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Abstract

We present a new combinational verification technique
where the functional specification of acircuit under verifi-
cationisutilizedto ssimplify theverificationtask. Themain
ideaisto assign to each primary input a general function,
caled a coordinate function, instead of a single variable
functionasin most BDD-based techniques. BDDs of inter-
mediate nodes are then constructed based on these coordi-
nate functionsin atopological order from primary inputsto
primary outputs. Coordinate functions depend on primary
input variables and extra variables. Therefore combina
tional verification is performed not over the set of primary
input variablesbut over the extended set of variables. Coor-
dinatefunctionsare chosenin such away that inthe process
of computing intermedi ate functionsthe dependency onthe
primary input variables is gradually replaced with that on
the extravariabl es, thereby making bool ean functionsasso-
ciated with primary outputs simplefunctionsonly interms
of the extra variables. We show that such a smart choice of
coordinate functionsis possible with the help of the high-
level functional specification of the circuit.

1 Introduction

Implementation verification is to verify whether a gate-
level circuit implements its functiona specification given
in amore abstract level. In practice implementation verifi-
cation of agate-level circuit isoften performed by checking
its equivalence with another gate-level circuit whose cor-
rectness has been already established. One class of com-
binational verification methods is to use BDDs or their
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Figure 1: High-level functiona specification

derivatives [2]. A drawback of such approaches is blow-
upsof BDDs. Another class of methodsishbased on exploit-
ing structural similarity between two circuits. Although
such methods can verify examplesfor which BDDsare pro-
hibitively large, they cannot solve the problem completely
since they rely on a very restrictive assumption on struc-
tura similarity. Circuits are considered structurally simi-
lar if they contain a considerable number of functionally
equivalent points. However, asimple transformation on a
circuit can yield another circuit where no internal node is
functionally equivaent to any node in the origind circuit.
It ismore natural to consider two circuits structurally sim-
ilar if they are produced from the same high-level func-
tional description by different sequences of local transfor-
mations. The problem, however, isthat after reducing the
origina implementation verification problem into equiv-
alence checking of two gate-level networks the original
high-level informationis completely lost. In this paper we
present anew approach to combinational verification where
this high-leve functional specification is utilized to sim-
plify equivalence checking.

We explain our approach by the example of verifying
a cascade circuit composed of two large combinational
blocksin Figure 1. For the sake of simplicity suppose that



m < n holdsand for any vectory = (y1,...,ym) €
{0,1}™ there exists x = (x1,...,2,) € {0,1}" such
that unit; (x) = y. Notethat even if there exist small-size
BDDsfor unit, and unit, separately in terms of their in-
put variables, a compact BDD may not exist for the entire
circuit under any ordering of x.

Our approach is still based on BDDs, but unlike most of
the existing techniques the function associated with each
primary input z; is a genera function X; called a coordi-
natefunctioninstead of asinglevariablez;. BDD construc-
tionisdonestarting from thecoordinatefunctionsat thepri-
mary inputs. The coordinate functions depend on primary
input variables zq, . .., z,, and extravariables y, . .., Y.
Intuitively each extra variable y; correspondsto output f;
as we will see later. As a result of this generalization
the verification problem of functions 21 (x), ..., hx(x) is
translated into that of functions 4 (X), .. ., hx(X), where
X = (X1(x,¥),..., Xn(x,¥)). To make the verification
of h;(x) equivaent tothat of #;(X), X must beasurjective
mapping from the boolean space {0, 1} to {0, 1}",i.e.

vx,3(x',y') st. X(x',y') = x. Q)

Asit will be shown later, in case al signal patterns are ob-
servableat fy, .. ., f,n, we can dways construct functions
X; S0 that

Vi,fi(Xl,...,Xn)Iyi. (2)

We are interested in finding functions X; satisfying (1)
and (2) that have small BDD representations. Although
finding such functionsisnot easy in general, theknowledge
on the high-leve functional specification of unit; consid-
erably simplifies thisprocess as we will see later.

