
Hardware/Software Co-Design of a Fuzzy RISC Processor

Valentina Salapura Michael Gschwind�

valentina@vlsivie.tuwien.ac.at mikeg@watson.ibm.com

Technische Universität Wien Technische Universität Wien
Treitlstraße 1-182-2 Treitlstraße 1-182-2

A-1040 Vienna, Austria A-1040 Vienna, Austria

Abstract
In this paper, we show how hardware/software co-

evaluation can be applied to instruction set definition. As
a case study, we show the definition and evaluation of in-
struction set extensions for fuzzy processing. These in-
structions are based on the use of subword parallelism to
fully exploit the processor’s resources by processing mul-
tiple data streams in parallel. The proposed instructions
are evaluated in software and hardware to gain a balanced
view of the costs and benefits of each instruction. We have
found that a simple instruction optimized to perform fuzzy
rule evaluation offers the most benefit to improve fuzzy pro-
cessing performance.

The instruction set extensions are added to a RISC pro-
cessor core based on the MIPS instruction set architecture.
The core has been described in VHDL so that hardware
implementations can be generated using logic synthesis.

1 Introduction
In this work, we analyze how fuzzy processing can

be implemented efficiently on general purpose CPUs and
what functionality is required to achieve peak performance.

Instruction sets are often optimized for some software
metric such as a minimum number of clock cycles, but this
approach neglects the hardware impact of the proposed in-
structions. While some instructions may reduce the cycle
count, they may also lengthen the cycle time and even re-
sult in a net performance loss. To obtain a more balanced
view of software and hardware implications of instructions,
a co-design approach to instruction set definition is neces-
sary.

In this work, we show how proposed instruction sets can
be evaluated for both its impact on program performance
and on hardware efficiency. This approach is demonstrated
with the evaluation of fuzzy instruction set extensions us-
ing the hardware/software co-evaluation method.

�Dr. Gschwind is currently with the IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, NY 10598.

Fuzzy computation can be implemented on any general
purpose processor. However, because instruction set ar-
chitectures were not designed with fuzzy computation in
mind, the available primitives can result in an inefficient
implementation. A possible approach to rectify this situa-
tion is to introduce additional instruction set primitives to
efficiently support fuzzy processing.

The proposed fuzzy instruction set extensions have been
designed to optimally exploit the available processing re-
sources by using subword parallelism. Because fuzzy com-
putation operates with short data types, multiple data can
be packed in a single 32 bit processor word.

As a starting point for optimizing fuzzy performance,
we use a RISC processor core based on the popular MIPS-
I instruction set architecture [1]. Both the processor core
and the added application specific instructions have been
described using the VHDL hardware description language
[2], and synthesized using logic synthesis.

This paper is organized as follows: section 2 intro-
duces the hardware/software co-design methodology we
have used for instruction set architecture evaluation and
section 3 gives an overview of related work. In section 4,
we describe the MIPS RISC processor core which serves
as starting point for our design. We give an overview of
fuzzy issues and the proposed extension of the processor
in section 5. The hardware/software co-evaluation of the
fuzzy instructions is given in section 6 and we draw our
conclusions in section 7.

2 Hardware/Software Co-Design of Instruc-
tion Sets

The evaluation of the instruction set architecture is a
major issue in the design of application specific instruction
processors [3]. To optimize processor performance for a
particular application, a common approach is to extend the
instruction set by application specific instructions. Many
instruction set extensions have been proposed, such as for
signal processing or multimedia processing.

Adapting an instruction set to a particular problem is a

difficult task, as many unknown issues have to be explored.
Due to the many factors involved in performance optimiza-
tion, suggested optimization solutions often minimize only
the number of instructions necessary to solve a problem, or
at best the number of cycles.

However, many of the suggested special purpose in-
structions are complex. As a result, it may not be possi-
ble to clock an extended processor at the same frequency
as the original design. This is often neglected by studies,
as the processor characteristics can be difficult to predict,
and as a full implementation of a processor is often out of
scope. Thus, studies most often use instruction or cycle
level simulators such as SPIM [4] to predict performance.
While these instruction set emulators can be used to test
software, generate traces and gather statistics, they do not
allow to predict the effects of the extended instruction set
architecture on the processor design itself.

