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Abstract
In this paper, we present a comprehensive high-level synthe-

sis system that is geared towards reducing power consumption
in control-flow intensive circuits. An iterative improvement al-
gorithm is at the heart of the system. The algorithm searches
the design space by handling scheduling, module selection, re-
source sharing and multiplexer network restructuring simultane-
ously. The scheduler performs concurrent loop optimization and
implicit loop unrolling. It minimizes the expected number of cy-
cles of the schedule without compromising on the minimum and
maximum schedule lengths. A fast simulation technique based
on trace manipulation aids power estimation in driving synthesis
in the right direction. Experimental results demonstrate power
reduction of up to85% with minimal overhead in area over area-
optimized designs operating at 5V.

1 Introduction
The increase in demand for portable electronics has resulted

in a proliferation of research initiatives for reducing power con-
sumption at different levels of the design hierarchy. We present
a comprehensive high-level synthesis system, with a low-power
directive, for applications comprised of both control and data pro-
cessing.

It is shown in [1] that significant savings in power may be
achieved at higher levels in the design hierarchy. High-level
synthesis applications may be categorized as data-dominated,
control-flow intensive (CFI), or control-dominated. Most high-
level synthesis techniques for low power have targeted data-
dominated designs, namely for digital signal processing and im-
age processing applications [2]-[6]. However, today’s network-
centric systems are more likely to require both control and data
processing, and may contain a large number of nested loops and
conditionals. These CFI circuits include network protocol han-
dlers, modern ATM network switches and graphics controllers.
Control-dominated circuits, such as sequencers, consist almost
exclusively of control-flow. A high-level synthesis system for
such circuits is given in [7]. Past work in high-level synthesis for
CFI designs has mostly targeted performance and area, with the
exception of [8], where a profile-driven technique for low power is
presented. In [9, 10], timing analysis and loop-directed schedul-
ing drive high-level synthesis of CFI circuits. A number of effi-
cient algorithms are applied to each high-level synthesis task in
the system presented in [11]. The systems described in [9]-[11]
do not target low power consumption. However, some general
estimation techniques have been proposed in [12] where a user-
defined cost function drives synthesis.

In this paper, we present the first comprehensive high-level
synthesis system geared towards achieving low power designs
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for CFI applications. Our algorithm can efficiently handle data-
dominated applications as well. The algorithm is based on it-
erative improvement and allows an exploration of the design
space by interleaving synthesis tasks such as scheduling, alloca-
tion, resource sharing and module selection and, hence, exploits
their interdependency to reach a solution. In addition, the al-
gorithm specifically targets power reduction in multiplexer net-
works, which has been shown to account for more than 40% of
power consumption in CFI circuits [13].

2 Preliminaries
High-level synthesis is the process of translating a circuit’s

behavioral description into an appropriate register-transfer (RT)
level design. Properties such as unbounded loops, and variable
path delays make high-level synthesis tasks such as scheduling,
allocation and assignment, and clock and module selection very
challenging for CFI circuits. This section describes a model for
representing the behavior, and discusses scheduling and power es-
timation techniques for CFI specifications. The remaining high-
level synthesis tasks are covered in Section 3.

2.1 The Control-Data Flow Graph Model
In high-level synthesis, directed graph structures called data-

flow graphs (DFGs), control-flow graphs (CFGs) and control-data
flow graphs (CDFGs) have been used as the intermediate repre-
sentation for a behavioral description. DFGs are usually asso-
ciated with data-dominated designs, while CFGs are associated
with CFI designs. In [14], it is argued that while these two repre-
sentations simplify tasks, such as scheduling, each has its disad-
vantages: DFGs cannot represent control structures, and CFGs
cannot represent parallel processes. The problem is partially
solved by using both DFGs and CFGs, where the DFGs represent
basic blocks of code. This solution produces artificial boundaries,
however, between basic blocks and prevents optimizations that
may result from migrating operations between the basic blocks.
To overcome these obstacles, DFGs and CFGs are combined into
one model called a CDFG [11, 15, 16]. Our CDFG model is a
variation of that introduced in [11], as described below.

