
Efficient BIST Hardware Insertion with Low Test Application Time for
Synthesized Data Paths

Nicola Nicolici and Bashir M. Al-Hashimi

School of Engineering and Advanced Technology, Staffordshire University

Stafford ST18 0AD, U.K.

Email: nicola@bss10.staffs.ac.uk

Abstract

In this paper, new and efficient BIST methodology and
BIST hardware insertion algorithms are presented for
RTL data paths obtained from high level synthesis. The
methodology is based on concurrent testing of modules
with identical physical information by sharing the test
pattern generators in a partial intrusion BIST
environment. Furthermore, to reduce the number of
signature analysis registers and test application time the
same type modules are grouped in test compatibility
classes and n-input k-bit comparators are used to check
the results. The test application time is computed using an
incremental test scheduling approach. An existing test
scheduling algorithm is modified to obtain an efficient
trade-off between the algorithm complexity and testable
design space exploration. A cost function based on both
test application time and area overhead is defined and a
tabu search-based heuristic capable of exploring the
solution space in a very rapid time is presented. To
reduce the computational time testable design space
exploration is carried out in two phases: test application
time reduction phase and BIST area reduction phase.
Experimental results are included confirming the
efficiency of the proposed methodology.

1. Introduction

Built-in self-test BIST is a design-for-testability (DFT)
technique in which testing is accomplished through built-
in hardware [1]. Pseudo-random BIST techniques use
linear feedback shift registers (LFSRs) to perform test
pattern generation (PG), whilst multiple-input signature
registers (MISRs) carry out signature analysis (SA). Built-
in logic block observation (BILBO) registers [2] are used

to perform either PG or SA, and concurrent BILBOs
(CBILBOs) perform PG and SA simultaneously. Today’s
need for a shorter time to market makes manual insertion
of BIST circuitry an unaffordable design bottleneck and
synthesis-based approaches were adopted.

An early approach to add BIST structures to register
transfer-level (RTL) circuit is presented in [3]. This
approach does not take into account the test application
time. A latter approach that minimizes test application
time and area overhead is presented in [4]. The number of
test plans examined for each module was limited to four
which leads to inefficient testable design space
exploration. A different approach based on simultaneous
test hardware insertion and test scheduling at RTL is
presented in [5]. While previous test scheduling
approaches [6,7,8] assume fixed test resource allocation
which implies that the test hardware is allocated before the
test scheduling process, this work presents an incremental
test scheduling procedure where test scheduling is
performed concurrently with test hardware allocation. A
branch and bound technique is employed during the
exploring process to prune the design space. This means
that complex designs like a 32 point discrete cosine
transform (DCT), with a high number of feasible testable
solutions will be explored in a very long time. Therefore,
more sophisticated methods like iterative improvement
techniques are required to explore the testable design
space more efficiently. A different approach [9,10] based
on testability metrics like randomness and transparency
[11] considers test path generation and test scheduling.
This strategy lacked of a global view of the testable design
space and the suboptimal final solution depends on the
order in which the modules are processed. Recently
Stroele et al. [12] proposed simultaneous test hardware
insertion and test scheduling at the gate-level. This
approach also minimizes test control and test application
time. Highly efficient algorithms are presented for the
gate-level description, which has a much higher

complexity than RTL descriptions. The suboptimal test
hardware insertion caused by the low complexity of RTL
descriptions can be overcome by the fact that same type
modules share the same physical information which is the
focus of this paper. Furthermore the sharing of test pattern
generators and reuse of signature analysis registers, as
presented in our paper, can also solve the problems of
minimal test application time, low BIST area overhead
and efficient test schedule at RTL.