In this work, we evaluate the instruction set architec-
ture (ISA) optimized for fuzzy computations usinghard-
ware/software co-evaluationof instruction set extensions
to gain a more balanced view of the benefits of different
instruction sets.

Proposed instructions are evaluated in hardware and
software to establish the performance impact of each in-
struction:

� Software evaluation can be performed using program
traces, instruction set simulators or object code instru-
mentation. During this step, the cycle count of bench-
marks is established.

� Hardware evaluation is performed using rapid proto-
typing based on logic synthesis. To evaluate hardware
effects of instruction set extensions, we have designed
an extendible RISC processor core. Instructions are
implemented and the extended processor architecture
is synthesized to establish cycle time and chip area.

Using the information derived from these steps, the ben-
efits of each proposed instruction can be evaluated in or-
der to decide whether to implement a particular function
in hardware or in software. Effectively, this process moves
functional blocks from software to hardware or vice versa
to optimize performance and cost.

Using this co-evaluation approach, we have evaluated
several application specific instruction set extensions to
implement a memory prefetching mechanism and other
performance enhancing extensions, including tag support
for dynamically typed languages such as Prolog [5]. In
this work, we evaluate instruction set extensions optimized
for fuzzy computation.

Previously presented automatic instruction set defini-
tion approaches have used either pipeline scheduling or
module selection to define an “optimal” instruction set.

Alas, these automatic approaches cannot consider or op-
timize data layout based on such methods as subword data
parallelism which require human intervention to adapt the
data layout to a particular problem set.

3 Related Work
Instruction set definition has previously been addressed

in a number of publications, but the authors have treated in-
struction set design and instruction set selection mostly as
a scheduling problem of operations [7], [8], or as a module
selection problem [9].

Scheduling approaches derive the best combination of
operations to be executed in a pipeline or where to put
them in a pipeline. One starts from a fixed pipeline and
tries to schedule operations found in application programs
to achieve high resource utilization of different functional
blocks available in the pipeline [7]. A different approach is
the partitioning of instructions on different pipeline steps
while the instruction set is mostly fixed and the operations
are mapped on the different pipeline stages to reduce delay.

The module selection approach [9] uses frequency anal-
ysis of software traces to determine the types of instruction
to be supported by processor. Then most frequent opera-
tions are implemented in hardware selecting from a fixed
set of modules, but no thought is given to the impact of
implementing a functional block in hardware on the cycle
time.

Both the pipeline scheduling and module selection ap-
proaches cannot generate new logic resources. An ap-
proach which can actually generate new logic capabilities
for a processor has been presented in [10] for an adaptive
machine architecture. Here, the compiler extracts func-
tionality from a high-level languages description and im-
plements it in field-programmable gate arrays (FPGAs) at-
tached to a processor. Alas, this approach suffers from high
communication overhead between the processor and the at-
tached FPGAs and also the idioms recognized by the sys-
tem seem rather limited.

Thus, to generate truly optimized logic, human in-
tervention as supported by our hardware/software co-
evaluation approach is still required to make the best usage
of logic capacity.

In the area of fuzzy processing, a number of approaches
have been used to optimize fuzzy processing based on ei-
ther custom hardware implementations or programmable
solutions, using custom hardware processors or extensions
to existing processors.

Custom fuzzy implementations are generally mapped
directly to an ASIC process to implement a particular class
of hardware problems [11]. This approach gives the most
efficient solution if only a restricted class of fuzzy prob-
lems are to be implemented.

Programmable implementations of fuzzy processing are
either additions to existing processors (such as found in
the CPU12 from Motorola [12] or in the FLORA proces-
sor [13]), or custom fuzzy programmable processors. The
FLORA processor extends a RISC instruction set with the
min andmacc instructions (for the minimum calculation
and the multiply-and-accumulate operation, respectively)
to improve fuzzy processing.