We start with an input specification described in a hardware
description language that has been compiled into a CDFG. Fig-
ure 1 illustrates an example of a CDFG (called Loops), with one
conditional branch, and three loops. The two rightmost loops ex-
ecute concurrently if conditionc is false. The CDFG nodes are
comprised of arithmetic, logical and comparison operations, and
special data merge and loop exit nodes. The edges in the graph
connect various nodes and, hence, describe the data and control
inter-node dependencies. A noden is data-dependenton node
n0 if n uses the result fromn0 to evaluate its output. Noden
is control-dependenton n0 if it uses the result fromn0 to decide
whether it should execute or not.

In Figure 1, some nodes represent operations that map directly
from functions in the behavioral description. These include arith-
metic functions such as ADD (+1), MULTIPLY (�2), comparison
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  for (i=0; i<10; i++) {

c = a &&b;

    e = d * i;
    z = z + e;

if (c==1) {
  z = 0;

  }

3
Elp

3

} 

  for (i=0; i<10; i++) {

  for (j=0; j<8; j++) {

    g = i - h;
    h = g + 5;

    m = m + k;

  z = h - m;

  h = 8;

  m = 0;
  }

  }

}

    k = d * j;

else {
1

Figure 1: Code and CDFG of Loops
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Figure 2: Control ports and their effect

functions such as LESS THAN (<3), EQUAL TO (==1), and
Boolean functions such as AND (&&1). Other nodes do not map
directly from a function, but are used to help represent structures
such as loops and branches. Thesestructuralnodes include select
(Sel) and end-loop (Elp). Selis similar to a 2-to-1 multiplexer and
is used to merge branches from a conditional fork. OneSelnode
merges the two branches of conditionc in Figure 1. Elp nodes
terminate loops, and store any values that need to be passed on
to nodes outside the loop body. In Figure 1, there are three loop
structures terminated byElp nodes.

In previous works that utilize CDFGs, it has been the conven-
tion to represent control dependencies by edges in the graph. We
introduce the concept ofcontrol portsfor this purpose. A con-
trol port is an abstraction that accepts an edge as an input, and
evaluates the value on the edge independently of the operation
performed by the node. Each node has exactly one control port,
and each control port has an assignedpolarity that describes the
control condition required for its node to execute. There are three
possible conditions:active-high(node executes on a true value,
shown as a “+”), active-low (node executes on a false value,
shown as a “�”) or null (node is control-independent). Given that
the data values have arrived at all its inputs, a node will execute
its assigned operation when the edge entering its control port car-
ries a value that matches its polarity. Figure 2 gives examples of
the control-port representation. In Figure 1, there are seven nodes
with positive polarities, five with negative polarities, and seven
without any explicit control dependencies.

With the above convention in place, edges become only

carriers of data values, and are no longer
concerned with whether this data is for
control or processing. However, for ease
of understanding, edges that enter con-
trol ports are illustrated as dashed ar-
rows, and others as solid arrows. An
edge may carry a constant value (e.g.10),
or a variable (e.g. a) that may be mod-
ified throughout the CDFG. Edges may
also carry an initial value, which is de-
noted by a number in braces. This is
useful for loop iterators such asj in Fig-
ure 1, where the edge forj is initially set
to 0.
2.2 Scheduling of CFI Behav-
ioral Descriptions

Scheduling is the process of assign-
ing nodes in the CDFG to states, and
connecting the states via conditions to
form a state transition graph (STG) [17].

Scheduling techniques for CDFGs given in [11, 16] are primarily
concerned with increasing resource sharing among operators in
order to improve area, while those given in [9, 17] are applicable
to CFGs only. None of these techniques support concurrent loop
optimization. Hence, even the techniques that are applicable to
CDFGs, do not take full advantage of the inherent parallelism of
CDFGs. Also, loop unrolling is only handled in [9].

