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Abstract
The verification of a n-stage pulse-driven IPCMOS pipeline, for

any n > 0, is presented. The complexity of the system is 32n tran-
sistors and delay information is provided at the level of transistor.
The correctness of the circuit highly depends on the timed behav-
ior of its components and the environment. To verify the system,
three techniques have been combined: (1) relative-timing-based
verification from absolute timing information [13], (2) assume-
guarantee reasoning to verify untimed abstractions of timed com-
ponents and (3) mathematical induction to verify pipelines of any
length. Even though the circuit can interact with pulse-driven en-
vironments, the internal behavior between stages commits a hand-
shake protocol that enables the use of untimed abstractions. The
verification not only reports a positive answer about the correct-
ness of the system, but also gives a set of sufficient relative-timing
constraints that determine delay slacks under which correctness
can be maintained.

1. Introduction
Verification of concurrent systems typically suffers from the

state explosion problem. In systems with a finite number of states,
this problem has been alleviated by using symbolic techniques to
implicitly enumerate all reachable states [4]. Abstraction has also
been a common technique to reduce the complexity of the model,
by hiding those implementation details that are irrelevant to the
properties begin verified [12].

When time becomes an essential dimension in verification,
complexity is drastically affected. The problem of reachability in
timed automata is proved to be PSPACE-hard [1], where the expo-
nentiality depends on the number of clocks and on the encoding of
the maximum values that can be taken by the clocks. This com-
plexity makes the verification of systems with a moderate amount
of untimed states almost impractical.

Several approaches have been devised to represent timed states
in a succinct form, e.g. [3]. However, the incorporation of the timed
domain in the representation of the states hampers an efficient rep-
resentation of large state spaces with BDDs. Even the discretiza-
tion of time [8] poses serious problems when the number of clocks
or the constants of the timing constraints are large.

An interesting approach to face this complexity problem was
proposed in [2], where the clocks used during verification and their
accuracy are determined dynamically upon demand. In this way,
only that timing information relevant to the properties being veri-
fied emerges during the calculation of the reachable states.

This paper tackles the verification of complex timed systems by
combining three techniques:

1. Iterative verification by automatically abstracting absolute
time into relative time [13] and using polynomial algorithms
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of Spain under contract TIC 2001-2476.

for absolute timing analysis [10].

2. Assume-guarantee paradigm to perform a hierarchical verifi-
cation of large systems by means of abstractions.

3. Mathematical induction to prove the correctness of infinite-
state systems.

These techniques have been used to verify the IPCMOS control
circuit [15], a controller for asynchronous pipelines that can oper-
ate at 4GHz and uses a pulse-driven protocol to communicate with
the environment. Its correctness highly depends on the delays of
the internal gates and the environment.

The main feature of the used relative-time-based verification is
the capability of backannotating the timing constraints required for
the correctness of the circuit. These constraints indicate the slacks
allowable in the delays of the components for which a correct be-
havior can still be guaranteed. This feature does not seem easily
achievable with the strategies used so far for the verification of
timed automata.

Section 2 reviews the fundamentals of relative-timing verifica-
tion [13] and compositional verification. Section 3 describes the
IPCMOS architecture and the required verification steps. Section 4
gives the details of the abstractions and steps to verify IPCMOS
pipelines. Section 5 describes the verification of one stage.

2. Theoretical background
2.1. Formal verification with relative timing

Modeling formalisms and algorithms for the verification with
relative timing are described in detail in [13]. This section de-
scribes its fundamentals.

Verification strategy. To verify whether a timed system Y

satisfies a safety property P a language inclusion test is posed:
L(Y ) � L(P ), where L(Y ) is the set of all possible behaviors
of Y and L(P ) is the set of all possible behaviors satisfying
property P . The calculation of the language generated by a timed
system is proven to be PSPACE-complete and in practice highly
complex in most contexts [1, 7]. To overcome this complexity,
[13] avoids calculating the exact timed state space by building con-
servative approximations of L(Y ) in an iterative manner. Starting
from the original system without timing constraints, successive ap-
proximations Yi of Y are constructed, satisfying L(Y ) � L(Yi)
and L(Yi+1) � L(Yi). If the inclusion L(Yi) � L(P ) holds,
then L(Y ) � L(Yi) � L(P ) and the verification succeeds. If
not, another approximation Yi+1 is generated by adding relative
timing constraints [16] until the verification succeeds, or a coun-
terexample is found. At each iteration of the refinement process,
relative timing constraints are generated from an off-line timing
analysis [10] on a set of event structures that covers the traces con-
taining violations of property P .