2. Preliminary definitions

A RTL data path consists of modules (functional
resources), registers and multiplexers. Let nreg, nmod and
nres denote the number of registers, modules and module-
types. Portions of data path, such as multiplexers and
registers, can easily be tested using functional patterns.
The goal of partial intrusion BIST is to test all the
modules using a subset of registers in the test mode. Any
register that is connected to an input port of a module
through only multiplexers can supply test patterns to that
input port. The embeddings where both input ports of a
module receive test patterns from the same test register
are not valid in the proposed BIST methodology. The
correlation between test patterns at the left and right input
port would decrease the number of unique test patterns
that could be applied, hence decreasing the fault coverage.
Any register that collects data from the output port of a
module through only multiplexers is a possible choice for
modification as a BIST register to compress test
responses. Because modules of the same type share the
identical physical information a decrease in the test
application time can be obtained by grouping modules of
the same type into test compatibility classes (TCCs). A
test compatibility class TCCi,j of a module type j is the set
of modules that can be tested at the same time under the
current test register configuration. If a test register
generates test patterns for the left input port of the
functional module Mi and for the right input port of the
functional module Mj, it is considered a shared test
resource and modules Mi and Mj cannot belong to the
same test compatibility class. Similarly different-type
modules cannot belong to the same test compatibility
class due to the fact that their fault sets have different
detection probability profiles. Each module-type j has
nclasses(j). All the modules from a TCCi,j receive the same
test patterns. The output responses of all the modules
from TCCi,j are compared by an n-input k-bit comparator,
where n is |TCCi,j| and k is the bit-width of the data path. If
two output signals differ, an error signal is activated to the
BIST controller. If output responses of all the modules are
the same, a single register compresses the responses in
order to verify if this succession of output responses is the

correct one. Let ORS(Mk) denote the set of output registers
of module Mk. The output register set of a test
compatibility class ORS(TCCi,j) is the union of output
register sets of all the modules from TCCi,j. The register
that performs the signature analysis function for TCCi,j is
chosen from ORS(TCCi,j). Thus, instead of performing
compression of test responses for nmod modules, the test
response compression is performed for only
nresx�Qclasses(j) test compatibility classes. The n-input k-bit
comparator logic can be tested by a short deterministic
test set, in the same way as multiplexers. It should be
noted when nmod = nres the proposed BIST methodology is
identical with the BIST embedding methodology [3,4,5]
where each module is embedded between two test pattern
generators and a signature analysis register.

Figure 1. Data path example to illustrate the
proposed BIST methodology

To illustrate the efficiency of RTL data path testing
using TCCs consider the data path example of Figure 1,
where LFSR1, LFSR2 and LFSR3 test three modules of
Atype, LFSR4, LFSR5 and LFSR6 test three modules of Btype.
LFSR1 generates test patterns for the left input port of A1,
A2 and A3. LFSR2 generates test patterns for the right input
port of A1 and A2, whilst LFSR3 provides test patterns for
the right input port of A3. Modules A1, A2 and A3 belong to
TCC0,0 (class index 0 and Atype index is 0). Similarly,
modules B1, B2 and B3 belong to TCC0,1 (class number 0
and Btype index is 1). Given the bit-width of the data path
as 8 bits, the output responses of the modules from TCC0,0

are compared by a 3-input 8-bit comparator (CA). Also,
the output responses of modules from TCC0,1 are
compared by another 3-input 8-bit comparator (CB). If any
error occurs during testing, the Pass/Fail signal will be
activated and the testing process will stop. The ORS(A1) is
{R7}, the ORS(A2) is {R8}, and the ORS(A3) is {R9}.
Hence the ORS(TCC0,0) is {R7,R8,R9}. Any of these
registers can be configured as signature analysis register
for TCC0,0. The procedure that chooses the optimal
signature analysis register is presented in section 4.2. For

LFSR 1 LFSR 2 LFSR 3 LFSR 4 LFSR 5 LFSR 6

A 1 A 2 A 3 B 1 B 2 B 3

C A C B

Pass/Fail Pass/Fail

MISR 7 R 8 R 9 R 10 R 11 MISR 12 R 13

data path example in Figure 1 the chosen register is R7.
Similarly, the ORS(TCC0,1) is {R10,R11,R12,R13} and the
chosen signature analysis register is R12.

