Composite Signal Flow: A Computational Model Combining
Events, Sampled Streams, and Vectors

Axel Jantsch, Royal Institute of Technology, Sweden
Per Bjureus, CelsiusTech Electronics AB, Sweden

Abstract several models of computation, such as discrete event or
data flow domains. It provides a general mechanism for
communication between different domains. A mechanism
for communication and synchronization between data flow
and discrete event models has been implemented in

and_ e_xter.1ds them to mcI_ude three S|gnalltypes: hon- Ptolemy, which transforms each single event on the border
periodic signals, sampled signals, and vectorized Sampledbetween the two domains. Indeed, most general

signals. Vectorized sampled signals are used to represfanﬁ‘rameworks, which provide heterogeneous modelling
vectors and computations on vectors. Several conversion

introduced to facilitat hronizati q environments, are based on this principle of transferring
processes are introduced lo faciitate synchronization an single events between different domains, e.qg. [3, 5, 19]. This
communication with these signals. We discuss the sever

S §s true for both backplane environments [4, 21] and for
|mpI|c§t|ons, that these processes have on the Causalunifying internal representations [1, 15]. Furthermore,
behavpur of the system. . . unifying internal representations are typically complex, not
We |]Iustrate the model aqd its usefulness .W'th t_hree based on a formal semantics, and therefore not easily
applllca'uons. A . (_:o—modelhng and co—S|muIat|on amenable to formal analysis.
environment gomb|n|ng Matlab and SDL; a h|gh_ level The composite signal flow model is an attempt to provide
timing analys.|§ as a consequence gf the o_perau_ons ong relatively simple, formally sound model of computation,
vectors; conditions for a parallel, distributed simulation. which can be the basis for heterogeneous modelling and
simulation environments. By providing three different
1. Introduction signal types, i.e. non-periodic signals, sampled signals, and

Current approaches to system modelling can be OIiVidedvectorized sampled signals, it accommodates both control

into two groups, homogeneous and heterogeneous models."’.‘nd daFa flow dominated parts. It_also prc_>V|des for
Homogeneous models are based on a single formalism ofONVETSIONn processes between the different signal types,
language such as VHDL [8, 10], C [12], C++ [20], thus all_owi_ng for adequate communication and
SpecChart [23], Java [14, 24, 27], SDL [7, 26], etc. These syn(_:hromzatlon. between different systen_w part_s. It pays
languages are rich and can typically be used far beyond the"partlcular attenjuon to the problem of ca_usahty which oceurs
original scope, in particular when they are extended with d_ue to conversion between sampled_ signals and vectorized
special features, e.g. for communication. However, SuChS|gnaIs. Essentially, the problem arises because data flow

homogeneous solutions come at a price. A language, Whicrﬁnd control flow pqrts _have to b? _synchromzed. Oq one
is well established in one community is not always well and, data processing 1 often_ efficiently and con\{emently
received in another community, both for practical and modelled and implemented in terms of operations on
technical reasons. The modelling concepts of generalvectors rather than scalars. On the other hand, control

purpose languages are not pertinent for the concepts of aevents must occasionally be synchronized with a time

given application problem. For the two domains of control- Instance “|n3|de_” the vectors, _because the vectors
dominated systems and signal processing, it is difficult to correspond to a time period. Th|s.d|lem_ma_c§1n be solved by
find a language that naturally accommodates both worlds. chopping up the .vectors into_individual ev_ent_s
For these reasons heterogeneous frameworks have be gprresponding to time nstances, whenever synchromzaﬂqn
proposed. They build on existing models and languages an etwgen data anq .control parts is necessary. However, this
devise techniques to integrate them. A very general andsacrlflces the efficiency and elegance of powerful vector

most influential framework is Ptolemy [4]. Ptolemy defines operations available in languages like Matlab [22]. It also
sacrifices correspondence to the implementation in those

