
Design and Test Space Exploration of
Transport-Triggered Architectures

V. A. Zivkovic, R. J. W. T. Tangelder, H. G. Kerkhoff
MESA+ Research Institute, University of Twente,
P.O. Box 217, 7500 AE Enschede, the Netherlands

Abstract

This paper describes a new approach in the high level
design and test of transport-triggered architectures
(TTA), a special type of application specific instruction
processors (ASIP). The proposed method introduces the
test as an additional constraint, besides throughput and
circuit area. The method, that calculates the testability of
the system, helps the designer to assess the obtained
architectures with respect to test, area and throughput in
the early phase of the design and selects the most suitable
one. In order to create the templated TTA, the "MOVE"
framework has been addressed. The approach is
validated with respect to the "Crypt" Unix application.

1. Introduction

Transport triggered architectures (TTA) [1-3] have
given emerged importance in high-performance ASIC
applications. They support a high degree of instruction-
level parallelism [4] and offer a possibility to
parameterize the architecture, thus leaving the designer
more degrees of freedom in the design. TTAs are
basically derived from VLIW (Very Long Instruction
Word) Processor architectures. The difference between
the two architectures is that the TTA have the implicit
data control i.e. they are programmed by specifying the
data transports instead of the operations. This will result
in a more efficient use of hardware resources and in a less
complex hardware structure. There are also additional
advantages of using the TTA such as, e.g., cycle
minimization, implementation flexibility, performance
scalability, etc. They are all explained in more details in
[1]. Hence, these architectures have serious potential in
important applications in the future. Addressing the test in
the early design phase of these architectures will
definitely lower their cost, making them more robust and
easier to test. Our proposal is to introduce the test cost as
an additional constraint during the design of the TTA
templates.

2. TTA design within the "MOVE" Codesign
Environment

In order to generate the TTA template, the MOVE
hardware/software codesign system has been used [5]. It
accepts C/C++ applications as input and produces parallel
code that is supported by an instruction level parallel-type
TTA.

A typical TTA template is shown in figure 1, where
FU denotes functional units such as adders, comparators,
multipliers, etc., while RF denotes register files. The two
other parameters of the datapath are busses and sockets.

Figure 1. The TTA structure

The sockets perform the control of the operations and
the control unit is actually distributed over the sockets.
There is only one type of operation, being the "move"
operation through the network, from one FU (or RF) to
another one. It is possible to perform as many move
operations in parallel as busses are contained within the
TTA. The FU’s are triggered with the arrival of the data at
their inputs, performing their function(s) subsequently.

The exact match of the number and type of functional
units, register files, sockets and busses is the subject of
design space exploration provided within the MOVE
environment. The main design evaluation criteria within
MOVE have been circuit area and performance, so far.
The exploration is performed with iterative generation of
different architectures. Hence, for particular architectures,
the area and throughput costs are generated. The solution
space is bounded by local optimal solutions, so called
Pareto points [6]. For example, figure 2 depicts the result
of the design space exploration for a "Crypt" application
[7].

FU RF

…

FU RF

Control
Unit

MOVE bus Socket

Interconnection
network

Figure 2. The solution space limited with Pareto
points for Crypt application

Hence, the designer may choose the solution that
satisfies his initial specifications in terms of the area and
the performance. However, the existing high-level design
approach, so far, does not offer the possibility to assess
the overall test cost of the resulting TTA before the actual
hardware implementation. For example, even though the
optimal solution in terms of area/timing has been found,
its cost after the test synthesis could increase. This can be
reflected with a large number of test patterns necessary to
test the resulting structure. Furthermore, the introduction
of DfT circuitry or BIST may lead to the degradation of
the already achieved performances or complicate the
design and increase its design time. Therefore, it would be
more convenient if the designer of the TTA has a notion
of test implications during the early phase of the design.
Our proposal is to introduce an additional test constraint
during the design space exploration phase in order to
decrease the number of the test patterns while preserving
completely the already achieved area-throughput ratio.
The next section clarifies the method.