Let us illustrate how the idea of coordinate functions
helps verify the equivaence between an implementation
shown in Figure 2 and its high-level functional specifica-
tionin Figure 1.

Figure 2: An implementation of the high-leve functional
specification
We make the following basic assumption about imple-

mentation circuits.

Inany implementation circuit V thereexistsaset
of m’ gates forming a cut C' of N such that the

function f/ (x4, ..., z,) realized by thei-th gate
of C' can be represented as a simple composition
of functions fy,..., fmandzy,..., z,, 1.6

f;(l‘l,...

, &n) = sSimple_function, (f1, ...
(i=1,...,m)

afmaxla"'axn)

(©)
As explained below one needs this assumption to guaran-
tee that introducing extra variables simplifiesthe represen-
tation of functionsat internal nodes.

Let Ny beagate-leve circuit which is obtained directly
by replacing the high-level functional descriptionsof mod-
ulesunit, and unit, withther gate-level implementations.
Since an implementation IV istypically generated by opti-
mizing Ny, we cannot guaranteethat the origina m bound-
ary points are completely preserved in terms of function-
ality in N. However, by our assumption we can roughly
divide the set of gatesin IV into two subsets U N IT; and
U N IT; corresponding to unity and unit, respectively so
that functionsrealized at the border of the two subcircuits
are“close” to f1, ..., fm. From (2) and (3) it follows that

fl»/(l‘l, ..

., &) = smplefunction; (y1, . . .
(Z: 1,...,m/)

aymaxla"'axn)

(4)
Expression (4) shows that introducing extra variables
v1, ..., Ym iS€ffectivein reducing the complexity of func-
tionrepresentations. Notethat implementations N/ and N/
satisfying (3) may not have any functionally equivaent in-
ternal nodes. So the class of implementation circuits sat-
isfying the basic assumption is much broader than that of
circuits verifiable by methods exploiting functiona equiv-
alence of internal nodes.

The verification procedure is organized as follows.
Firgt, functions X, . . ., X, are represented as BDDs over
variables x and y. Then intermediate functions imple-
mented by the gates of the circuit are computed in a topo-
logica order by function composition until primary out-
puts are reached. Whilethe size of BDDs over variablesx
typically increases as we move from inputsto outputs, the
size of BDDs over variables x and y behaves differently;
it has the first peak somewhere in U N IT7, but starts de-
creasing asweapproach theboundary between U N I'T; and
UNIT;. Once the boundary is passed, the size increases
againto primary outputs. Intuitively theintroduction of co-
ordinatefunctions X, . . ., X, replaces the dependency on
x with the dependency on y in boundary functions.

This paper is organized as follows. In Section 2 we de-
scribe the relationship between the proposed method and
other verification methods based on domain transforma-
tion. We then prove the correctness of the verification for-
mally in Section 3. Section 4 discusses how to construct
coordinate functions. In Section 5 we consider as an ex-
ample the special case where unit, isan adder and show



how effective coordinatefunctionscan be constructed from
the high-level functional specification of unit;. Section 6
gives experimenta results and Section 7 concludes the pa-
per.

2 Combinational Verification using
Domain Transfor mations

The method presented in this paper can be classified as
a domain transformation method, originally proposed by
Meind et al. [1]. The basic idea of domain transforma-
tionsisto transform a given function to a“simpler” func-
tion and represent the transformed function using BDDs.
Meinel showed that some functions whose BDD sizes are
proven to be exponentia under any variable ordering have
polynomial-sizeBDDsafter carefully constructed transfor-
mations.

Let A(xy,...,x,) be acompletely specified function.
[1] proposed to use a bijective transformation £ =
(i(x),...,fu(x)) : {0,1}* — {0,1}". Letz =
(z1,...,2n) be the variables corresponding to the trans-
formed domain. Given atransformation f, ~(x) is trans-
formedinto [ (z) = h(f~*(z)). By choosing an appropri-
atetransformation, it ispossibleto switch over toasimpler
function with a compact BDD.