The composite signal flow model of computation targets
systems with significant control and data processing parts.
It builds on the data flow and synchronous data flow models

cases, where vectors and their manipulations are an abstra@t regular intervals. In contrast a vectorized signal is a
but correct model of the implementation. modelling artefact, which is sometimes used for
Our proposal is very similar in nature and motivation to convenience or efficiency at higher levels of abstraction.
the work done by Poigné et al. [25]. Similarly to us, they Note furthermore, that in this paper we only deal with
provide a sound semantic basis to combine control and datassampled signals with a constant sample rate, and with
flow aspects in a system. They also allow for heterogeneousvectorized signals with equal sized vectors. However, we do
modelling in different languages. However, their work not constrain the occurrence of different rates and vector
differs in two ways. First, Poigné et al. address purely sizes on different signals. Thus, the entire discussion is also
synchronous models and provide a common semantic framevalid for arbitrary multi-rate systems.
for the synchronous languages Esterel, Argos and Lustre: |n2.2 Processes
contrast, we address asynchronous systems and our time .]
model is essentially a continuous time with totally ordered e define processes analog to Lee et al. [18] as relations
events. Second, they do not deal with vectors of Sammedbetween sets of signals, with input signals constraining the
streams, which is one of our main issues. behaviour of a process. Since the details are not important

Much of the semantics of the processes in the compositeherea we refer the reader to [18] for the sake of brevity. Note
signal flow model is derived from data flow and however, that processes can be composed to compound
synchronous data flow process networks discussed by Ledrocesses, thus forming a hierarchy. _
et al. [16, 17]. We define signals according to the tagged- /AS €xecution model for processes we adopt the notion of
signal model proposed by Lee and Sangiovanni-Vincentelli the data flow procesput forward by Lee and Parks [17] in
[18]. Based on this, we propose a model which handlesthe variant, WhICh allows a process to have state. For
operations on sampled signals and on vectors. In particularProcesses which operate exclusively on sampled signals, we
the transformation between the different signal types US€ the more specialised modelsyinchronous data flow
receives attention. In this way, we address the modelling of [16], because it is significantly cheaper to implement.

systems with both, significant control and data processing. However, we deviate from data flow and synchronous data
flow process semantics by defining a few specific, atomic

2. Formal Model processes, which are not causal. They are discussed in the
2.1 Signals, Sampled Signals, Vectorized Signals following sections.
Using the framework for timed models of computation 2.3 Vectorization

introduced by Lee et al. [18], we define signals and wWhen modelling with vectorized signals, it is almost
processes of the composite signal flow model. Given a setalways mandatory to use them in combination with ordinary
of values Vand a set ofags TwhereT = [J ,thereals,we and sampled signals, in order to interface to the
define anevent eto be a member off x V. The tags are environment or to control parts. To this end, it is necessary
used to model time. Asignal sis a set of events, hence to transform sampled signals into vectorized signals and
s Tx V. Afunctional signal is a possibly partial function vice versa. Since these transformations are not always
from T to V. “Partial” means, that a function may only be causal, we have to investigate the conditions of causality
defined for a subset of T. The term function has the usual and when we can afford to violate them.

meaning, i.e.a signal has at most one value for a given tag; In the f0||owing we consider two variations of

if e = (t,v)) Usande, = (t,v,) Us, thenv; = v, . transformations between sampled signals and vectorized,
A sampled signas™ is a signal which has only values for - sampled signals.
; - A N h . .
tags, which are\ 1]~ apart. 1&, = (t,v;)0s" , then Head vectorizatiori¥| is a process which transforms a

A .
& = (1 V)OS = (4 =t,+nA) O(t; =t +nA), with sampled signak’ into a vectorized sampled siggdl
n a natural number. In contrast,n-periodic signatan such, that consecutive values in the sampled signal are
have values at arbitrary time instances. compressed into a vector of simeThe tag of the vector in

A vectorized signak, has av sized tuple of values for s" s identical with the tag of the first of these values in the
each tag, where itis defined. B, the set of tuples of sizesampled signas® . More formally, & = (t+Ai,v) Os"

vover the set of valueg we define avectorized everg, to and e, = (t,w,) O SEA with w, = OV, ..., v,_,00 then
be amemberof x W, .Thenavectorizedsigaal isaset v/ = v, forall0<i<n-1.

of vectorized events, hengg O T x W, . Analogoustothe Tajl vectorizationW,, produces a vector synchronized
definition of functional signals, a functional vectorized with the last of its corresponding element values in the input

signal is a possibly partial function frofito W, . signal. Head and tail de-vectorizationare the inverse
Note, that the concept of a sampled signal reflects theprocesses such, that QN(WN(s)) = & and

real situation of many data or signal processing systems,Q! (w!(s")) = s* (figure 1).
which receive and transmit data streams with data appearing