3. Test costs in the design space exploration
of the TTA architectures

The concept of the test cost as a merit of the testability
of the system has also been addressed in some recent
papers in the area of the high-level test synthesis [8-13].
However, none of them was acceptable in the TTA
environment. For example, the testability costs described
in [8] and [9] are appropriate for random logic, not for the
regular structure that characterizes the TTA. [10]
introduces the test cost during the tradeoff in
hardware/software codesign partitioning. However, the
hardware test patterns were developed according to the
high-level hardware description, not its actual
implementation. The approach given in [11] copes with
the test cost introduced for the sake of the testable ALU
design and it might be useful as a test cost of a particular

FU within TTA. The test costs stated in [12] have been
given for VLIW applications and might be considered
useful for the derivation of the approach stated in this
article. Reference [13] copes with the implementation of
BIST in the datapath. However, the idea behind our
approach is not to use any additional circuitry for the test,
except flip-flops (functional) with scan. As a boundary
condition, the obtained architectures that are on the Pareto
curve with respect to area and performance should not be
deteriorated. Hence, given the solution space, an
appropriate test cost has to be introduced, different from
any above mentioned. Our overall test cost is a function
of the architectural parameters only, i.e., it depends on the
match of the functional units, registers, busses and
sockets.

Pareto points limit the design space such that ∀ (a, t)
∈ ϑ2(a, t), (a ≥ ap ∨ t ≥ tp) where ϑ2(a, t) is the two-
dimensional area-throughput solution space and (ap, tp) is
a Pareto point. Therefore, only the architectures that
correspond to the Pareto points in the design space are
evaluated in terms of testing. The regularity of the
architecture, i.e., the fact that each FU and RF (in the
further text also denoted as components) from datapath is
accessible via a MOVE bus and the sockets, is also used
for the calculation of the test cost. The design space
exploration in the MOVE environment is performed on a
limited set of components. Hence, each available
component from the datapath has its unique test cost
function ft(p) expressed as:

p → ft(p), p = p(c, np, nb, nconn), (1)

where c denotes the type of the component, np the number
of the test patterns targeting the stuck-at faults of the
components, nb is the total number of busses within the
architecture, nconn is the number of the component’s ports
(connectors). The components are already predesigned up
to the gate-level using the Synopsys synthesis package.
Hence, the numbers of the test patterns for each functional
unit (and register file) is back-annotated with an
automatic test pattern generation (ATPG) tool. Not only
the test patterns, but also the information regarding the
actual area and delay of each component are used during
the design space exploration phase resulting in Pareto
point curve.

Before the analytical expressions for the test cost of
the components are given, the data transport mechanism
through the components and sockets has to be explained.

3.1 Data transport scheduling within the TTA

During the execution of an operation, the scheduled,
pipelined data transport from a MOVE bus through the
sockets and components to another (or the same) MOVE
bus takes place (see figure 1). The function units and

registers files are implemented using the so-called hybrid-
pipelining mechanism, whose structure is shown in figure
3 [1]. The details of the input socket implementation, is
depicted in figure 4 (the architecture of the output socket
is very similar). The control signals refer to the instruction
decoding and matching, i.e., selecting of the appropriate
component for the execution of the operation.

Stage
control

Stage
control

c
o
m
p
o
n
e
n
t

Input
Socket O

T

R

Input
Socket

Output
Socket

enable enableFrom
the bus

From
the bus

To the
bus

Control signals

Din
Dout

Figure 3. The control structure of the pipelined
component

Figure 3 shows the arbitrary two-input, one-output
component and its connections with the other
architectural parameters. Of course, it is always possible
to have the components with arbitrary number of input
and output ports, followed with the appropriate registers
and sockets. However, there can be exactly one and only
one trigger register (T) that actually triggers the operation
of the component after the data arrives at its input. The O
and R are the operand and the result registers,
respectively. The other flip-flops influencing the data
transport mechanism are Fin in the input socket (see figure
4) and Fout in the output socket (not shown in figures).

