
Automatic Topology Optimization for Analog Module Generators

M. Wolf and U. Kleine

Otto-von-Guericke-Universität Magdeburg
IPE, PO Box 4120, D-39016 Magdeburg, Germany

email: mwolf@ipe.et.uni-magdeburg.de

Abstract
In this paper a new topology optimization feature of a

module generator environment [5-6] will be presented.
The optimization is performed by removing redundant
elements of objects already placed and by assessing
different layout topologies of a module. This drastically
reduces the length of the generator source code, because
different topologies need no separate source code, but
result automatically.

1 Introduction

The quality and functionality of analog integrated cir-
cuits are strongly influenced by the layout of the circuit. In
recent years, some tools for the automatic layout
generation have been presented [1-4]. Often small layout
variations can highly influence the quality of analog
layouts. As a consequence, sub-optimal layouts can be the
reason for rejecting automatic design tools by designers.
The new optimization feature of a module generator
environment [5-6] allows an automatic and controlled
topology optimization by changing or removing redundant
wiring and contacts. Due to the constructive and successive
layout construction in this environment, the optimal layout
topology can change during the module description. In
order to avoid complex description with if/then statements
for each topology, even objects already placed can be
changed and optimized. This increases the reusability of
modules, because modules, which have originally been
written for another application and need a topology change
for the new utilization, can be used without modification.
The optimization feature keeps the source code small and
easily readable.

2 Optimization Algorithm

The hierarchical data structure of the module genera-
tor environment forms the basis of the optimization algo-
rithm. Modules are created in two steps in this environ-
ment: At first, geometric primitives are generated by a
relative placement of objects using special functions.
These geometric primitives and hierarchically built objects
are then put together to complex modules by a special
compactor. During module generation, not only the geo-

metries are stored in the database but also the way of con-
struction. Therefore, it is possible to rebuild an entire
module under changed conditions. This feature will be
used in the new optimization capability.

Fig. 1: Layout of the example

In Fig. 1, the layout of two parallel connected MOS
transistors is depicted. With this hierarchical built example
the optimization routine will be explained. During the en-
tire module description, no design rules have to be re-
garded, this is automatically done by the environment. In
this example two diffusion contact rows (obj. 1 and 2)
have been compacted to a simple transistor and form ob-
ject 5. Another transistor (obj. 6) has been created ac-
cordingly and compacted to the first transistor (obj. 5) de-
leting the redundant diffusion contact row (obj. 2). A
metal1 rectangle (obj. 7) connects the source contacts and
a poly rectangle (obj. 8) the gates. The substrate contact
row (obj. 9) has been compacted to the bottom of the
structure. The drain contact row has been shrunk to place
the source connecting rectangle closer to the structure.

In this example the source and bulk terminal of the
transistors are on different potentials. If these potentials are
identical, the substrate contact row can be placed closer to
the structure because the minimal distance between metal1
is no longer relevant. In a former version of the
environment presented in [5], the objects are merged, but
the metal1 rectangle, which has been inserted to connect
the source contacts, is redundant and can be deleted. The
source contacts can be connected by the metal1 rectangle
of the substrate contact. If the metal1 rectangle is deleted,
the parasitic capacitances and the crosstalk to the poly
gates are decreased. Furthermore the metal1 rectangle of

the drain contact can be expanded again in order to
decrease the contact resistance, because there is no more
area improvement due to different design rules defining the
distance of the substrate contact row to the transistor.

In Fig. 2a, the layout without optimization is illus-
trated. The metal1 rectangle of the substrate contact row
has been connected with the metal1 rectangle of the source
connector. In contrast to this, Fig. 2b shows the result with
the deleted source connector after applying the new opti-
mization feature.

a) b)

Fig. 2: Result without (a) and with optimization (b)

Besides the data structure for the construction of ob-
jects, each rectangle with its coordinates is also stored in
the database. The coordinates are automatically calculated,
the designer performs only a relative placement of objects.
The algorithm for detecting redundant objects during a
vertical compaction step is illustrated in the structogram of
Fig. 3.

Fig. 3: Structogram for detecting redundant objects

Each rectangle r1 of the destination object o1 is com-
pared with each rectangle r2 of the compacted object o2.
Rectangles, which result from an array command, are not
regarded as single rectangles in these loops. Only one sur-
rounding rectangle is considered for an array in order to be
able to delete even shifted arrays. If the two rectangles of
the loops are identical (same layer, same potential, same
geometry), the 'deleted' flag can be set directly. If the rec-
tangles are not identical but overlap horizontally, all rec-
tangles which are connected to r1 are collected and
checked if they can be expanded upon r2. This check is
necessary because after the deletion of r1 all rectangles,
which had been connected to r1, must be connected to r2
in order to maintain the wiring of the layout. If all found
rectangles can be expanded, rectangle r1 will be marked as
deleted. Rectangles defining the shape of an array must
overlap to be deleted.

The next step in the algorithm checks each object in
the destination object if all rectangles have been deleted. In
this case the object is marked as deleted.

The last step is to rebuild the entire object by a recur-
sive function. The geometries of the entire object will be
recalculated. This is necessary in order to cancel the modi-
fication of objects which have been done during the com-
paction of deleted objects for area optimization purposes.
In the presented example the shrinking of the drain contact
will be canceled. The rectangles, which had been con-
nected to the deleted object, will automatically be con-
nected to the new rectangle r2 by the auto connect feature
of the compaction algorithm [5].

In Fig. 4 the layout of two compacted transistors with
different sizes is depicted. In spite of the shifted contact
rows, the redundant row in the middle has been deleted,
because only the shape of a contact hole array is regarded.

Fig. 4: Layout example for removed contact rows

The optimization algorithm also supports the detect-
ing and deleting of contacts, which are unused. The de-
signer can define additional contacts for the router, and re-
dundant contacts will be deleted after the routing step.

3 Conclusion
In this paper a new optimization feature of a module

generator has been presented, which automatically
removes redundant objects of modules. The benefit is a
more generic module description.

References

[1] J. Rijmenants, et al., "ILAC: An Automated Layout Tool
for Analog CMOS Circuits," IEEE J. Solid-State Circuits,
Vol. 24, No. 2, pp. 417-425, April 1989.

[2] H. Y. Koh, et al., "OPASYN: A Compiler for CMOS Op-
erational Amplifiers," IEEE Trans. Computer-Aided De-
sign, Vol. 9, No. 2, pp. 113-125, Feb. 1990.

[3] V. Meyer zu Bexten, et al., "ALSYN: Flexible Rule-Based
Layout Synthesis for Analog IC's," IEEE J. Solid-State Cir-
cuits, Vol. 28, No. 3, pp. 261-268, March 1993.

[4] B. R. Owen, et al., "BALLISTIC: An Analog Layout
Language," IEEE Custom Integrated Circuits Conference,
pp. 3.5.1-3.5.4, 1995.

[5] M. Wolf, et al., "A Novel Analog Module Generator
Environment," Proc. The European Design & Test
Conference, pp. 388-392, March 1996.

[6] M. Wolf, et al., "Application Independent Module
Generation in Analog Layouts," Proc. The European
Design & Test Conference, p. 624, March 1997.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