4 An Extendible Processor Core and Its De-
velopment Environment

We have developed an extendible processor core based
on the MIPS-I RISC architecture in VHDL. This processor
core gives us the possibility to study the effects of instruc-
tion set architectures on processor speed and implementa-
tion area using rapid prototyping.

For the processor to be useful for these purposes, we
identified the following requirements:

high-level description The format of the processor de-
scription should be easy to understand and modify.

modular To add new instructions, only the relevant parts
should have to be modified. A monolithic design
would make experiments difficult.

extendible All data structures and interfaces should be de-
signed such that new fields can be added with ease.

synthesizableThe processor description should be syn-
thesizable to derive actual hardware implementations.

The processor core has been designed with a distributed
controller to facilitate instruction set extension and proces-
sor adaptation for specific application requirements. This
distributed controller approach replaces a monolithic con-
troller which would be difficult to adapt. The distributed
controller is responsible for pipeline flow management and
consists of communicating state machines found in each
pipeline stage. Thus, changes in the architecture can be
restricted to those modules where new functionality is pro-
vided.

The processor core is described in synthesizable VHDL.
Thus, hardware implementations can be derived using
logic synthesis. In our work, we use the Synopsys Design
Compiler [14] as synthesis tool to generate ASIC imple-
mentations. We have synthesized the VHDL description of
the processor core for the AMS 0.6� CMOS process [15].
Table 1 gives the size of each module of the synthesized
design.

A more detailed description of the processor core, its
implementation and validation can be found in [16].

5 Defining Fuzzy Extensions
5.1 Fuzzy Principles

Fuzzy computation consists of three steps: fuzzifica-
tion, inference and defuzzification.

Module sq. mil Description
AT 949 AT pipeline stage (PC, TLB ac-

cess)
IF 735 instruction fetch unit
ID 2453 instruction decode unit
EXE 3557 execution unit (ALU)
MD 4037 integer multiply/divide unit
MEM 4128 data memory access
WB 321 register file writeback
RF N/A register file
CP0 3674 coprocessor 0 (exception han-

dling, TLB)
CCON 384 cache controller
Total 20286 processor core

Table 1: Complexity of modules as size in sq. mil of the
RISC processor core based on the MIPS-I architecture.

During fuzzification, crisp input signals are mapped
onto fuzzy variables. Each input value is assigned a de-
gree of membership in each fuzzy set, also referred to as
alpha value.

Inference implements the evaluation of fuzzy rules.
Fuzzy rules from a rule data base are applied to the fuzzi-
fied inputs, determining a fuzzy control action. Fuzzy rules
haveif - then semantics:

if (Input0 is A) and (Input1 is B) and
... then Output is C

The intersection of rule premises is performed by select-
ing the minimal alpha value. The rule conclusion gives the
membership degree� in the output fuzzy setC. As sev-
eral rules may be applicable to some combination of input
values, more than one membership degree� can possibly
be computed for a single fuzzy set. These degrees are than
consolidated into a single membership degree� by select-
ing the maximum of all computed� values for each output
set.

During defuzzification, control actions are converted
back to crisp signals. The� values delimit the output fuzzy
sets defining an area. The ordinate of gravitational center
of this area determines a crisp output control signal.

5.2 Subword parallelism
Packing of multiple data streams in a single processor

word is referred to as subword parallelism. This method
has gained widespread acceptance lately to support opera-
tion on multiple related data items in a single cycle for ap-
plications such as media processing, video conferencing,
or multimedia and communication applications [17].

Subword parallelism can be applied to fuzzy computa-
tion for fuzzification, inference and defuzzification, as 8

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

45

5

5

5

31 0
Address

Bit

0x0000

0x0004

0x0008

Input

Input

1 2 3 4 5

degree
memb.

Figure 1: Subword data memory organization: each word contains membership information for two fuzzy sets. The fuzzy
sets are specified using unique fuzzy set identifiers and the membership is encoded using 8 bit unsigned integer. The current
implementation supports 2 overlapping fuzzy sets for each input.

bits offer sufficient precision for representing inputs, out-
puts and membership functions of fuzzy sets [18]. Sub-
word parallelism can be used during fuzzification to com-
pute multiple membership degrees in one step, during in-
ference to perform rule evaluation in a single cycle, and
during defuzzification to operate on multiple data sets for
integration.