An advantage of this type of transformations is that a
transformation maps afunction 2(x) to another completely
specified function H (z). Since H is uniquely determined
by f, any canonical representation of H serves as a canon-
ica representation of . However, so far only local do-
main transformations have been investigated [4] since the
bijective restriction on transformations sets the number of
transformation functions to the number of primary inputs.
Ontheother hand, intuitively good “ global” transformation
functions can be found only when a structura representa
tionof h isinvestigated. Therefore, the number of transfor-
mation functions should depend on the structure of A rather
than the number of primary inputs.

In [3] we considered the case where the number of
transformation functions f = (f1,..., fm) IS greater
than n. Transformation functions give an injective map-
ping from {0,1}" +~ {0,1}™. The main idea of [3]
is that a high-level functiona specification of i typically
has some auxiliary functions to simplify the description
and that those functions are good candidates for transfor-
mation functions. In particular we investigated transfor-
mations of the foom £ = (z1,...,%n, 9041, -, 9m),
where g, +1(x), .. ., gm(x) are auxiliary functionsused in
the functional specification of h.

Since f~! is not fully specified in this case, a function
h(x) is transformed into an incompletely specified func-

tion H(z). More specifically H(z) is not specified if vec-
tor z is not satisfiable, i.e. if there exists no x such that
f(x) = =. Instead of choosing acompl etely specified func-
tion compatible with H we represent H itself canonically
using athree-termina BDD where the third terminal node
represents a don't care. We further showed that the class
of functions having polynomial size BDD representations
of H subsumes the classes of functionshaving polynomial
size representationsin other canonical BDD extensions.

Onapractical side, however, experimentson benchmark
circuits showed that if one uses intermediate functions of
existing nodesin anetwork astransformationfunctions, the
size of thethree-valued BDD for H isoftenlarger than that
of the BDD for h over the origina set of input variables.

In this paper we look for coordinate functions X (z)
specifying an “inverse” mapping: {0, 1}™ — {0,1}". By
choosing an inverse mapping directly we select a unique
completely specified function /7/(z) = h(X(z)). There-
fore any canonical representation of H' isacanonica rep-
resentation of h.

3 Correctness of the Verification
Method

Theorem 1 If condition (1) holds, verification of functions
h;(x) isequivalent to that of functions »;(X).

Proof. Let Ny and N, be two circuits to be compared
implementing functions hi(x),. .., hi(x)
and h{(x),..., h},(x) respectively. If there exist x" and ¢
suchthat b, (x’) # b} (x'), then3(x*, y*), h(X(x*,¥%))#
M(X(x*,¥7)), wherex’ = X(x*,y*). If, onthe other
hand, there exist (x*, y*) and ¢ such that
hi(X(x",y")# h(X(x",y")) then hi(x') # hL(x'),
wherex’ = X(x*,y*). Therefore the equivaence of the
two verification problems holds. O

4 Finding Coordinate Functions

Let

x; if unit;(x) =y
pi(x,y) otherwise

Xi(x,y) = { ()

where p;(x,y) is an arbitrary function. (Vector (x,y)
is said to be satisfisble if unit;(x) = y.) It follows
that coordinate functions defined by (5) satisfy (1) since
X(x,unit;(x)) = x. We still need to guarantee that
X(x,y) have polynomia size BDDs.



First we consider the case when al outputsof unit, are
observable. Define X; inthefollowing way.

_fx it uniti(x) =y
X(xy) = { x'  otherwise ©)

wherex’ isavector such that unit, (x') = y.

Since unit; is surjective, we can always find the
x’ defined above. Under this particular choice of X,
unit1(X(x,y)) = y holds. Itiseasy to see thisby sim-
ple case anadysis. If unit;(x) = y, X(x,y) = x from
the definition of X, and it followsthat unit; (X(x,y)) =
unity (x) = y. If unity(x) # y, X(x,y) = x’ and by the
definition of X unit; (x') = y. Soagain
unity (X(x,¥y)) = unit; (x') = y.

An important property of coordinate functions X; spec-
ified by (6) isthat h;(X) does not depend on x since at the
boundary of unit, and unit, the dependency on x is com-
pletely removed. Thus functions X; can be seen as a way
of making h; depend on variablesy instead of x.