3. Local neighbourhood search of the
testable design space

Having defined the BIST methodology based on test
compatibility classes the testable design space must be
explored using an efficient BIST hardware insertion
algorithm. The BIST hardware insertion algorithm looks
for a testable solution with a primary goal of minimizing
test application time and as a second order goal to
minimize BIST hardware overhead. The testable design
space exploration phases are detailed in section 5. This
section focuses on the local neighbourhood of the testable
design space and on generation of new neighbour
solutions. In our problem formulation the current solution
is a partially testable design where only the test pattern
generators are allocated. The fully testable design is
generated for each solution using the algorithms from
section 4. The testable design space of partially testable
designs is explored using a tabu search-based heuristic.
Tabu search was proposed as a general combinatorial
optimization technique [13]. This heuristic is similar to
iterative improvement in that moves are sought which
transform the current solution to its best neighbouring
solution. The algorithm starts with an initial solution
obtained by randomly assigning a single test pattern
generator to every input port of every module from the
RTL data path. Tabu search maintains a tabu list of its r
most recent moves, with r circuit-dependent and varying
from 5 (small designs) to 10 (complex designs). The tabu
list exists to prevent cycling near a local minimum and
also to enable uphill moves. In our problem formulation
for a RTL data path with nreg registers there are nreg

neighbour solutions (one for each register from the data
path). Each register Ri can generate test patterns to input
port IP of ni modules of module-type FRj. The neighbour
solution for register Ri is obtained by moving the test
pattern generation-function for input port IP of the ni

modules of module-type FRj modules to Ri and removing
the test pattern generator-function from registers that have
previously generated test patterns for the respective ni

modules. When generating a neighbour solution for each
register Ri there are a maximum of 2xnres potential moves
(one for each input port of every module-type for which
the respective register can generate test patterns). To
choose the best potential move to be evaluated by the
tabu-search based algorithm two more metrics CSSD and
MSSD are introduced as follows.

The current spatial sharing degree CSSD(Ri, FRj, IP) of a
register Ri for a module-type FRj and input port IP is the

number of modules of the respective module-type which
are fed by register Ri in the current testable solution. The
maximum spatial sharing degree MSSD(Ri, FRj, IP) of a
register Ri for a module-type FRj and input port IP is the
number of modules of the respective module-type which
can be fed by the respective register using the data path
interconnections. The metric which decides on the move
for the respective register is ¨i(FRj, IP)= MSSD(Ri, FRj, IP)
- CSSD(Ri, FRj, IP). Having computed ¨i(FRj, IP) for each
module-type FRj, the transfer of test pattern generation-
functions for input port IP of module-type FRj to register
Ri is performed such that ¨i(FRj, IP) is maximal. If there
are two ore more input ports or module-types for which
¨i is maximal then the decision is taken based on the
maximum value of MSSD(Ri, FRj, IP).

Figure 2. Partially specified testable design

In Figure 2 register R2 is configured as LFSR and
generates test vectors for the left input port of M1. It can
also generate test patterns for the left input port of A1 and
A2, the right input port of A3 and left input port of M2 and
M3. We compute ¨2(Atype,Left), ¨2(Atype,Right), and
¨2(Mtype,Left). Since R2 already performs pattern
generation for the left input port of Mtype we obtain
¨2(Mtype,Left)=3-1=2. In the same way ¨2(Atype,Left)=2-
0=2 and ¨2(Atype,Right)=1-0=1. Since ¨2(Mtype, Left)=
¨2(Atype,Left) and MSSD(R2,Mtype,Left)>MSSD(R2,Atype,Left),
the test pattern generation for Mtype is moved to R2 and the
area overhead is reduced because R5 and R6 do not
perform test pattern generation as shown in Figure 3.

Figure 3. Partially specified testable design
after the move of test pattern generation
functions to R2

L F S R 1 L F S R 2 L F S R 3 R 4 L F S R 5 L F S R 6

A 1 A 2 A 3 M 1 M 2 M 3

L F S R 7

L F S R 1 L F S R 2 L F S R 3 R 4 R 5 R 6

A 1 A 2 A 3 M 1 M 2 M 3

L F S R 7

4. Incremental test scheduling algorithm

In the previous section we have described how partially
specified testable designs are generated from one solution
to another reducing test area overhead of test pattern
generators. At this stage test compatibility classes are not
complete. Many modules are not sharing test resources
and they can be introduced in the already existing test
compatibility classes. The test compatibility classes are
completed such that the number of potential signature
analysis registers is increased as described in subsection
4.1. Modules with different physical information will
require different test times to satisfy required fault
coverage. Thus, the incremental test scheduling problem
will deal with unequal test lengths as described in
subsection 4.2.