We use a new scheduling algorithm calledWavesched[18].
Waveschedsupports loop unrolling and concurrent loop optimiza-
tion, and attempts to minimize the expected number of cycles
(ENC) [9] of a schedule without compromising on the minimum
and maximum schedule lengths.Waveschedhas been shown to
reduce the ENC by up to a factor of five over the schedule derived
by the techniques presented in [9, 17]. Once an STG is available,
both the datapath and controller may be optimized for low power
dissipation.
2.3 Power Estimation

In high-level synthesis, it is computationally impractical to
perform accurate gate-level simulations to estimate power at each
step of the synthesis process. For this reason, we need to rely on
a model at a higher level, that will be relatively accurate to drive
synthesis in the right direction. In [19], a power estimation tech-
nique for CFI circuits, that takes glitches into account and uses
signal statistics, is presented. The mean and standard deviation
of the switching activities, and the spatial and temporal correla-
tion of signals are evaluated for each functional unit, register, and
multiplexer, to produce an accurate estimate of the overall power
consumption.

The necessary statistics may be obtained by performing
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Figure 3: 3-addition example CDFG

behavior level
or RT level
simulations of
the design using
typical input
sequences. It
might be desir-
able to perform
the simulations
at each step of
the synthesis
process. How-
ever, by doing
so, the synthesis
system will incur
a large runtime
performance hit.
To overcome

this obstacle, an RT level simulation technique based ontrace



manipulation is presented here. This technique records signal
traces of the inputs and outputs of each functional unit, register,
and multiplexer, and transforms signals appropriately when a
synthesis task (resource sharing, module selection) is executed,
without the need for re-simulation. A trace is a sequence of vec-
tors which consists of signal values that appear at the input and
output of an RT level unit. For example, consider an adder with
input vectorsi1 = [0101] and i2 = [0001]. The output vector
for the adder, as a result of these inputs, is[0110]. Therefore, the
adder’s trace for this particular input set is[0101; 0001j0110].
Values at the inputs and output of the adder are evaluated via
simulation, and an accurate simulation requires hundreds of input
vectors. Hence, the trace for the adder is the collection of all
the different input and corresponding output vectors, vertically
ordered in time. Considering there are hundreds of vectors for
each RT level unit, it is clear why repeated simulations are not
desirable.

To explain trace manipulation, consider the CDFG given in
Figure 3. An initial behavioral simulation will produce traces for
each of the edgese1 throughe11 in the CDFG. The symbolic
traces (i.e. in terms ofe1 throughe11) for the three addition oper-
ations are:

Trace In1 In2 Out

TR(+1) e2 e3 e7

TR(+2) e1 e7 e9

TR(+3) e7 e4 e10

For the fully parallel architecture (one-to-one mapping of the
CDFG), given in Figure 4, the trace for each adder is the same as
the trace for the corresponding addition operation, or:
TR(+1) = TR(A1); TR(+2) = TR(A2); TR(+3) = TR(A3):

Next, assume that there is only one adder to use. The resulting
RT level implementation of the CDFG is shown in Figure 5. This
implementation may be re-simulated to evaluate the traces. How-
ever, simply merging the previous traces will produce the same
result faster. The trace for the adder becomes:

Trace In1 In2 Out

TR(A1je8) e2 e3 e7

e7 e4 e10

TR(A1j �e8) e2 e3 e7

e7 e1 e9

The trace is dependent on conditione8. Suppose that for a set
of four input passes, the condition evaluates ase8 = [T, T, F, T].
It may be seen from the STG shown in Figure 6 that the traces of
(+1, +3), (+1, +3), (+1, +2), and (+1, +3) need to be merged.
The resulting trace becomes:

Trace In1 In2 Out

TR(A1) e2 e3 e7

e7 e4 e10

e2 e3 e7

e7 e4 e10

e2 e3 e7

e7 e1 e9

e2 e3 e7

e7 e4 e10

It is clear from the above example that, in addition to know-
ing the traces, the STG of the CDFG must be available. The
STG determines (1) the order and types of operations, and (2)
the conditions under which they execute. In general, for each
functional unitDu there is a matrixTR(opi), for each operation
opi that is mapped toDu. TR(opi) is a [(e+ o)� 1] matrix,
wheree is the number of input edges to the operation ando is
the number of output edges (typically 1). For a pathP through
the STG, the traces of each operationopi encountered onP ,
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Figure 5: Shared RT architecture for 3-addition example

TR(opi); T (opi+1):::T (opi+n), are merged to form the trace of
Du, given byTR(Du). A similar approach is used for registers
and multiplexers, where the traces for CDFG variables and edges
are merged. These traces are then used to obtain the statistics re-
quired for the CFI power estimator presented in [19], that enable
it to compute a power number for the given synthesis step.