Control signals

enable

Control + decode
logic

Din from the bus

To T
(or O)

Input Socket

F
i n

Figure 4. The implementation of the input socket

If Ci(r) denotes the cycle when the actual data
transport of the i-th operation to the register r, r∈{O, T, R,
Fin, Fout} takes place, the timing-transport relations among
the registers are expressed as:

Ci(T) - Ci(O) ≥ 0, (2)
Ci(R) - Ci(T) ≥ 1, (3)
Ci(T) > Cj(T) ⇔ Ci(R) > Cj(R) (4)

Ci(T) > Cj(T) ⇔ Ci(O) > Cj(T) (5)
Ci(O) - Ci(Fin) ≥ 1 (6)
Ci(T) - Ci(Fin) ≥ 1 (7)
Ci(Fout) - Ci(R) ≥ 1 (8)

The data can not appear in the trigger register before
the data is ready in the operand register (inequality 2). In
addition, the data processing inside the component itself
requires at least one cycle (3). Also, the instructions in the
same functional unit are executed sequentially and the
operand value must not be overwritten unless it is
previously used, as the relations (4) and (5) reveal. The
stage control block from figure 3, implemented as a finite
state machine, ensures these conditions are fulfilled.
Finally, the instruction decoding takes also at least one
cycle, according to the inequalities (6-8).

In addition, let CDc(ti, tj) denotes the difference in
clock cycle between the transports in ti-th and tj-th timing
slots for c-th component. In that case, the minimum
number of clock cycles that are necessary for the
completion of the i-th operation of the component from
figure 3 is equal to 3, referring to the (2-8):

CDc(tDin, tDout) = (Ci(T)- Ci(Fin)) + (Ci(R) - Ci(T)) +
(Ci(Fout) - Ci(R)) ≥ 3. (9)

tDin and tDout denote the cycles in which the test data is
applied to or read from MOVE bus, respectively. It is
assumed that the data arrives at the same time in the
operand and trigger register, according to relation (1).
Hence, the n-th operation of the same component may be
completed in the timing slot n+3,expressed with (3) and
(4). However, the execution time increases if the operand
and trigger registers are connected to the same bus since
the data can not appear at the same time in the operand
and the trigger register in that case. The architecture
demands the additional timing slot for data fetching into
the operand register before the data may be set into the
trigger register (relations (2), (5)):

CDc(tDin, tDout) = (Ci(O) - Ci(Fin)) + (Ci(T) - Ci(O)) +
(Ci(R) - Ci(T)) + (Ci(Fout) - Ci(R)) ≥ 4. (10)

The similar consideration may be applied if the result
register is tied to one of the operands. The number of
cycles for the execution will further increase if all of the
registers are tied to the same bus.

3.2 Test cost in TTA structures

The structure of the pipelined component itself from
the figure 3 and their convenient accessibility from the
busses offers an ideal workaround for the application of
the functional test without adding any extra circuitry.
Actually, the test itself is not completely functional since
the test patterns of each component are precalculated,

derived on the structural way, by means of the ATPG. In
order to apply these structural test patterns, the
components’ surrounding circuitry i.e. the functional
signals of the sockets has to be set accordingly (Figure 5).

enable

Control + decode
logic

Structural test patterns
of the component

To T

Input Socket

Fin

Component ID match

enable

Control + decode
logic

From R

Test
response

Output Socket

Fin

Component ID match

enable

Control + decode
logic

Structural test patterns
of the component

To O

Input Socket

Fin

Component ID match

Figure 5. The functional test path through the
sockets of the components

Our proposal is to express the test cost function with
respect to the number of patterns and the number of
cycles per patterns necessary to execute the tests, i.e., the
cost is related to the testing time. Separate costs have to
be distinguished for the functional units, ftfu, and register
files, ftrf. The analytical expressions for the test cost of the
functional unit is given by:

Therefore, the test cost of the functional unit will increase
with the ratio nconn/nb in the case when the number of
components' ports exceeds the number of available busses
in the architecture. In that case, there will be at least two
registers connected to the same bus. For example, the
figure 6 shows the two identical components (FU1 = FU2)
where the ftf1 < ftf2 due to their different ports’ connectors.