(a) Head vectorization ;\\ —_
> n
> 2
> s
- —
— —~ N >
S29% 7 5
<t oo N H O h >
R I v
—_ T O & h R =
FH—t——+» | |
l'IJ4 I T |
(b) Tail vectorization —
s
—
> o)
S N
S :
o A
-
£ 0
| |
1 -

n o
L ~ (c) Head de-vectorization
& oy
> Q
> =
> = THBRD
V. > > 3> 3
< v <t N 4 2
+ ; + 4 + + .
= = e e e
| | [T T N >
T T | N O
[
= (d) Tail de-vectorization
>
>‘_| ow)
g :
v v T2 3 4
— <t O N H S
£ < Lt e
| | t [T TR R B
| l Q, T

Figure 1. Vectorization and de-vectorization
for size 4 vectors.

2.4 Conversion and Synchronization

For signal conversion and synchronization between .
o) Figure 3. A delay process.
sampled and non-periodic signals, i.e. between data flow

and control parts, we define three procesBes:, Pinp and

Punch.
A pin encodingprocessPing transforms a non-periodic

signals into a sampled signat, Ping(s) = " such that,
e=(tv0O $o
(e = (', v) O swith (t'<t) and (1)
(e"=(t",v")OsO ((t"#t) or (v=V"))
Intuitively, pin encoding takes all values sfand assigns

them tags such, that they fit the sampling instances.df
there is more than one event énbetween two sampling

Figure 2. Pin-encode, Pin-decode and punch
events.

INStances, only the last event IS used. If there Is no event
between two sampling instances, the last value is repeated.
A pin decodingroces®inp transforms a sampled signal

S into a non-periodic signal PinD(sA) = s such that,

e=(tvOsO
[eO<" such thate = (t—=A,v) 0O Sovzv(®@
Intuitively, pin decoding takes all events from the sampled
signals® and places it ints but filters out repeated values.
A Punch process transforms a sampled sigﬂ)alnto a
non-periodic signals , with events on the second input
signal s defining the time tags irs Punch(sA, s) =s
such that,
e=(tVv)OsO
e =(t,v)0Os (3)
and[E' = (", v) O with t" <t <t"+ A
Intuitively, punching accesses the sampled sighat time
instances defined by events én It is a synchronization
mechanism between control and data flow parts.

2.5 Causality

In the following we need a delay proceds, , which
delays every event on the input signal by a constant value
d =0, as illustrated in figure 3.

T OORN D
—~ o~ o~ ;.r > = >"'-C\>
8§ o S < O N A =
L R + + + + .
< o N A S T T T T ©
+ &£+ *+ o £ £+ £ £ +
o 2 2 E e =2 2
| | | | | | | | | |
F——F—1—%(Aq 1%

We follow [18] in the definition of causality based on the
following metric. The distance between two signsdeds

is defined as
d(s ¢ = supit-(s(t) # (1), tOT) 4)
P ' 0

The distance between two signals is the greater the
earlier they differ from each other. The distance between
two identical signals is 0, and for two signals differing
already at the smallest defined tag it is infinite. This distance
satisfies the conditions of a metric [6, 18]. Thus, the set of

signals together with this distance forms a metric space [6]. The answer to that question will tell us for how many
Now we can define that a procelSss causal if, for any ~ samples we have to WE;\li'[in the worst-case, before we can
input two signalss and s , two output signals never differ vectorize vectoj+1 of s,,, which equals the delay that is

earlier than two input signals, i.e. necessary for causality. This question can be reformulated
: follows. Given are two number sequeneges= in and
d(F(s), F(s)) <d(s 9). 5) asToll ; . .
) (F(s). F())_ (s 9)) ®) b; = jm. What is the maximum difference of @ to the
This formula can be generalized for processes with severalgmajest bj2a ? These differences are

inputs and outputs, but stating that the minimum distance y - (m—(a modm)) modm. Hence, we have to show
of any of the input signals must be greater or equal to thethlat max(d;) = m—gecdm, n) First, we show that
i d .