T = TRUE
F = FALSE

TF

Sel

+ <

+Sel+ 2 1

1 1

3 1

Figure 6: STG for the trace manipulation example

A synthesis process may proceed entirely on one initial behav-
ioral simulation as long as certain types of moves are not made in
the synthesis process. The moves are those that introduce paths
in the CDFG that may not have been exercised in the initial simu-
lation. Re-simulation is done on an as-needed basis, hence amor-
tizing the cost of one simulation over multiple instances of trace
manipulation.

3 The Synthesis Algorithm
For even moderately-sized designs, complex interaction

among synthesis tasks makes it computationally infeasible to ex-
haustively search for an optimal solution. To obtain good results
in a relatively short amount of time, we must resort to heuristic
methods. The concepts presented in Section 2 go hand-in-hand
with an iterative improvement algorithm to form the synthesis
system. Our algorithm is called IMPACT (Iterative iMrovement,
Power optimizing Algorithm for Control-flow inTensive designs).
While developed primarily for CFI designs, the system can effi-
ciently handle data-dominated designs as well.



3.1 Iterative Improvement
In [20], iterative improvement has been shown to be an ef-

ficient algorithm in terms of both execution time and qual-
ity of results, which are both desirable for high-level synthesis
tasks. In [3], an iterative improvement algorithm, calledSCALP,
has been presented for high-level synthesis of low power data-
dominated circuits. This algorithm has the ability to simultane-
ously handle scheduling, module selection, and resource sharing
to arrive at efficient architectures. It is based on avariable-depth
searchstrategy, where sequences ofmovesare applied to an ini-
tial RT level architecture and evaluated. The sequence that pro-
duces the best improvement orgain, for the specified cost func-
tion, is chosen. The algorithm has the ability to escape local min-
ima by allowing individual moves in a sequence to have negative
gain. IMPACT retains the positive features ofSCALP, while sig-
nificantly generalizing its capabilities to handle CFI behavioral
descriptions, not just data-dominated descriptions.

Figure 7 is a block diagram illustrating our high-level synthe-
sis system, IMPACT. The initial steps of the algorithm are straight-
forward. First, a behavioral simulation is performed to obtain the
traces and statistics necessary for power estimation. The initial RT
level architecture is a parallel architecture, in which each node is
assigned to a separate functional unit, each functional unit is cho-
sen to be the fastest module available in the library, and each vari-
able is assigned to a separate register. The CDFG is scheduled
using a clock period defined by the designer. The signal trace
statistics are then plugged into the power estimator to produce
a power number. Together with the parallel RT level architec-
ture, the power number serves as an initial solution to the iterative
improvement algorithm. The algorithm exits once further power
reduction is no longer possible.
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Figure 7: Block diagram for IMPACT
3.2 Moves for Iterative Improvement

In the subsequent subsections, we describe the different itera-
tive improvement moves that are applied during the synthesis pro-
cess. First, we introduce a new RT level transformation technique
that specifically targets power reduction in multiplexer networks.
We then proceed to describe the module selection and resource
sharing moves.
3.2.1 Multiplexer Tree Restructuring