FU
1

FU
2

The two ports connected
 to the same bus

Figure 6. Two identical functional units with the
different test cost

It is assumed that CDfu is constant expression for
particular component.
For the register files, we have proposed the following
formula in order to assess their test cost:

(12)
where nin and nout denote the number of input and output
ports, respectively. Hence, np in the latter equation is the
number of the marching test patterns [14], necessary to
test the registers within the register bank, and depends on
the number of registers within the register file. The
numerous register connectors might facilitate the test
allowing the test vectors to be applied in parallel.
However, it does not hold if both nin and nout are greater
than nb. In that case, the testing time will increase since
the marching test patterns coming at the inputs (outputs)
will be scheduled in different timing slots, thus increasing
the test cost, as well. The cost for the register files is
derived for the case of their implementation using a multi-
ported memory [15], not a set of flip-flops. For the latter
case, the test cost (as well as performance and area) will
be different.

The sockets, being the control unit of the architecture,
also influence the total test cost. The test of the sockets,
including the stage controller modules given in the figure
3, can be performed using full scan. The test cost function
of the sockets is labeled fts. Since the length of the scan
chains determines the number of cycles for test, fts is
proportional to the number of the patterns to test one
socket (np), and to the length of the scan chains inside the
socket (nl):

fts = np . nl (13)

The total test cost of the architecture is expressed as:

() () (14)fpfpf)p(f
s

k

rf

j

fu

i

n

k
ts

n

j
trf

n

i
tfut ∑∑∑

===
++=

111

where nfu, nrf and ns represent the total number of
functional units, register files and sockets, respectively.

The test of the sockets also tests all interconnections
inside the datapath. Note that the order of test is important
for these architectures, i.e. it is necessary to perform the
interconnect test of the sockets and busses before carrying
out the functional test of the components. In that sense,
our approach has some similarities with Core-Based Test
[16] strategy where the test consists of two steps:
interconnect and IP test. The functional test of TTA may
be regarded as an IP test in the Core-Based test when
predefined patterns are applied to test the embedded cores
with properly configured surrounding infrastructure.

Another advantage of our approach is that the
functional test of the components may also be used for
delay fault tests, since it basically checks not only the
structure of the components but also their timing relations
(2-8). In addition, our approach can be extended to any
type of regular bus-oriented VLIW ASIP architectures
[17,18]. The figure 7 shows the general structure of such
architectures.

≤∨
=

otherwisettCD
n

nn
n

nnnttCD
nn

n

f

DoutDinrf
b

outin
p

boutinDoutDinrf
outin

p

trf

),(
),max(

),(
),min(

(11)
n

n
ttCDnf

b

conn
DoutDinfuptfu

=),(

Register File

Execution Unit #1 Execution Unit #2 Execution Unit #n

Data Cache

Instruction
Register

Instruction
Cache

Figure 7. The bus-oriented VLIW ASIP template

Since most of the components are directly accessible from
the bus, it is obvious that their test can be done by means
of the functional application of structural test patterns. A
few modifications are, however, required if the
components are connected to the bus through the other
components. For example, figure 7 shows the VLIW
architecture where the output of the register file is
connected to the bus through one or more functional units.
In these situations, the order of testing the components
becomes relevant and also a different set-up of the control
signals has to take place.