maximum distance of any of the output signals. d; <m—gedm, N0 ON . Then we show that there exist
We observe, that tail vectorization and head de- ;i such that d, = m—gcdm, r) . The outer mod

vectorization are causal, but head vectorization and tail de'operation in thed, expression is there, to avaid

vectorization are not causal. becoming equal ton . This condition is equivalent to
h

Y, ...isnot causal (6) (a, modm) # 0 (20)
LIJ; ... is causal @) Thus, we can reformulate the equation as
h : m— (g modm) < m—gcdm, n) and, consequently,
Q, .. I 8 . " L
. n _ IS causa ®) a, modm= gcdm, n). Assuming condition (20), this is
Q, ...is not causal 9) correct due to the fact, thgcdm,) divides both, and
We note further, that a, and therefore alse; modm (e.g. see [13] chapter 5).
hooh _ Next, we have to show that there existsiasuch that
Qn(Wh(s)) = s ...is causal (10) d. = m—gcdm, n). Under condition (20), we have
QL (Wi(s)) = s ...is causal (11) in modm = gcc{m, M. Again using thg fact that
hoh A A) gcdm, n) divides bothm andn , the equation
W, (Qu(s)) = s ...iscausal (12) in m
. mod =1 21
LP;(Q:](SA)) =& .. is causal (13) gcdm, n) gcdm, n) (21)
An(LIJ:) _is causal (14) has always a solution inON for anpn, nON |, which
¢) concludes the prodfl
An(Qy) ... s causal. (15) Conditions (16) through (19) can be interpreted in

Hence, a combination of processes may be causal, even ifeveral ways. For modelling they describe the situations,
not all of the constituting processes are causal. In fact, wewhen a process can safely use input data and when not. For
can obtain a causal process from any non-causal process ly
combining it with an appropriate delay process. For a non-
causal procesa, the smallesh for which A,(A) is causal,

is called theseverity levebf A; such a process is denoted as
A,_ ,. This is a convenient way to express the conditions
for models with different sampled and vectorized signals,
perhaps with different sampling rates and vector sizes. The
following processes are all causal under the given condi-
tions (gcd denotes the greatest common divisor).

Dg(Wh(Qh(sh))) for d = m—gedn, m) (16) @
D(W(Q1Y(Sh))) for D(d = 0) (17) -
A(W(QL(S))) ford = n+ m—gedn, M) -1 (18)

Dg(Win(Qr(sh))) for d = n—gedn, m) (19)

Due to lack of space we cannot include the proofs here.
We only sketch it for (16) and state, that the same principles|
can be used to prove (18) and (19). Given avectorsig}]al | Figure 4. In (a) process B cannot safely use
the combination of de-vectorization and vectorization will values produced by A; in (b) it can.
transformsﬁ into a new vector signsailW . Suppose we have
de-vectorized vectors ofsﬁ , and vectorizgdectors ofsﬁ1 ,
what is the largest minimum difference betwéemandjm?

(a) unsafe situation

(b) safe situation

instance in figure 4a, proceBsmay not safely use values
produced by proceds if its behaviour depends on the order

of values fromA and C. Becaus#A is not causal, a value
from A could appear earlier in the model than it could in
reality, thus it might happen th& sees an everg=(t,v)

from A before an event' = (t',v') fron€ even though a b c

t>t'. Infigure 4b this is not possible. — B —>
Below we discuss other applications of these conditiong.

Feedback loopsThe theory of metric spaces [6] and the ¢ &

discussion in [18] tell us, that simple causality (equatior]

(5)) is not sufficient to guarantee deterministic behaviour if

feedback loops. Rather, a process in a feedback loop mJ stT —)\’ i\

be delta causal i.e. it must comply with the stronger g h

condition

d(F(s), F(s)) <dd(s) (22) Matlab functions

with some strictly positive numbe. This means, the out- Figure 5. The composite signal model
puts of a process must react to the inputs with a certajn implemented in SDL and Matlab.