4.1 Generation of global test incompatibility
graph

In a partially specified testable solution all the modules
are provided with their test pattern generators. Using the
incompatibility between different modules in the partially
specified testable design, an algorithm that guarantees the
minimum number of test compatibility classes
incompatible one with each other and an increase in the
ORS of each test compatibility class is described. The
creation of the global test incompatibility graph (G-TIG)
where nodes are TCCs is done in three phases as follows.

In the first phase the test compatibility classes for each
module-type are formed. If two modules of the same type
share a test resource then an edge between the respective
two modules is added in the local test incompatibility
graph (L-TIG) of the respective module-type. The number
of L-TIGs is nres. The L-TIGs are partitioned using an
efficient graph partitioning algorithm [7, algorithm 1]. In
the second phase the sharing of test resources between
modules of different module-types is examined. If Ma of
module-type m1 is incompatible with Mb of module-type
m2 and there is an edge in G-TIG between a TCCx,m1 and
TCCy,m2 then Ma is added to class x and Mb is added to
class y. Otherwise Ma is added class i such that:

ƒ(TCCi,m1,Ma)= |ORS(TCCi,m1 + Ma)|-|ORS(TCCi,m1)|

is maximal and a new edge between TCCi,m1 and TCCy,m2,
where y is the class where Mb was assigned, is added to
G-TIG. Using this new measure (f) an increase in the
number of potential signature registers is assured. This
increase will be used by the incremental test scheduling
algorithm as outlined in the next subsection. In the third
phase modules Ma of module-type m1 that are present in
the data path but do not share any test registers are added
to a test class i such that ƒ(TCCi,m1,Ma) is maximal.

Figure 4. Data path example demonstrating
the generation of G-TIG

Generation of G-TIG algorithm is illustrated by
considering the data path in Figure 4. In the first step the
L-TIGs are created. Since modules that belong to Btype and
Ctype do not share test registers with same-type modules,
L-TIGs for these two module-types are void. Modules A1

and A2 cannot be tested at the same time because LFSR2 is
a shared test resource. Thus an incompatibility edge
between A1 and A2 is introduced in the L-TIG of Atype.
Another edge added to the same L-TIG is between A2 and
A3 due to the sharing of test register LFSR2. So far, the test
classes for Atype are TCC0,0={A1, A3} and TCC1,0={A2} (0
is the index of Atype). In the second step TCC0,1 (1 is the
index of Btype) and TCC0,2 (2 is the index of Ctype) are
created. B1 and B2 are assigned to TCC0,1 whilst C1 and C2

are assigned to TCC0,2. Due to the sharing of LFSR3

between A3 and B1 an edge between TCC0,0 and TCC0,1 is
added. Similarly an edge between TCC0,0 and TCC0,2 is
added due to sharing of LFSR1 between A1 and C2. In the
third step, A4 is assigned to one of the TCCs of Atype. The
computed measures are ƒ(TCC0,0,A4)=1 and ƒ(TCC1,0,A4)=
2. We choose TCC1,0 due to higher increase in the size of
ORS. The test classes are TCC0,0={A1,A3}, TCC1,0={A2,
A4}, TCC0,1={B1,B2} and TCC0,2={C1,C2}.

4.2 Test scheduling and signature analysis
register allocation

The test scheduling algorithm for partitioned testing
with run to completion reported in [7, algorithm 2M] is
modified in order to schedule tests and allocate signature
analysis registers simultaneously. If two test compatibility
classes use the same signature register at different test
times area overhead is reduced and the test control is
simplified because the signature does not have to be
shifted out. The concurrent test set (CTS) [7] contains the
currently active tests. A similar data structure called busy
register set (BRS) keeps the test registers that are currently
performing signature analysis. When the shortest currently

 L F S R 1

A 1

 L F S R 2 L F S R 3 L F S R 4 L F S R 5 L F S R 6 L F S R 7 L F S R 8 L F S R 9

A 2 A 3 A 4 B 1 B 2 C 1 C 2

R 10 R 11 R 12 R 13 R 14 R 15

active tests are completed and CTS is updated, the
registers that performed signature analysis for the
respective tests are removed from BRS. If TCCi,j is
compatible with all tests from CTS, but all the registers
from ORS(TCCi,j) are present in BRS, then the test TCCi,j

is postponed until at least one register that can perform
signature analysis for TCCi,j is removed from BRS. One
more data structure, used register set (URS), stores the test
registers that have already performed signature analysis at
a previous test time. Choosing a register from URS to
perform signature analysis for the currently scheduled test
leads to a reduction in area overhead. Another reason for
reusing the previous signature analysis registers is that the
signature does not have to be shifted out, unless the test
registers have to be configured at a later stage as test
pattern generators. The increase in fault-escape
probability caused by not shifting out the signatures after
the completion of each test is compensated by the
decrease in fault escape probability achieved by checking
the output responses of modules from the same test
compatibility class using the n-input k-bit comparators.