Interconnect in the form of multiplexer networks may con-
sume more than 40% of the total power of a CFI circuit [13].
We introduce a new RT level technique that targets multiplexer
trees and restructures them to reduce power consumption. Mul-
tiplexer decomposition has also been used at the logic level to
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Figure 8: CDFG for the multiplexer example
reduce power consumption [21]. To motivate this move, consider
the CDFG given in Figure 8. The following information is given:
the clock period is 15ns, the delay of an adder is 10ns, a chained
adder incurs 10% delay overhead, and the delay of a multiplexer
is 3ns. Trace analysis provides the activity measures for each
RT level unit and the probabilities for each branch being taken.
Suppose the relative switching activity (branch probabilities) are
found to be: e1 =0.6(0.7),e2 = 0.1(0.2),e3 = 0.2(0.05) and
e4 = 0.1(0.05).
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Two RT level implementations of the CDFG of Figure 8 are
shown in Figures 9 and 10. The first is implemented using a bal-
anced multiplexer tree, while the second is not. By examining
Figure 9, the following observations can be made: (1) the delay
through the first branch (e1), with two chained adders and two
multiplexers, will be> 15ns (10ns + 1ns + 3ns + 3ns), and
hence require two cycles, and (2) the signals from the two most
probable branches (e1 ande2) have to travel through two multi-
plexers to reach the output. We claim that the implementation in
Figure 10 consumes less power. Removing a multiplexer from
the most probable branch path: (1) reduces the delay of the path
to< 15ns (10ns+1ns+3ns), saving a cycle and hence enabling
Vdd scaling, and (2) reduces the switching in the multiplexer tree
by 34%. Switch-level simulations (based on a switch-level circuit
extracted from the layout) verify our claim, and show that the im-
plementation of Figure 9 consumes10:1 mW of power, while that
of Figure 10 consumes6:0 mW of power.

An n-to-1 multiplexer is represented as a tree of 2-to-1 multi-
plexers. The intuition behind the multiplexer move is to restruc-
ture a tree such that signals with high activity-probability (ap)
product are closer to the output. Doing so reduces the switched
capacitance in the high activity paths and, hence, reduces power
consumption. In the following analysis, a probabilistic approach
is used and some well-known algorithms from the coding theory
domain are applied.
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Examine then-to-1 multiplexer shown in Figure 11. From the
STG and trace simulation, two important statistics may be de-
rived: (1) the transition activity numberai, which represents the
level of switching in input signali, and (2) the probability of prop-
agationpi, which represents the probability that a signali will
appear at the output of the multiplexer tree (this is synonymous
with the branch probability of a path). The sum ofpi’s for a given
multiplexer tree is 1 (i.e.

P
n

i=1
pi = 1). The switching activity

of the multiplexer tree is defined as:

Atree =

n�1X

k=1

Ak; (1)

whereAk is the activity of individual 2-to-1 multiplexers, and
the switching activity of an individual leaf (level-0) multiplexer,
is given as the sum of theap’s normalized by the respective prob-
abilities or:

Ak =
aipi + ai+1pi+1

pi + pi+1
1 � k �

n

2
(2)

The activity at the output of the leaf multiplexers is also given
by the above equation, while the output probability of the 2-to-1
multiplexer is the sum of its input probabilities. The input activity
(probability) of a level-1 multiplexer (e.g.Mn=2+1) is the output

activity (probability) of the multiplexers at its inputs. ForMn=2+1

the activity is given by :

AMn=2+1
=

AM1
(p1 + p2) +AM2

(p3 + p4)

(p1 + p2) + (p3 + p4)
and, (3)

AM1
=

a1p1 + a2p2

p1 + p2
; (4)

AM2
=

a3p3 + a4p4

p3 + p4
(5)

Putting Equations (4) and (5) into Equation (3) yields

AMn=2+1
=

a1p1 + a2p2 + a3p3 + a4p4

p1 + p2 + p3 + p4
(6)

Therefore, the activity of a level-1 multiplexer is equivalent to
having the four inputs of its predecessors directly feeding it (i.e.
it appears to be a 4-to-1 multiplexer), and may be found using
the same analysis as the leaf multiplexers. The total activity of
the 4-to-1 multiplexer represented byM1;M2 andMn=2+1 is the
summation of Equations (4), (5), and (6). Performing this analy-
sis recursively down the multiplexer tree results in a value for its
switching activity. The equation will be of the form:

Atree =
a1p1 + a2p2

p1 + p2
+

a3p3 + a4p4

p3 + p4
+ ::: +

an�1pn�1 + anpn

pn�1 + pn
+

a1p1 + a2p2 + a3p3 + a4p4

p1 + p2 + p3 + p4
+ ::: +

an�3pn�3 + an�2pn�2 + an�1pn�1 + anpn

pn�3 + pn�2 + pn�1 + pn
+

...
a1p1 + a2p2 + a3p3 + ::: + anpn (7)

Returning to the example of Figure 8, applying these equations to
the multiplexer tree in Figure 9, the activity is found to be 1.09.
The activity in the multiplexer tree in Figure 10 is 0.72, a reduc-
tion of 34%.

