over the original set of input variables.

In this paper we look for coordinate functions X(z)

specifying an “inverse” mapping: f0; 1gm 7! f0; 1gn. By
choosing an inverse mapping directly we select a unique
completely specified function H0(z) = h(X(z)). There-
fore any canonical representation of H0 is a canonical rep-
resentation of h.

3 Correctness of the Verification
Method

Theorem 1 If condition (1) holds, verification of functions
hi(x) is equivalent to that of functions hi(X).

Proof. Let N1 and N2 be two circuits to be compared
implementing functions h1(x); : : : ; hk(x)

and h01(x); : : : ; h
0

k
(x) respectively. If there exist x0 and i

such that hi(x0) 6= h0
i
(x0), then 9(x�;y�); h(X(x�;y�))6=

h0(X(x�;y�)), where x0 = X(x�;y�). If, on the other
hand, there exist (x�;y�) and i such that
hi(X(x�;y�))6= h0

i
(X(x�;y�)) then hi(x

0) 6= h0
i
(x0),

where x0 = X(x�;y�). Therefore the equivalence of the
two verification problems holds. 2

4 Finding Coordinate Functions

Let

Xi(x;y) =

�
xi if unit1(x) = y

pi(x;y) otherwise
(5)

where pi(x;y) is an arbitrary function. (Vector (x;y)

is said to be satisfiable if unit1(x) = y.) It follows
that coordinate functions defined by (5) satisfy (1) since
X(x; unit1(x)) = x. We still need to guarantee that
X(x;y) have polynomial size BDDs.



First we consider the case when all outputs of unit1 are
observable. Define Xi in the following way.

X(x;y) =

�
x if unit1(x) = y

x0 otherwise
(6)

where x0 is a vector such that unit1(x0) = y.
Since unit1 is surjective, we can always find the

x0 defined above. Under this particular choice of X,
unit1(X(x;y)) = y holds. It is easy to see this by sim-
ple case analysis. If unit1(x) = y, X(x;y) = x from
the definition of X, and it follows that unit1(X(x;y)) =

unit1(x) = y. If unit1(x) 6= y, X(x;y) = x0 and by the
definition ofX unit1(x

0) = y. So again
unit1(X(x;y)) = unit1(x

0) = y.
An important property of coordinate functionsXi spec-

ified by (6) is that hi(X) does not depend on x since at the
boundary of unit1 and unit2 the dependency on x is com-
pletely removed. Thus functions Xi can be seen as a way
of making hi depend on variables y instead of x.

Note that it is very difficult to find fully automatically
functions Xi satisfying (6) without any use of the high-
level specification for the following two reasons. First, for
each pair (x;y) such that unit1(x) 6= y, one needs to find
x0 such that unit1(x0) = y. This problem is equivalent to
the satisfiability problem. Second, we are only interested
in functions Xi whose BDDs are compact. To overcome
the first obstacle one needs an extremely fast satisfiability
problem solver. To surmount the second obstacle the solver
must provide “close” solutions for “close” instances of the
satisfiability problem.

However, as demonstrated in Section 5, making use of
the high-level specification of unit1 can drastically sim-
plify this step.

Now assume that there are unobservable outputs of
unit1, i.e. 9y such that 8x:unit1(x) 6= y. Then def-
inition in (6) does not apply since the existence of x0 is
not guaranteed. However, the basic idea of replacing the
dependency on x with that on y still works. We cannot
find coordinate functions that unit1(X(x;y)) = y. In-
stead, we will look for X(x;y) such that unit1(X(x;y))

are simple functions of y. Once such coordinate functions
are found, we still have simple functions at the boundary
between UNIT1 and UNIT2 as long as an implementa-
tion circuit satisfies the basic assumption (3). A possible
solution is to select X(x;y) so that it is equal to x00, where
y00 = unit1(x

00) is as “close” as possible to y. For ex-
ample one can take as y00 the closest in Hamming distance
to y. This minimizes the number of cut functions fi(X)

for which fi(X(x;y)) 6= yi. Also, since vector x00 is se-
lected independently of the value of x in (x;y), functions
unit1(x;y) are only dependent on y.

5 Example

Consider the case where unit1 in Figure 1 is an n-bit adder;
sum(a;b) = (s1(a;b); : : : ; sn+1(a;b)), where a =

(a1; : : : ; an) and b = (b1; : : : ; bn) are input operands with
an; bn; sn+1 being the most significant bits. Let 1n denote
a vector consisting of n 1’s. Note that 1n+1 is the only un-
observable vector at the outputs of the n-bit adder.