As alpha values require only 8 bits, more than one set
can be packed in a single processor word. To identify fuzzy
sets, some set identification has to be included, requiring
an additional 4 bits for a maximum of 16 possible sets for
a single input. Thus, in a 32 bit processor we can operate
on two overlapping sets concurrently. This concept can be
extended to five overlapping sets on a 64 bit processor.

By using data parallelism, parallel operation is per-
formed on multiple data in determining alpha values for
all fuzzy sets for an input, and performing defuzzification
of two output sets concurrently.

For fuzzification, we define an optimized data layout in
memory (see figure 1). For each memory access, the mem-
bership function for a crisp input is computed for two fuzzy
sets. Both fuzzy sets and the associated membership de-
gree are encoded in a single 32 bit word. The membership
degree alpha for all other fuzzy sets defaults to 0.

This memory organization minimizes the number of
memory accesses, requiring only one load per input and in
this way speeding up the execution. In addition, memory
requirements for this organization are minimal and inde-
pendent of the number of fuzzy sets.

5.3 Fuzzy Instructions
To improve performance of RISC processors for fuzzy

calculation, we have explored different ISA extensions for
fuzzy workloads. For this purpose, we have extended the
original MIPS-I instruction set architecture (ISA) with sev-
eral instructions specialized for fuzzy computation. For

each new instruction, we have analyzed its impact on hard-
ware and software, as well as obtained performance. The
final ISA extensions are determined by results of the hard-
ware/software co-evaluation of these extensions.

To support fuzzy computations, we have considered the
following instructions:

slw loads fuzzified values from the memory,
rulev evaluates fuzzy rules from the rule base,
macc multiply-and-accumulate operation for defuzzifica-

tion,
hmul halfword multiplication for defuzzification, and
hadd result collection for defuzzification.

slw To optimize access to arrays, a register plus shifted
register memory addressing mode (scaled load) can be
used. This instruction is not specific to fuzzy calculation as
it improves performance of array accesses as can be found
in all general purpose programs and is included in a num-
ber of microprocessors, such as most CISC machines and
several RISC processors (such as the Motorola m88k).

The instructionslw Rd, Rs, Rt takes two operands to
specify a memory address – the first operandRs specifies
the base of the array and the second operandRt the index
in the array. To generate the actual memory address, the
index is multiplied by the data size (4 bytes) and added to
the base.

In fuzzy processing, the scaled load instruction can be
used to implement the table lookup used for fuzzification
of input values in a single processor cycle.

rulev Evaluation of fuzzy rules is performed by deter-
mining the minimum of all rule premises. During the in-
ference step, only the rules where all premise alpha values
are non-zero have to be evaluated.

C D Source register Rt#t1 #t2

BA Source register Rs#s1 #s2

Destination register Rd

rulev Rd, Rs, Rt, Set1, Set2, 1/0

min

Figure 2: For the rule evaluation, fuzzy set identifiers are
compared with set specifiers in the instruction, and the
minimum is determined.

A rule evaluation instructionrulev evaluates a
fuzzy rule in a single cycle. The instructionrulev
Rd, Rs, Rt, Set1, Set2,1/0 checks whether the alpha
values from the source registersRs andRt are premises
of the rule under evaluation and non-zero. If this is true,
it determines the minimum alpha value and stores it in the
registerRd. The valuesSet1 andSet2 are fuzzy set identi-
fiers in the range0 to 15. The last argument of the instruc-
tion can take the value0 or 1 to specify whether the result
is written in the left (if1) or in the right (if0) half of the
destination register (see figure 2).

If the alpha values in the source registers are not
premises of the rule under evaluation, the corresponding
halfword of the destination register is set to zero.

macc Multiply-and-accumulate instruction is a popular
choice for various instruction set extensions, as it is useful
for solving several problems.

In our design, the instructionmacc Rd, Rs, Rt,1/0
multiplies the left or the right halfword (depending on the
field specifier supported as the last argument of the instruc-
tion) of the source registersRs andRt and accumulates the
result in the registerRd.

hadd We have introduced this instruction to perform the
addition of two halfwords in parallel.