Note that it is very difficult to find fully automatically
functions X; satisfying (6) without any use of the high-
level specification for the following two reasons. First, for
each pair (x,y) such that unit; (x) # y, oneneeds to find
x' such that unit, (x’) = y. This problemisequivalent to
the satisfiability problem. Second, we are only interested
in functions X; whose BDDs are compact. To overcome
the first obstacle one needs an extremely fast satisfiability
problem solver. To surmount the second obstacl ethe solver
must provide“close’ solutionsfor “close” instances of the
satisfiability problem.

However, as demonstrated in Section 5, making use of
the high-level specification of unit; can drasticaly sim-
plify this step.

Now assume that there are unobservable outputs of
unity, i.e. Jy such that Vx.unit,(x) # y. Then def-
inition in (6) does not apply since the existence of x’ is
not guaranteed. However, the basic idea of replacing the
dependency on x with that on y till works. We cannot
find coordinate functions that unit; (X(x,y)) = y. In-
stead, we will ook for X(x,y) such that unit, (X (x,y))
are simple functionsof y. Once such coordinate functions
are found, we still have simple functions a the boundary
between U NIT, and U N IT5 as long as an implementa
tion circuit satisfies the basic assumption (3). A possible
solutionisto select X (x, y) so that itisequal tox”, where
vy = unit;(x") isas “close” as possibletoy. For ex-
ample one can take as y” the closest in Hamming distance
to y. This minimizes the number of cut functions f;(X)
for which f;(X(x,y)) # v:. Also, since vector x” is se-
lected independently of the value of x in (x,y), functions
unit,(x,y) areonly dependent ony.

5 Example

Consider the case where unit; inFigurelisan n-bit adder;
sum(a,b) = (s1(a,b),...,spy1(a,b)), wherea =
(a1, ...,an)andb = (by,...,b,) areinput operandswith
an, by, s,+1 being the most significant bits. Let 1 denote
avector consisting of n 1's. Notethat 17+! isthe only un-
observable vector at the outputs of the n-bit adder.

Let coordinatefunctions A = (A;,..., A,) and B =
(B1,...,Bn), where A; and B; de-
pendonay,...,an,b1,..., b0, y1,. .., Yns1, be Specified
in the following way

(a,b) if sum(a,b) =y

_) @b dseify 21
(A,B)(a,b,y) = where sum(a’,b’) = y
(1",1") otherwise

(7

Thelast part of the definitionisthe only difference from
the definition of X in (6). Sincey = 171! never appears
at theoutputsof theadder, x’ in (6) does not exist. We then
find a satisfiable vector y” whose Hamming distance from
y isminimum. One such vector is 01", where the first bit
istheleast significant bit. The input producing this output
isa =b = 1". Therefore, thereturn values of (A, B) for
thiscaseis (17, 17).

Itiseasy tocheck thats;(A,B) = y; ifi =2,...,n+1
andsi (A, B) =y - (o +...+7,41). Noticethat except
wheny = 1"*1, sum(A, B) = y. The dependency on a
and b iscompletely replaced with that on y.

Consider how to choose vector (a’,b’) when
sum(a,b) # y. andy # 1"*T1. Let int(a) denote the
integer specified by a. One simple way isto define a’ and
b’ sothat int(a’) = int(b’) = int(y)/2 if int(y) iseven
andint(a’) = [int(y)/2] and int(b’) = [int(y)/2] + 1
if y isodd.

Note that when finding x’ = (a’, b’) we exploit
high-level information that unit; is an adder.
Based on this we have a systematic way of ob-
tainingx’ for agiven unsati sfiabl e vector without
solving the satisfiability problem.

Under this particular choice of a’ and b’ af = y;41.
by = yiy1 ifint(y) isevenand b, = [incr(shift(y)));
otherwise, where shi ft isan n-bit-input (n — 1)-bit-output
function shifting y one position to the left (i.e. dividing
int(y) by 2), and iner isan (n — 1)-bit-input n-bit-output
function adding 1 to int(shift(y)).