RESTRUCTUREMUX (DatapathD, SignalsList S) f
Ordered Signals ListSord = ORDER SIGNALS L IST(S);
//Place signals in increasingap order
HUFFMAN CONSTRUCT(Sord);

g

HUFFMAN CONSTRUCT(SignalsList S) f
if (size of(S) > 1) f

ASSIGN MULTIPLEXER(S[0],S[1]);
// assigns a multiplexer to the two signals and
// removes them from list
Activity-Probabilityapnew = (PROB(S[0]) + PROB(S[1]))�P

k2sub-tree
ACTIVITY (Mux(k));

// sum up the activity of all multiplexers in the sub-tree
New signals = CREATE NEW SIGNAL(apnew);
S = APPEND(s);
Sord = ORDER SIGNALS L IST(S);
HUFFMAN CONSTRUCT(Sord);

g
return ;

g

Figure 12: Pseudo-code for multiplexer tree restructuring
It may be seen from Equation (7) that the term for the root

multiplexer is a constant and independent of how the tree is or-
dered. The remaining terms, however, are sensitive to ordering.
Simply exchanging two of the input terms (e.g. a1p1 anda3p3)
will result in a different value for switching activity. Finding an



optimal ordering (both vertical and horizontal) to minimizeAtree

is computationally intensive. A heuristic solution to this problem
may be obtained by making the following observation: ranking
the inputs in the order of increasingap’s, and ignoring the normal-
izing denominators in each term of Equation (7), transforms the
problem to a source encoding problem from coding theory. For
source encoding, the goal is to assign the source-words (signals)
with high probability (ap), short code words (distance to output),
and source-words with low probability, longer code words. The
Huffman algorithm will find an optimal solution by minimizingP

n

i=1
aipili, whereli is the distance of signali from the output.

However, with the presence of the normalizing terms, the Huff-
man algorithm is a greedy algorithm and produces only an ap-
proximate solution. Still, we can benefit from the algorithm since
it is fast, and may help reduce switching activity in the multiplexer
tree. Figure 12 contains the pseudo-code for the algorithm used.
The algorithm creates a list by placing the signals in the order of
increasingap’s. It assigns a multiplexer to the two signals with
the leastap. The two signals are removed from the list, and the
output of the new multiplexer becomes a new signal. Theap of
this new signal is evaluated using the equations presented, and
it is placed in order with the remaining signals. The algorithm
proceeds recursively until all signals have been assigned to a mul-
tiplexer. A multiplexer restructuring move is allowed to increase
the delay of some signals only if this is compensated for during
successive moves.
3.2.2 Module Selection/Substitution

There are many VLSI implementations for different functions,
and it is important to capture the diversity of these implementa-
tions in the module library. Module substitution replaces a func-
tional unitf in the data path with another functional unitf 0 that
performs the same operation asf , but has different properties in
terms of performance, area, and power (e.g.replace anarray mul-
tiplier with a larger and fasterwallace tree multiplier). Moves of
this type may or may not require re-scheduling of the CDFG. Re-
scheduling may be avoided if replacingf with f 0 does not violate
the cycle time constraint in every state thatf appears in (shown
by the dashed arrow in Figure 7). If a violation occurs, then it
becomes necessary to re-schedule the CDFG. Hence, replacingf
with a faster instancef 0 does not require a re-scheduling. We can
generalize this method by allowing intermediate solutions to vio-
late the cycle time constraint, as long as a later move ensures that
the constraint is met.
3.2.3 Resource Sharing/Splitting

Resource sharing is the process of using the same hardware
to perform different operations (of the same type) in the CDFG,
or to store values of different variables. Resource sharing may
have both an adverse and positive effect on power consumption.
Increased resource sharing tends to reduce physical capacitance,
but also increases the amount of switching activity. Perform-
ing resource sharing (splitting) allows the system to examine the
trade-offs between increasing (decreasing) switching activity and
reducing (increasing) circuit capacitance. A resource split is the
process of assigning separate functional units (registers) to oper-
ations (variables) that originally shared the same functional unit
(register). For example, suppose two operations+2 and+3 share
an adder�. A split will assign a new functional unit, adder� (of
the same library type as�) to+3.