The instructionhadd Rd, Rs, Rt performs addition
of the left and of the right halfwords of the source reg-
istersRs andRt in parallel and stores the results in the
corresponding halfwords of the destination registerRd.

hmul The last instruction we have analyzed is the half-
word multiplication.

The instructionhmul Rd, Rs, Rt multiplies the half-
words of source registersRs andRt in parallel and stores
the result in the destination registerRd.

Problem #I #O #R #MF
Simple 2 1 7 5
Medium 3 2 14 5
Complex 7 3 80 5

Table 2: Complexity of fuzzy problems: fuzzy problems
are classified by the number of inputs (#I), the number of
outputs (#O), the number of fuzzy rules (#R) and the num-
ber of membership sets (#MF).

conf. instruction set features
A core
B core, rulev
C core, slw, rulev
D core, slw, rulev, macc
E core, slw, rulev, hmul, hadd
F core, slw, rulev, hmul

Table 3: Processor configurations under evaluation.

6 Hardware/Software Instruction Co-
Evaluation

To give a balanced evaluation of the new instructions,
we have performed evaluation of both hardware and soft-
ware aspects.

We evaluate the impact of proposed instruction set fea-
tures on different classes of fuzzy problems of varying
complexity. Table 2 shows the classification of fuzzy
problems (based on Costa et al. [13]) which will be used
throughout this work. For each class of problem complex-
ity, we have generated application programs using the new
instructions and established the cycle count required for
execution.

We have analyzed the performance improvement of-
fered by several different processor configurations, ranging
from the addition of a single instruction to support fuzzy
rule evaluation to hardware support for all fuzzy process-
ing steps. Table 3 gives an overview of the analyzed pro-
cessor configurations and the instructions included in each
of these configurations.

Configuration A implements the MIPS-I RISC instruc-
tion set architecture and serves as a reference for the com-
parison of the extended processor configurations. Config-
uration B implements only a single additional instruction
supporting fuzzy rule evaluation, configuration C adds sup-
port for scaled loads for fuzzification and the remaining
configurations offer different types of hardware support for
defuzzification.

Software evaluation of proposed extensions is per-
formed by computing the number of cycles needed to im-
plement the functionality of the test programs when the in-
structions under evaluation are used. The cycle counts for

0

100

200

300

400

500

600

A

B

C

D

E

F

A 82 156 531

B 47 91 207

C 43 85 193

D 32 63 160

E 35 69 169

F 35 69 169

simple medium complex

Figure 3: Cycle count for the evaluation of simple to complex fuzzy problems for different processor configurations.

design F I D / total cycles
A 18 30 24 10 82
B 6 7 24 10 47
C 2 7 24 10 43
D 2 7 13 10 32
E 2 7 16 10 35
F 2 7 16 10 35

Table 4: Cycle count required for each processing step in
fuzzy calculation for a simple fuzzy problem. F indicates
the cycle count for fuzzification, I for inference, D for de-
fuzzification and / for division.

a sample program are given in table 4.
The table lists cycle count required for performing the

same fuzzy application on each of the analyzed configura-
tions. The cycle count is given separately for each of the
three fuzzy processing steps. In this table, the division has
been extracted to simplify the analysis of proposed instruc-
tion set extensions.

The performance improvement of introducing special-
ized instructions becomes more pronounced with the grow-
ing complexity of the problem. Figure 3 gives an overview
of the cycle count required for executing fuzzy problems of
varying complexity for different processor configurations.
The highest performance improvement is achieved by the
introduction of the instructionrulev. This instruction im-
proves performance of fuzzy calculation ranging from 74%
to 157%, depending on problem complexity. The introduc-
tion of scaled load instruction reduces cycle count by an

additional 7% to 9%, whereas instructions supporting de-
fuzzification by 20% to 46%, depending on the architecture
and on the design complexity.