Let coordinate functionsA = (A1; : : : ; An) and B =

(B1; : : : ; Bn), where Ai and Bi de-
pend on a1; : : : ; an; b1; : : : ; bn; y1; : : : ; yn+1, be specified
in the following way

(A;B)(a;b;y) =

8>><
>>:

(a;b) if sum(a;b) = y

(a0;b0) else if y 6= 1n+1

where sum(a0;b0) = y

(1n; 1n) otherwise
(7)

The last part of the definition is the only difference from
the definition of X in (6). Since y = 1n+1 never appears
at the outputs of the adder, x0 in (6) does not exist. We then
find a satisfiable vector y00 whose Hamming distance from
y is minimum. One such vector is 01n, where the first bit
is the least significant bit. The input producing this output
is a = b = 1n. Therefore, the return values of (A;B) for
this case is (1n; 1n).

It is easy to check that si(A;B) = yi if i = 2; : : : ; n+1

and s1(A;B) = y1 � (y2+ : : :+ yn+1). Notice that except
when y = 1n+1, sum(A;B) = y. The dependency on a
and b is completely replaced with that on y.

Consider how to choose vector (a0;b0) when
sum(a;b) 6= y. and y 6= 1n+1. Let int(a) denote the
integer specified by a. One simple way is to define a0 and
b0 so that int(a0) = int(b0) = int(y)=2 if int(y) is even
and int(a0) = bint(y)=2c and int(b0) = bint(y)=2c + 1

if y is odd.

Note that when finding x0 = (a0;b0) we exploit
high-level information that unit1 is an adder.
Based on this we have a systematic way of ob-
tainingx0 for a given unsatisfiable vector without
solving the satisfiability problem.

Under this particular choice of a0 and b0 a0i = yi+1.
b0
i
= yi+1 if int(y) is even and b0

i
= [incr(shift(y))]i

otherwise, where shift is an n-bit-input (n�1)-bit-output
function shifting y one position to the left (i.e. dividing
int(y) by 2), and incr is an (n� 1)-bit-inputn-bit-output
function adding 1 to int(shift(y)).

The BDD of the satisfiability function unit1(x) � y for
the n-bit adder has a linear size in n under the following
variable ordering y1 < a1 < b1 < y2 < a2 < b2 < : : : <

yn < an < bn < yn+1. We confirmed experimentally that
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Figure 3: Cascade circuit

the BDDs of Ai and Bi also grow linearly in n under this
variable ordering.

These coordinate functionsA;B can be used in any sit-
uation where an adder feeds another unit.

6 Experimental Results

Unfortunately combinational benchmark circuits cur-
rently available are specified at the gate level directly and
do not come with any high-level functional specification.
To create circuits with a known high-level structure from
benchmark networks we constructed artificial networks
shown in Figure 3.

Each circuit consists of two blocks: the first block is
an n-bit adder whose outputs are connected to the in-
puts of the second block, which is a benchmark circuit.
The value n was chosen so that the number of outputs of
the adder n + 1 is equal to the number of inputs of the
benchmark circuit. Each composite circuit was optimized
by script.rugged in SIS and was verified using two
methods: 1) the method described in this paper and 2)
a standard BDD-based approach where output BDDs are
computed in terms of input variables. To demonstrate that
the proposed verification method does not depend on the
way the adder is implemented we used three different im-
plementations of the adder: a ripple-carry adder, a carry-
skip adder and a carry-select adder. The results of the ex-
periments are summarized in Table 1. Each column of the
table contains the following information.

� The name of a benchmark circuit used as unit2.

� The number of inputsand outputs of the composite cir-
cuit and the number of gates in the optimized circuit.

� The results of the BDD-based verification: the total
number of nodes in the BDDs for outputs under vari-
able ordering a1 < b1 < : : : < an < bn and CPU
time in seconds on DEC AlphaServer 8400 5/300. The
BDD-based verification was done only to composite
circuits with ripple-carry adders.

� The results of the verification based on coordinate
functions described in Section 5: the total number of
nodes in BDDs representing the outputs in terms of the
extended set of variables (y; a;b) under variable or-
dering y1 < a1 < b1 < : : : < yn < an < bn < yn+1
and CPU time for three different versions of adders.

The BDDs in terms of the extended set of variables is much
smaller than the BDDs in terms of primary input variables.
CPU time reduction is also considerable.

7 Concluding Remarks

We presented a new combinational verification method us-
ing high-level functional specifications. The effectiveness
of this approach was demonstrated by taking cascade cir-
cuits as an example. This technique can be extended to net-
works with more complex topologies.

Although our approach requires designer’s interven-
tion, this human interaction makes it possible to verify
a broader class of circuits than by existing techniques.
Roughly speaking there are two approaches to solving an
NP-complete or harder problem. The first is to focus on a
specific class of instances and develop algorithms by taking
advantages of the properties of the class. Verification meth-
ods exploiting structural similarity fall into this category.
The other approach is based on algorithms with user in-
teraction. Such algorithms use high-level information that
cannot be recovered by brute-force computations. The pro-
posed method is an example of such an approach since the
use of coordinate functions can be considered as a way of
“pumping” high-level information into algorithms.
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