delay, which cannot be arbitrarily small. The equations—snnecvity between processes, as well as processes, that
(14) through (19) can be easily reformulated to derive deltaoperate solely on non-periodic signals. Processes, that

causal processes by replacing the delay proceAges byperate on sampled and vectorized sampled signals are
Bq 4 5 With a fixed, strictly positive numbed. For instance, modelled as Matlab functions. In figureandB are SDL
A,(Wp) is causal but not delta causal; howewuy,, 5(¥y) processe<; andD are Matlab functionsa, b, ¢, dande are

is also delta causal. , non-periodic signals, arfd, g* andh* are sampled signals.
This means for modelling, that the outputs of each gjnce in Matlab it is both convenient and efficient to

process in a feedback loop may influence its own inputs jijize the powerful vector and matrix operations, most
only after a strictly positive delay, which may notbecome natap functions operate on vectorized, sampled signals.

SDL description

v

arbitrarily small. The vectorization is implicitly performed on the boundaries
3. Applications between the SDL environment and the Matlab functions. [2]

) gives modelling conditions which are less general but
3.1 Co-modelling of Matlab and SDL consistent with equations (16) - (19).

At the system level it is desirable to model and simulate [2] also usesPing, Pinp and Punch processes to
control and data flow parts together. Traditionally, designers synchronize and communicate between data flow and
have used different and separate simulation environmentsontrol parts. However, they are not used as explicit
and languages for these two tasks. processes but as elementary communication mechanisms

Matlab [22] is an example of a popular language used for built-into the modelling method and implementation. In
the development of data flow and signal processing addition, [2] describes Bucket eventwhich is similar to a
algorithms. In Matlab programs input data is transformed Punch process but differs in that it takes a non-periodic
by applying functions to input parameters. Matlab provides signal also as its first input, rather than a sampled signal.
very powerful and convenient operators for vectors and [2] is a good illustration, how the composite signal flow
matrices. Matlab does not have a notion of time but usesmodel can be implemented. In fact, the composite signal
data dependences to define the order of events. flow model has been developed as one result of the effort

SDL [11] is based on communicating concurrent state described in [2], based on the insight, that the developed
machines. Its execution semantics is a discrete event modelconcepts are much more general and applicable to other
It has been used for a long time to describe and specifylanguage combinations.
control dominated systems, in particular telecom
applications.

The composite signal flow model can be used as a basis If the processing is only an artifact of modelling for the
for co-modelling and co-simulation of systems with these Sake of efficiency or convenience, equations (16) through
two languages. This has been described in detail in [2], (19) do not _reflect timing behaviour in any way. But if the
which also includes details of the implementation and gives ransformations of vectors resemble data dependences in

elaborate examples to motivate and illustrate this modelling th€ implementation, equations (16) through (19) constitute
method. in fact timing constraints (see for instance [3] section I.A).

SDL is used to describe the system structure and theConsider a function F which transforms a vector of size n

3.2 Timing analysis

into a vector of size mF : W, - W, . Assume that include the corresponding signal transformations.

needs all the values of the input vector to produce any of the Note, that this analysis can be combined with rate
values of the output vector, e.g. a compression function, analysis of the sampled signals, to further refine the timing
which operates on words of a given length represented byrequirements of the system.

the input vectors. We can modElwith a process, which

operates on vectorized sampled signals. Since the primaryFeedback loopsWhat has been said about modelling of
inputs and outputs of our system are not-vectorized sampledeedback loops in section 2.5, is also valid for the derivation
signals, we have to include the vectorization and de- of timing constraints. To ensure delta causality of processes
vectorization processes in our model (figure 6). Since thewithin feedback loops, stronger variations of the equations
(14) through (19) must be used. This is necessary to avoid
M oscillations or non-deterministic behaviour in the

implementation.
s\ e @ ./\’, 3.3 Parallel simulation
S Systems, modelled as parallel processes, exhibit a
natural parallelism, that can be exploited for parallel
simulation. However, the potential to speed up simulation
seems to be fundamentally constraint by the model of

level n, we need to combine it with a delay process to makedifficult to simulate efficiently in parallel due to the
the resulting process causal. In the case of figure 6, we doSynchronizing global event queue [9]-. _

not need the delay process for simulation, because process A System model based on composite signal flow can be
F does not depend on any other process. However, atimingj’art't'f)ned for pe_lrlallel distributed simulation, if the
analyser can infer the necessity of a delay process andollowing two conditions are met.