Figure 4 shows that the execution profile of fuzzy prob-
lems differs significantly from simple to complex prob-
lems. With growing program complexity, the impact of
fuzzification and defuzzification on the overall execution
time decreases whereas the computing time for rule base
evaluation becomes more significant. Thus, while simple
problems spend much of their execution time in defuzzifi-
cation, inference takes up 70% of execution time in com-
plex problems.

As a result, complex problems benefit the most from
the rule evaluation instruction (157%), with only minor im-
provements gained by other instructions (7% for the scaled
load, 20% for defuzzification support). For simple prob-
lems, the biggest gain is still obtained by rule evaluation
support (74%), but other extensions also offer significant
improvements (9% for scaled load, 46% for defuzzification
support) because fuzzification and defuzzification make up
a larger part of the execution time.

Another important metric is code size, especially for
embedded application. Using the extended ISA for fuzzy
calculation we have fewer instructions for rule evaluation
and we reduce the code size significantly (e.g., for a sim-
ple fuzzy problem the code size decreases from 82 to 40
instructions for configuration C).

However, the reduction of cycle count as a result of in-
troducing the specialized instructions does not automati-
cally imply shorter execution time. The implementation of

0%

20%

40%

60%

80%

100%

simple medium complex

division

defuzzif.

inference

fuzzify

Figure 4: Execution time break down for fuzzy evaluation
with varying complexity.

specialized instructions is often complex and may increase
the cycle time of the processor and thus reduce the benefits
of using the application specialized architecture. For this
reason, it is necessary to perform hardware evaluation of
the architectures under evaluation as well.

Data about the hardware implementation are derived by
designing prototype implementations of the proposed in-
structions and using logic synthesis to generate a hardware
implementation from the VHDL description. The resulting
gate-level netlist can then be analyzed to obtain informa-
tion about area and timing. As target process, we have
used the AMS 0.6� process.

The unmodified processor core (architecture A)
achieves an operating frequency of 62 MHz, resulting in an
inference speed of 2.5�s to 8.5�s depending on the prob-
lem complexity. The area cost and critical path of the pro-
posed instructions are reported in table 5. By combining
this information with the information about cycle count,
overall performance of the different configuration can be
obtained (table 6). This information can then be used to
decide which instructions to include in the final processor
design.

Because the proposed fuzzy instructions were all de-
signed to minimize cycle time impact and resource usage
in the first place, hardware evaluation reports only moder-
ate implementation costs. The area increase to implement
proposed instructions is low, especially when compared to
overall chip size. The critical path is increased by up to
2.5ns for the most expensive instruction (macc), but none
leading to an increase in cycle time.

7 Conclusion
In this paper, we have demonstrated how to apply hard-

ware/software co-evaluation to instruction set definition.
We have defined and evaluated fuzzy instruction set exten-
sions. The instruction set extensions have been added to
a RISC processor core based on the MIPS instruction set

instruction area increase critical path
(sq.mil) (ns)

base 0.0 9.36
slw 30.6 9.68
rulev 288.3 10.50
macc 1674.4 11.76
hmul 1466.0 9.26
hadd 492.2 9.47

Table 5: Cost of implemented instructions: increase of chip
area and cycle time.

total overall area area incr.
cycles time (�s) (sq.mil) (in %)

A 156 2.50 23933 0%
B 91 1.46 24221 1.2%
C 85 1.36 24525 1.3%
D 63 1.01 25928 8.3%
E 69 1.10 25868 8.1%
F 69 1.10 25718 7.5%

Table 6: Results of hardware/software co-evaluation for a
fuzzy problem of medium complexity.

architecture. The fuzzy processing instructions are based
on the use of subword parallelism to fully exploit the pro-
cessor’s capabilities by processing multiple data streams in
parallel.

The highest performance gain for fuzzy processing is
brought by the rule evaluation instructionrulev , which
alone accounts for a performance increase in excess of
150%. Fuzzification can be improved by using the scaled
load instruction found in several commercially available
processors. The defuzzification step in fuzzy process-
ing can be improved significantly by subword instructions
(hadd , hmul) such as found in a number of multimedia
extensions (e.g., HP’s MAX, Intel’s MMX, or Sun’s VIS
instructions).