4. The Architecture Selection

Our approach has been validated with regard to the
particular "Crypt" application written in C++. The design
space exploration within the MOVE framework has been
carried out first, after which the set of Pareto points
shown in figure 2 is obtained. Next, the test cost
calculation, applying the analytical formulas as previously
presented, has been performed for each architecture.
Procedures (external from MOVE), written in the script
language gawk and C++, are used for that purpose. The

resulting set of Pareto points in 3 vector space with
respect to the circuit area, throughput and test cost is
given in figure 8. The already achieved area-throughput
ratio is preserved since the first projection of the 3D curve
in the area-execution-time plane is still the curve from
figure 2.

Figure 8. 3D Pareto points with respect to circuit
area, performance and test

The figure 8 shows that the test cost may vary
significantly even for the architectures that are close each
other at the 2D Pareto curve. The selection of the most
appropriate architecture can be done using any of the
standard weighted norm techniques within the vector

space 3 [19]. The weights are expressing the
significance of a constraint over other constraint. The
standard Euclid norm xE x→x(a, t, ft) with equal
constraint weights has been used, i.e., no preferences have
been given neither to the minimum test, nor area, nor
throughput (execution time). The resulting architecture
with minimal norm is depicted in figure 9. The data-bus
width of the architecture in figure 9 is 16 bit. The control
signals and bits are not shown, they are adjoined to the
data-bus. The ALU unit is capable of performing the
operations of the addition, subtraction, shifting and basic
logical operations (AND, OR, XOR).

RF2 (11:0)

Control
Unit

Immediate

PC

ALU LD/ST

RF1 (7:0)

to/from the
Instruction Memory

to/from the
Data Memory

CMP

Figure 9. The architecture with the best circuit
area-execution time-test cost (equal weighting
factors)

Table 1 shows the number of the test patterns using
our approach for the architectures’ components from
figure 9 and compares it with the test patterns obtained
with full scan technique. Note that the number of the test
patterns in this case corresponds to the number of cycles
for their application. It is obvious that our approach
requires significantly fewer cycles for the component’s
testing than the full scan. The sockets’ patterns are
included inside each component patterns. Table 1 also
shows the length of the scan chains (nl), the value of the
test cost for functional units and register files (ftfu, ftrf) and
the value of the test cost for the sockets (fts) of each
component. It has been adopted that all scan chains are
connected to one single scan chain, so that the total test
cost of the architecture equals to the sum of the test cycles
of the components in the architecture. Of course, in the
case of multiple scan chains, the total test cost will change
due to the scheduling of test patterns. However, that
change will be reflected equally to both full scan and our
approach since the test of the sockets is scan-based in our
approach. Hence, our method still retains the advantage
over the full scan. Fault coverage of the datapath
components in the fourth column of the table refers to our
approach.

Table 1. The comparison of full scan and our methodology for the components from Figure 9.

Component full scan our approach nl ftfu ftrf fts FC (%)
ALU 7208 877 58 65 - 812 99.72
CMP 4556 884 58 72 - 812 99.78
RF1 1912 882 58 - 70 812 99.78
RF2 2083 1144 75 - 94 1050 99.48
LD/ST 964 (964) 58 - - - 99.78
PC 1112 (1112) 58 - - - 99.78

Our approach does not take the Load/Store unit (LD/ST)
and program counter (PC) into account during the test
cost calculation. They always appear once for arbitrary
architecture and application; hence, they contribute
equally to any of the remaining architectural parameters
in any sense. The same holds for the Immediate unit. RF1
and RF2 could not have been tested with full scan, unless
implemented as a set of flip-flops. However, the flip-flop
implementation of register files would increase its area
after DfT scan insertion considerably compared to our
approach. This is another justification for using our
approach to test these architectures.