establish a timing condition on the vectorization process, (A) A partition must be a causal process. However, not all
stating that the process will take at leastime units. Note, the constituent processes within the partition need to be
that the vectorization process might not exist separately in causal.

the implementation; it might be part of proce&sin this (B) No non-periodic signal crosses a partition boundary,
case the timing condition would apply to proc&ss$ience, i.e. only sampled signals can be used for communication

the timing analyser will perform better with more between_different partitions. -
information about the relation between model and Both conditions serve the purpose that a receiving process

implementation. The minimum assumptions are the must be able to know, how many values to expect from

causality requirement, and that the vectorization is indeed?ther_r%art't'ons’l.:) efored_;z.rocee?mg with its owr:hcomgﬁt?-
somewhere implemented. ion. The causality condition enforces, among others, that a

Note, that we derive an equivalent timing condition if we process waits for all the datq ngedgd, bef.or.e it compu_tes a
use tail vectorization and tail de-vectorization in figure 6, result (figure 8). For non-periodic signals it is not possible

but not necessarily on the same process. Because tail
vectorization is causal, but tail de-vectorization is not, thg
time constraint has to be placed on the latter.

Consider another example with two functidhandG. F
operates on-sized vectors an@ onm-sized vectors (figure
7). Causality requires two delay processes, one for the hedd

Figure 6. Delay of the vectorization process
interpreted as timing condition.

1 (©+2.<v' 5, V')

(t+4,<V4, V5’V6’V7>) —+ L (t+4,<v1 4 V’5>)
(t, <V, V1 Vo V3> = (L <V'o, V'1>)

|
-
[
delay n\ delay A(n-gcd(n,m) ’j
J | §)'>6
A ‘ A e
o<
Figure 7. Causality induced delays for two :;_'
functions operating on different vector sizes. =4

— — Figure 8. Process A must wait until +2 if it
vectorization at the left and one for the de-vectorization- uses values Vi through vior a particular

vectorization combination in the middle. Again, these car| computation f.
be interpreted as timing constraints on the processes, whick

to know, when the next event will occur.
Non-periodic signhals can be replaced by functionally

[11] J. Elisberger, D. Hogrefe, and A. Sarma)lS- Formal
Object Oriented Language for Communicating SysteéPnentice

equivalent sampled signals, by transmitting an empty valueHall, 1997.

periodically. In this way, timing and synchronization
information would be encoded into the signal.

4. Conclusions

Heterogeneous modelling will become more important

due to increasing complexity and heterogeneity of
electronic systems. Due to various historical and

[12] R. Ernst and J. Henkel, “Hardware-Software Codesign of
Embedded Controllers Based on Hardware Extractid®rgc.
International Workshop on Hardware-Software Co-Desit§b2.
[13] G. H. Hardy and E. M. WrightAn Introduction to the Theory

of Numbers, Oxford Science Publicatipfith edition, 1979.

[14] Rachid Helaihel and Kunle Olukotum, “Java as a Specifica-
tion for Hardware-Software Systemd?roceedings of the Inter-
national Conference on Computer-Aided Desitpo7.

fundamental reasons, different parts of a system will be [15] A. A. Jerraya and K. O'Brien, “SOLAR: An Intermediate
modelled with different languages. This results often in the Format for System-Level Modeling and Synthesi€odesign:

challenge to reconcile very different modelling concepts in

Computer-aided Software/Hardware EngineerinGEE Press,

a sound way. We have addressed this problem for eventdited by J. Rozenblit and K. Buchenrieder, chapter 7, 1995.
based models on one hand and vectorized signal processinfj6] E.A. Lee and D.G. Messerschmitt, “Synchronous Data

models on the other hand. By providing a unifying model of
computation, the composite signal flow, the two different

modelling worlds can be combined. We have applied this

concept to integrate two very popular but profoundly

different languages, SDL and Matlab. We have also shown
that the concept can be applied to other problems as well

such as timing analysis and parallel simulation.
5. References

Flow”, Proceedings of the IEEEpp. 1235-1245, September
1987.

[17] E. A. Lee and T. M. Parks, “Dataflow Process Networks”,
Proceedings of the IEEBMay 1995.