Based on the results of hardware/software co-evaluation
of the proposed configurations, we have identified config-
uration C as the optimal architecture for fuzzy processing.
This architecture implements fuzzification and inference in
hardware whereas defuzzification is implemented in soft-
ware. The architecture speeds fuzzy processing up to 175%
at a hardware cost of only 1.3%.

Acknowledgment
The authors thank Dietmar Maurer for his help in de-

signing the MIPS processor core.

References
[1] Gerry Kane and Joe Heinrich.MIPS RISC Architecture:

reference for the R2000, R3000, R6000 and the new R4000

instruction set computer architecture. Prentice-Hall, Engle-
wood Cliffs, NJ, 1992.

[2] IEEE. IEEE Standard VHDL Language Reference Manual.
IEEE, New York, NY, 1988. IEEE Standard 1076-1987.

[3] Giovanni de Micheli. Computer-aided hardware-software
codesign.IEEE Micro, 14(4):10–16, August 1994.

[4] James R. Larus. SPIM S20: A MIPS R2000 simulator.
Technical Report 966, University of Wisconsin-Madison,
Madison, WI, September 1990.

[5] Michael Gschwind. Hardware/Software Co-Evaluation of
Instruction Sets. PhD thesis, Technische Universität Wien,
Vienna, Austria, July 1996.

[6] John L. Hennessy and David A. Patterson.Computer Ar-
chitecture – A Quantitative Approach. Morgan Kaufmann
Publishers, San Francisco, CA, second edition, 1996.

[7] Bruce K. Holmer. A tool for processor instruction set
design. InProc. of the 1994 European Design Automa-
tion Conference with EURO-VHDL ’94, Grenoble, France,
September 1994. IEEE Computer Society Press.

[8] Ing-Jer Huang and Alvin M. Despain. Synthesis of instruc-
tion sets for pipelined microprocessors. InProc. of the 31st
Design Automation Conference (DAC ’94), San Diego, CA,
June 1994. ACM.

[9] Jun Sato, Alauddin Alomary, Yoshimichi Honma, Takeharu
Nakata, Akichika Shiomi, Nobuyuki Hikichi, and Masaharu
Imai. PEAS-I: A hardware/software codesign system for
ASIP development.IEICE Transaction on Fundamentals of
Electronics, Communications and Computer Sciences, E77-
A(3):483–491, March 1994.

[10] Peter M. Athanas and Harvey F. Silverman. Processor re-
configuration through instruction-set metamorphosis.IEEE
Computer, 26(3):11–18, March 1993.

[11] Valentina Salapura and Volker Hamann. Implementing
fuzzy control systems using VHDL and Statecharts. In
Proc. of the European Design Automation Conference
EURO-DAC ’96 with EURO-VHDL ’96, pages 53–58,
Geneva, Switzerland, September 1996. IEEE Computer So-
ciety Press.

[12] Motorola. CPU12 Reference Manual. Motorola, Inc.,
Phoenix, AZ, 1996.

[13] Alessandra Costa, Alessandro de Gloria, Paolo Faraboschi,
Andrea Pagni, and Gianguido Rizzoto. Hardware solutions
for fuzzy control.Proceedings of the IEEE, 83(3):422–434,
March 1995.

[14] Synopsys. Design Compiler Family Reference. Synop-
sys, Inc., Mountain View, CA, November 1996. (Version
1997.01).

[15] AMS. 0.6-Micron Standard Cell Databook. Austria Mi-
cro Systeme International AG, Unterpremstätten, Austria,
March 1997.

[16] Michael Gschwind and Dietmar Maurer. An extendible
MIPS-I processor kernel in VHDL for hardware/software

co-design. InProc. of the European Design Automation
Conference EURO-DAC ’96 with EURO-VHDL ’96, pages
548–553, Geneva, Switzerland, September 1996. IEEE
Computer Society Press.

[17] IEEE Micro, volume 16, number 4. IEEE Computer Soci-
ety, August 1996.

[18] Raúl Rojas.Theorie der neuronalen Netze: eine systematis-
che Einführung. Springer Verlag, Berlin, Germany, 1993.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