Figure 5. G-TIG for the data path example of
Figure 4

To illustrate the above the G-TIG of the data path from
Figure 4 is shown in Figure 5. It is assumed that the
number of test patterns to test Atype and Ctype modules is
equal T0=T2=T, whilst the number of test patterns to test
Btype modules is double T1=2xT, with T a reasonable high
integer. The first test to be scheduled is TCC0,0 at test time
0. The signature analysis register is chosen from
ORS(TCC0,0) such that its fanin is maximum. We choose
R12 to perform the signature analysis for TCC0,0. At test
time T, the CTS is modified to reflect the removal of the

Figure 6. Test schedule for the data path
example of Figure 4

completed test TCC0,0 and R12 is removed from BRS and
added to URS. At this point TCC0,1 is scheduled. The
register R15 is assigned to perform signature analysis for
TCC0,1. At the same time TCC1,0 is scheduled and register
R12 is considered for analyzing the responses of TCC1,0

because it is the only register from ORS(TCC1,0) that has
already been modified to a MISR (belongs to URS). An
attempt to schedule TCC0,2 fails because both registers
that can perform signature analysis for this test class (R15

and R12) belong to BRS. The shortest currently active test
is completed at test time 2xT. Register R12 is removed
from BRS and another attempt to schedule TCC0,2 will
succeed because R12 will be available to perform signature
analysis. At test time 3xT all the currently active tests are
completed. Note that only two test registers are required
to perform signature analysis. A graphical representation
of the test schedule is presented in Figure 6.

5. Testable design space exploration phases

In section 3 the local neighbourhood search of the
testable design space was outlined. The test application
time of the fully testable design computed using the
incremental test scheduling algorithm given in section 4 is
used to guide the testable design space exploration. Due to
the topology of the testable design space and the local
neighbourhood definition, in order to reach the best
testable solution in low computational time the
optimization is carried out in two phases. The need of this
two-phase optimization process is justified by the three
dimensional testable design space. There might be several
testable designs with the same test application time but
different BIST area overheads. Clearly in practice only the

TCC
0,0

TCC
0,1

TCC
1,0

TCC
0,2

SA is R
12

SA is R
15

SA is R
12

SA is R
12

0 T 2xT 3xT

T = 2xT

ORS(TCC) = {R , R , R , R }
0,0 10 12 13 14

ORS(TCC) = {R , R , R , R }

ORS(TCC) = {R }

ORS(TCC) = {R , R }

1,0 11 12 13 14

0,1

0,2

15

1512

TCC
0,0

TCC
1,0

TCC
0,1

TCC
0,2

T = T
0

T = T
0

1

T = T
2

minimum test application time design with the smallest
BIST area overhead is sought. Thus the primary goal is to
minimize the test application time and the second order
goal is to reduce the BIST area overhead. The BIST area
overhead is computed in terms of the number of gates
required to modify a register in a BIST register and the
number of gates implementing n-input k-bit comparators.
The testable design space is shown in Figure 7. Various
testable designs (D1 to D7) with identical test application
have different BIST area overheads. The best test
application time testable design with minimum BIST area
overhead is sought in this three dimensional testable
design space.

Figure 7. Testable design space exploration

The two optimization phases are:

(i) Test application time reduction phase

(ii) BIST area overhead reduction phase

In the first optimization phase the minimum test
application time designs are sought. If two solutions have
same test application time then the solution with higher
area overhead is chosen. This is due to the topology of the
testable design space where higher BIST area overhead
testable designs can lead in fewer moves to a testable
design with lower test application time. If any of the
neighbour solutions has lower test application then it is
accepted regardless of the BIST area overhead. In Figure
7 the test application time reduction phase is illustrated by
the curve with a continuos line. Having reached the
minimum test application time design in the first
optimization phase, during the second optimization phase
testable designs with lower BIST area overhead are
sought. If two testable designs have the same test
application then the testable design with lower BIST area
overhead is chosen. If any of the testable designs has
higher test application it is rejected regardless of the BIST
area overhead. The curve with the dashed line in Figure 7
shows the BIST area overhead reduction phase. Using this
two-phase optimization strategy the computational time
required for testable design space exploration time is
reduced as shown in the next section.