[18] E.A. Lee and A. Sangiovanni-Vincentelli, “A Framework for
Comparing Models of Computation”lEEE Transactions on

'Computer-Aided Design of Integrated Circuits and Systemls

17, no. 12, pp. 1217-1229, December 1998.
[19] C. Liem, F. Nacabal, C. Valderrama, P. Paulin, and A. Jer-
raya, “System-on-a-Chip Cosimulation and Compilatiol£EE

[1] T. Benner, J. Henkel, and R. Ernst, “Internal representation of pesign and Test of Computepp. 16-25, April-June 1997.

Embedded Hardware-/Software Systenié"‘, IFIP International
Workshop on Hardware-Software Co-Desilytay 1993.

[20] Bill Lin, “A System Design Methodology for Software/Hard-
ware Co-Development of Telecommunication Network Applica-

[2] Per Bjuréus and Axel Jantsch, “Heterogeneous System-leveltions”, Proceedings of the Design Automation Confere686.

Cosimulation with SDL Matlab”, Bceedings of the Forum on
Design Language@=DL), 1999.

[3] I. Bolsens, H. de Man, B. Lin, K. van Rompaey, S. \ercau-
teren, and D. Verkest, “Hardware/Software Codesign of Digital
Telecommunication SystemdPyoc. of the IEEEMarch 1997.

[4] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy:
A Framework for Simulating and Prototyping Heterogeneous
Systems” International Journal of Computer Simulatich992.

[5] P. Coste, F. Hessel, P.L. Marrec, Z. Sugar, M. Romdhani, R.

[21] P. Le Marrec, C. A. Valderrama, F. Hessel, A. A. Jerraya, M.
Attia, and O. Cayrol, “Hardware, Software and Mechanical
Cosimulation for Automotive ApplicationsProc. of the Ninth
International Workshop on Rapid System Prototypir98.

[22] MATLAB: High-performance Numeric Computation and
Visualization SoftwardJser’'s Guide, 1992.

[23] S. Narayan, F. Vahid, and D. D. Gajski, “System Specifica-
tion with SpecCharts LanguagdEEE Design & Test of Comput-
ers, December 1992.

Suescun, N. Zergainoh, and A.A. Jerraya, “Multilanguage Design [24] C. Passerone, J. Martin, R. Passerone, L. Lavagno, C. San-

of Heterogeneous System#roc. of the 7th International Work-
shop on Hardware/Software Codesigp. 54-58, May 1999.

[6] V. Bryant,Metric SpacesCambridge University Press, 1996.
[7] J.-M. Daveau, G. F. Marchioro, C. A. Valderrama, and A. A.
Jerraya, “VHDL generation from SDL specification$toceed-
ings of Computer Hardware Description Languag®gtil 1997.

[8] W. Ecker, “Using VHDL for HW/SW Co-Specification”, pp.
500-505, European Design Automation Conferen&eptember
1993.

[9] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vin-
centelli, “Design of Embedded Systems: Formal Models, Valida-
tion and Synthesis’Proceedings of the IEEBarch 1997.

[10] Petru Eles, K. Kuchcinski, Zebo Peng, and A. Doboli,
“Hardware/software partitioning of VHDL system specifica-
tions”, European Design Automation Conference (Euro-DAC)
1996.

soe, R. McGeer, and A. Sangiovanni-Vincentelli, “Modeling
Reactive Systems in JavaACM Transactions on Design Auto-
mation of Electronic Systemsol. 3, no. 4, October 1998.

[25] A. Poigne, M. Morley, O. Maffeis, L. Holenderski, and R.
Budde, “The Synchronous Approach to Designing Reactive Sys-
tems”, Formal Methods in System DesigKluwer Academic
Publisher, vol. 12, no. 2, pp. 163-188, March 1998.

[26] B. Svantesson, S. Kumar, A. Hemani, “A Methodology and
Algorithms for efficient interprocess communication synthesis
from system description in SDLRroc. of the IEEE International
Conference on VLSI Desigh998.

[27] J.S. Young, J. MacDonald, M. Shilamn, A. Tabbara, P. Hil-
flinger, and R. Newton, “Design and Specification of Embedded
Systems in Java Using Successive, Formal Refinemeriteed-
ings of the 35th Design Automation Confere&98.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