5. Conclusion

The test space exploration of transport triggered
architectures has been addressed in this paper. The
approach that assesses the architecture with respect to the
test has been explained. In addition, our approach
minimizes the extra DfT circuitry necessary for test.
Furthermore, it does not hinder already achieved
area/performance ratio, which is one of the most
important issues of the TTA. The fact that allows one to
minimize the extra circuitry is the regularity of the TTA,
i.e., the direct accessibility of the components in the
datapath via busses. The analytical test cost functions for
the functional test of the components are derived
according to the transport-timing relations and they are
dependent of the architectural parameters, only. Our
approach has been validated with respect to the example
of "Crypt" Unix application where the advantages of our
methodology over the classical full-scan are shown.

References:

[1] H. Corporaal, Transport Triggered Architectures; Design
and Evaluation. PhD thesis, Delft University of Technology,
September 1995.
[2] H. Corporaal, “Microprocessor Architectures from VLIW to
TTA,” ISBN 0-471-97157-X, John Wiley, 1998.
[3] H. Corporaal, M. Arnold, “Using Transport-Triggered
Architectures for Embedded Processor Design,” Integrated
Computer-Aided Engineering, vol. 1998, no. 1, pp. 19-37, 1998,
ISSN: 1069 – 2509.
[4] B. R. Rau, J. A. Fisher, "Instruction-Level Parallel
Processing; History, Overview and Perspective," Journal of
Supercomputing, vol. 7, no. 2, May 1993, pp. 9-50.

[5] H. Corporaal, J. Hoogerbrugge, “Cosynthesis with the
MOVE Framework,” CESA’96, IMACS Multiconference, Lille,
France, 1996.
[6] R. Brayton, R. Spence, Sensitivity and Optimisation, Elsevier
1980.
[7] UNIX password and DES encryption, ref. "Mathematical
Cryptology for Computer Scientists and Mathematicians", W.
Patterson, 1987.
[8] R. P. van Riessen, Module Generation for Self-Testing
Integrated Systems, PhD thesis, University of Twente, January
1992.
[9] C. H. Chen, D. G. Saab, "A Novel Behavioral Testability
Measure," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 12, no. 12, December
1993, pp. 1960 - 1970.
[10] Y. Le Traon, G. Al-Hayek, C. Robach, “Testability-
oriented Hardware/Software partitioning,” Proceedings of the
International Test Conference, October 20-25, 1996,
Washington DC, USA, pp. 727-731
[11] R. D. Shawn, J. P. Hayes, "Design of a fast, Easily Testable
ALU," Proc. of the 14th IEEE VLSI Test Symposium, 1996, pp.
9-16.
[12] V. A. Zivkovic, R. J. W. T. Tangelder, H. G. Kerkhoff,
“Codesign and Test of VLIW Processor”, Proceedings of
ProRISC Circuits, Systems and Signal Processing CSSP 98,
November 1998, Mierlo, the Netherlands, pp. 625-630.
[13] D. Gizopoulos, A. Paschalis, Y. Zorian, “An Effective
BIST Scheme for Datapaths,” Proceedings of the International
Test Conference, October 20-25, 1996, Washington DC, USA,
pp. 76-85.
[14] A. J. van de Goor, “Testing of the Semiconductor
Memories”, Kluwer Publishers, 1991.
[15] S. Hamdioui, A. J. van de Goor, "Consequences of Port
Restrictions on Testing Two-Port Memories," Proceedings of
the International Test Conference, October 18-23, 1998,
Washington DC, USA, pp. 63-72.
 [16] E. J. Marinissen, e.a., “A structured and Scalable
Mechanism for Test Access to Embedded Reusable Cores”,
Proceedings of the International Test Conference, October 18-
23, 1998, Washington DC, USA, pp. 284-293.
[17]http://www.semiconductors.com/trimedia/news/index.html#
articles “Tri Media Update”; Volume 1, Issue 1, 1st Quarter
1998.
[18] J. Wilberg, Codesign for Real-Time Video Appliccations,
Kluwer Academic Publishers, Dordrecht, the Netherlands, ISBN
0-7923-8006-1, 1997.
[19] G. Milovanovic, Numerical Analysis, part I, Scientific
Book Edition, 1991.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