Resource sharing may only occur between two similar op-
erations, unless the library element performs multiple functions
(e.g.an ALU). When a resource sharing move is performed, re-
scheduling is necessary since the operation assignment set is re-
duced in size by one functional unit. On the other hand, re-
scheduling is not needed after a resource split because the new
assignment set is a superset of the previous one.

Resource sharing across mutually exclusive operations (oper-
ations that can never execute at the same time) can help reduce
the number of states. This does not imply an improvement in per-

formance, but it does usually imply a smaller controller, which in
turn may be beneficial for area and power.

4 Experimental Results
Next, we present the results obtained by the IMPACT high-

level synthesis system. The system is implemented in C++. The
benchmarks used are our Loops example shown in Figure 1,
Greatest Common Divisor (GCD) [22], the send process of the
X.25 communications protocol [9], a Blackjack dealer process
(Dealer) [10], the co-ordinate transformation algorithm Cordic [2]
and Paulin [23]. The last benchmark is used to demonstrate the
system’s ability to efficiently handle data-dominated designs.

Each of the benchmarks is compiled into a CDFG and fed to
IMPACT. The synthesis process attempts to reduce power con-
sumption by using the algorithm described in Section 3. The
MSU standard cell library with the logic synthesis toolSISis used
to transform the RT level design into a logic-level netlist. The
Octtoolssuite is then used to perform layout and routing of the
controller and datapath, followed byIRSIM-CAP, a switch-level
simulator (which works on a switch-level description extracted
from the layout), for computing the power consumption of the
circuits. Since the measurement of power consumption is based
on layouts, various components of power, such as glitching power,
clock power, interconnect power, and controller power, which are
difficult to estimate at the higher levels, are taken into account.

The results are presented in Figure 13 as plots ofnormalized
power and areavs. laxity factor. The laxity factor is the ratio
of the given ENC to the minimum ENC that can be obtained us-
ing the given library of components. For each benchmark, cir-
cuits are synthesized at laxity factors ranging from 1.0 to 3.0 un-
der area-optimization mode and then power-optimization mode.
The results are normalized with respect to the base area-optimized
designs operating at 5V. We plot the power consumption for the
area-optimizedVdd-scaled circuits (A-Power), and for the power-
optimized circuits (I-Power). The ENC,i.e. the performance, of
these two sets of circuits that are compared is equal. We also
plot the area of each power-optimized circuit (I-Area) normalized
with respect to the base area-optimized circuit, to indicate the area
overhead incurred due to power optimization.

Our power-optimized circuits result in up to6:7-fold power
reduction over the base area-optimized circuits, and up to2:6-
fold power reduction over area-optimized circuits which are also
Vdd-scaled. The price paid for power optimization is an increase
in area of no more than30%.
5 Conclusions

In this paper, we presented a high-level synthesis system that
targets CFI designs. Such designs comprise a large portion of
today’s portable electronics. The system uses an iterative im-
provement algorithm to successfully take into account the inter-
action among the different synthesis tasks. The techniques used
to search the design space are module selection, scheduling, re-
source sharing/splitting and multiplexer tree restructuring, all of
which are performed simultaneously. Our system employs a new
scheduling algorithm that performs concurrent loop optimization
and implicit loop unrolling, and a fast simulator, based on trace
manipulation, to produce accurate signal statistics used for power
estimation. While no other comprehensive high-level synthesis
system exists for optimizing power in CFI circuits that we could
compare our results to, we have achieved results comparable to
those reported by comprehensive data-dominated power optimiz-
ers by reducing power consumption with small area overhead.
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