6. Experimental results

The proposed BIST hardware insertion algorithm
based on TCCs has been implemented on SUN SPARC 20
workstation using 6000 lines of C++ code. Table 1 shows
a comparison of experimental results in terms of test
application time (TAT) and BIST area overhead obtained
for the BIST embedding methodology and the proposed
BIST methodology based on TCCs. The results for the
BIST embedding methodology are obtained by
considering nmod=nres. The RTL data paths are generated
using a high-level synthesis system [14]. The first column
shows the design name and the execution time constraint
which varies from 10 to 16 in the case of 8 point DCT and
30 to 38 in the case of 32 point DCT. The next two
columns show the number of modules (MOD) in terms of
multipliers (*) and adders (+) and the number of registers
(REG) obtained from high level synthesis. The TAT for
adders and multipliers was assumed T+=T and T*=4xT
with T a reasonable high integer. The first six rows show
the experimental results for the 8 point DCT. In the first
four rows the BIST embedding methodology produces
testable data paths where TAT is not minimal. Applying
the proposed BIST methodology based on TCCs, TAT is
reduced by 20% from 5xT to 4xT. The reduction in TAT
produces higher area overheads in some cases like
8DCT_10. However, the primary goal of reducing the
TAT is achieved. Furthermore the number of BIST
registers embedded in data path is reduced which leads to
faster solutions. In the case of 8DCT_11, both TAT and
BIST area overhead are reduced. The number of LFSRs
(represented by L in Table 1) is reduced from 8 to 6 whilst
the number of MISRs (represented by M in Table 1) is
reduced from 7 to 2. In the proposed BIST methodology a
single 3 input 8 bit comparator (C3) and a single 4 input 8
bit comparator (C4) are introduced. However these two
comparators do not have high area overhead, reduce the
fault escape probability and are easy testable. For the last
two 8 point DCT designs the proposed BIST methodology
reduces the BIST area overhead by 27% and 12%
respectively which clearly outlines the efficiency of the
second order BIST area optimization goal. The last 6 rows
of Table 1 show that the proposed methodology is capable
of dealing with complex DSP circuits such as 32 point
DCT. Due to a very high number of registers the minimal
TAT is achieved by both methodologies. The reductions
in BIST area overhead are significant varying from 35%
up to 48%. The algorithm has low computational time as
shown in the last column of Table 1. For 8 point DCT the
computational time varies from 1s to 3s. For 32 point
DCT designs the computational time is still very low. The
excellent computational time is achieved due to use of
intelligent local neighbourhood search of the testable
design space and the two-phase optimization strategy.

t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9
D 1

D 3

D 5

D 7

7. Conclusions

New BIST methodology and BIST hardware insertion
algorithms for synthesized data paths were presented. The
methodology is based on grouping modules with same
physical information in test compatibility classes. Input
ports of compatible modules share test pattern generators
in a partial intrusion BIST environment leading to savings
in test application time. Module output responses from
each test compatibility class are checked by an n-input k-
bit comparator leading to lower area overhead. Near-
optimal testable design is obtained in low computational
time by a two-phase tabu search-based testable design
space exploration.

References

[1] V.D., Agrawal, C.R., Kime, and K.K. Saluja. A tutorial on
built-n self – part 1: Principles. IEEE Design & Test of
Computers, pp. 73-92, March 1993.

[2] V.D., Agrawal, C.R., Kime, and K.K. Saluja. A tutorial on
built-in self test – part 2: Applications. IEEE Design & Test of
Computers, pp. 69-77, June 1993.

[3] P.R. Chalsani, S. Bhawmik, A. Acharya, and P.
Palchaudhuri. Design of testable VLSI circuits with minimum
area overhead. In IEEE Transactions on Computers, 38(9), pp.
1460-1462, 1989.

[4] A. Basu, T.C. Wilson, D.K. Banerji, and J.C. Majithia. An
approach to minimize testability for BILBO based built-in self-
test. In Proc. 5th Int. Conf on VLSI Design, pp. 354-355, 1992.