TheBDD of thesatisfiability function unit, (x) = y for
the n-bit adder has a linear size in n under the following
variableorderingyy < a; < by < yo < as < by < ... <
Un < ap < b, < yna1. We confirmed experimentaly that
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Figure 3: Cascade circuit

the BDDs of A; and B; aso grow linearly in » under this
variable ordering.

These coordinatefunctions A, B can be used in any sit-
uation where an adder feeds another unit.

6 Experimental Results

Unfortunately combinational benchmark circuits cur-
rently available are specified at the gate leve directly and
do not come with any high-level functiona specification.
To create circuits with a known high-leve structure from
benchmark networks we constructed artificia networks
shown in Figure 3.

Each circuit consists of two blocks: the first block is
an n-bit adder whose outputs are connected to the in-
puts of the second block, which is a benchmark circuit.
The value n was chosen so that the number of outputs of
the adder n + 1 is equal to the number of inputs of the
benchmark circuit. Each composite circuit was optimized
by scri pt.rugged in SIS and was verified using two
methods. 1) the method described in this paper and 2)
a standard BDD-based approach where output BDDs are
computed in terms of input variables. To demonstrate that
the proposed verification method does not depend on the
way the adder isimplemented we used three different im-
plementations of the adder: a ripple-carry adder, a carry-
skip adder and a carry-select adder. The results of the ex-
periments are summarized in Table 1. Each column of the
table contai ns the following information.

o The name of abenchmark circuit used as unit,.

o Thenumber of inputsand outputsof the compositecir-
cuit and the number of gates in the optimized circuit.

e The results of the BDD-based verification: the tota
number of nodes in the BDDs for outputs under vari-
ableorderinga; < by < ... < a, < b, and CPU
timein seconds on DEC AlphaServer 84005/300. The
BDD-based verification was done only to composite
circuits with ripple-carry adders.

o The results of the verification based on coordinate
functions described in Section 5: the total number of
nodesin BDDsrepresenting the outputsin termsof the
extended set of variables (y, a, b) under variable or-
deringy; < a3 < by < ... < yp < ap < by < Yny1
and CPU timefor three different versions of adders.

The BDDsinterms of the extended set of variablesismuch
smaller than the BDDsin terms of primary input variables.
CPU timereductionis adso considerable.

7 Concluding Remarks

We presented a new combinational verification method us-
ing high-level functional specifications. The effectiveness
of this approach was demonstrated by taking cascade cir-
cuitsas an example. Thistechnique can be extended to net-
works with more complex topol ogies.

Although our approach requires designer’s interven-
tion, this human interaction makes it possible to verify
a broader class of circuits than by existing techniques.
Roughly speaking there are two approaches to solving an
NP-compl ete or harder problem. Thefirst isto focus on a
specific class of instances and devel op algorithmsby taking
advantages of the propertiesof theclass. Verification meth-
ods exploiting structural similarity fal into this category.
The other approach is based on agorithms with user in-
teraction. Such agorithms use high-level information that
cannot berecovered by brute-force computations. The pro-
posed method is an example of such an approach sincethe
use of coordinate functions can be considered as a way of
“pumping” high-level information into algorithms.

References

[1] J. Bern, C. Meind, and A. Slobodova.  Efficient
OBDD-based Boolean manipulation in CAD beyond
current limits. In Proceedings of 32nd Design Automa-
tion Conference, pages 408413, June 1995.

[2] R. E. Bryant. Graph-based agorithms for Boolean
functionmanipulation. |EEE Transactionson Comput-
ers, C-35(8):677—691, August 1986.

[3] E. Goldberg, Y. Kukimoto, and R. K. Brayton. Canon-
ica TBDD's and their applications to combinational
verification. In ACM/IEEE International Workshop on
Logic Synthesis, May 1997.

[4] C. Meind and T. Theobald. Locd encoding trans-
formationsfor optimizing OBDD-representations of fi-
nite state machines. In Proceedings of First Interna-
tional Conference on Formal Methods in Computer-



BDD-based Our method
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