[5] S.P. Lin, C.A. Njinda, and M.A. Breuer. Generating a family
of testable designs using the BILBO methodology. In Journal of
Electronic Testing: Theory and Applications (JETTA) 4, pp. 71-
89, April 1993.

[6] C.I.H. Chen. Graph partitioning for concurrent test
scheduling in VLSI circuits. In Proc. 28th Design Automation
Conference, pp. 287-290, 1991.

[7] G.L. Craig, C.R. Kime, and K.K. Saluja. Test scheduling and
control for VLSI built-in self-test. IEEE Transactions on
Computers, 37(9), pp.1099-1109, 1988.

[8] W.B. Jone, C.A. Papachristou, and M. Pereira. A scheme for
overlaying concurrent testing of VLSI circuits. In Proc. 26th

Design Automation Conference, pp. 531-536, June 1989.

[9] A. Orailoglu., and I.G. Harris. Test path generation and test
scheduling for self-testable designs. In Proc. International
Conference on Computer Design, pp. 528- 531, 1993.

[10] I.G. Harris, and A. Orailoglu. Fine-grained test concurrency
in test scheduling for partial-intrusion BIST. In Proc. European
Design & Test Conference, pp. 119-123, 1994.

[11] S. Chiu, and C.A. Papachristou. A design for testability
scheme with application to data path synthesis. In Proc.28th

Design Automation Conference, pp. 271-277, June 1991.

[12] A.P. Stroele, and H.J. Wunderlich. Hardware-optimal test
register insertion. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(6), pp. 531-539,
1998.

[13] C.R. Reeves. Modern heuristic techniques for
combinatorial problems, McGraw-Hill Book Company, 1995.

[14]P. Kollig, and B.M. Al-Hashimi. Simultaneous scheduling,
allocation and binding in high level synthesis. IEE Electronics
Letters, 33(18), pp. 1516-1518, 1997

BIST embedding BIST methodology based on TCC

Test resources

Design M

O

D

R

E

G

TAT Test

Resources

TAT

BIST REG 8 bit comparators

TAT

red. %

BIST
Area

red. %

CPU

Time

(s)

8DCT_10 4*, 4+ 15 5xT 7 L, 6 M 4xT 8 L, 3 M 2 C2, 1 C4 20 -26.58 2.56

8DCT_11 4*, 3+ 15 5xT 8 L, 7 M 4xT 6 L, 2 M 1 C3, 1 C4 20 18.55 2.57

8DCT_12 4*, 3+ 16 5xT 8 L, 7 M 4xT 8 L, 2 M 1 C3, 1 C4 20 -1.55 1.86

8DCT_13 4*, 4+ 16 5xT 9 L, 5 M 4xT 8 L, 2 M 2 C4 20 -4.03 2.67

8DCT_14 3*, 3+ 16 4xT 9 L, 6 M 4xT 5 L, 2 M 2 C3 0 27.53 1.20

8DCT_16 3*, 2+ 16 4xT 7 L, 5 M 4xT 5 L, 2 M 1 C2, 1C3 0 12.31 1.15

32DCT_30 9*, 12+ 60 4xT 32 L, 21 M 4xT 18 L, 2 M 1 C5, 1 C7, 1 C9 0 44.48 129.7

32DCT_31 9*, 12+ 62 4xT 33 L, 21 M 4xT 19 L, 2 M 1 C5, 1 C7, 1 C9 0 42.63 124.4

32DCT_32 8*, 12+ 62 4xT 32 L, 20 M 4xT 16 L, 2 M 1 C4, 2 C8 0 46.86 103.7

32DCT_33 8*, 11+ 62 4xT 30 L, 19 M 4xT 14 L, 2 M 1 C5, 1 C6, 1 C8 0 48.40 55.00

32DCT_37 8*, 9+ 63 4xT 26 L, 17M 4xT 16 L, 3 M 1 C3, 1 C6, 1 C8 0 35.84 86.64

32DCT_38 9*, 9+ 59 4xT 27 L, 18 M 4xT 16 L, 2 M 1 C8, 1 C9 0 42.12 38.47

Table 1. Experimental results for the BIST embedding and BIST methodology based on TCCs

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