System model. The system under analysis Y is modeled by means
of a timed transition system (TTS) [7] composed of a non-empty
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Figure 1. (a,b) Timed transition system and delay intervals. (b,c) LzTS obtained after first and second compositions.

set of states S, a non-empty alphabet of events �, a transition rela-
tion T � S���S, a set of initial states sin, and two functions Æl,
Æu that associate minimal an maximal delays to the events. We call
the subset Y � = hS;�; T; sini the underlying transition system
(TS) that represents the untimed behavior of the system.

Figures 1(a,b) depict the TTS modeling a system that will be
used as introductory example. Figure 1(a) shows the underlying
TS, while Figure 1(b) shows the delay intervals of events a, b, c
and g. The delay interval for the rest of events is [0;1). The timed
behavior of the system is highlighted in gray, i.e. the reachable
states when the specified delays are taken into account.

Assume that the property to verify specifies that event g must al-
ways precede event d in any possible trace from state s0 . The prop-
erty holds in the timed state space since in all possible timed traces
(those visiting the gray states), g always fires before d. However,
by exploring the untimed state space of Figure 1(a) we see that the
property does not hold in state s10 if d fires before g. What follows
is an overview of the mathematical notions involved in proving that
the property actually holds when delays are considered.

A run of the underlying TS Y� is a sequence � =

s1
e1�!s2

e2�!� � � , such that s1 2 sin and 8i � 1 : si
ei�!si+1 2

T . When considering the timing constraints in the TTS, not all
runs of Y � correspond to feasible execution sequences. � is tim-
ing consistent with Y if a sequence t1 � t2 � � � � of real-valued

time stamps can be found in which for every si
ei�!si+1 in � we

have Æl(ei) � ti+1 � tj � Æu(ei). The time stamp ti+1 is as-
signed to state si+1 and corresponds to the firing time of event ei.
Similarly, tj corresponds to the time stamp of the state sj preced-
ing si+1 in which ei was first enabled (enabling time). Thus, the
firing time of an event only depends on its enabling time and cer-
tain delay amount within the specified bounds.

Lazy transition systems [5] are used to build the sequence of
aforementioned approximations for L(Y ). Laziness enables to
model time by abstracting absolute timing information into relative
timing information. This is accomplished by explicitly distinguish-
ing between the enabling and the firing of an event.

Sequences of events leading to states in which properties do not
hold are specified by means of traces with enabling information.

Given an alphabet of events �, a trace � = E1

e1�!E2

e2�!� � � is a
sequence such that 8i � 1 : Ei � � and ei 2 Ei, where Ei is the
set of events enabled when ei fires. Removing some of the events
from � enables a trace to capture sets of sequences that share the
same enabledness, i.e. it is an enabling compatible mapping [13]
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Figure 2. (a,b) Failure traces, (c,d) their corresponding CESs
annotated with timing arcs, and (e,f) State space of the CESs
(shaded states are unreachable).

between traces. Since the firing time of an event only depends on
its enabling time and its delay, the timing analysis on a trace �0

with a subset of events �0 2 � can also be applied to the original
trace � with the full set �; that is, � is timing consistent iff �0 is
timing consistent.

Event structures (CES) are acyclic graphs that capture the
causality relations between the set events in a trace. Taking an
event structure, which partially specifies the causality in the orig-
inal system, timing analysis can be performed and the resulting
timing constraints incorporated into the specification. The causal
event structure CS� = h�;�i (where � is a precedence relation)
generated from trace � is defined as follows: � = fe1; : : : ; eng;
ei � ej , i < j ^ 6 9Ek 2 � : fei; ejg � Ek . By analyz-
ing the maximal separation time between pairs of events in a CES
[10], it is possible to determine whether two events are ordered
in the time domain. Temporal ordering due to event separation is
incorporated into the CES by additional temporal relations which
represent relative timing constraints [16]. The result is a lazy event
structure LzCES [13] in which additional temporal relations delay
the firing time of events, but never modify their enabling time.

Doing reachability analysis on the resulting LzCES, a new
LzTS G is obtained, which contains the derived relative timing
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constraints. Refining the behavior of Y by the timing constraints
in G is done by calculating the enabling-compatible product of Y
and G [13]. This product is a particular case of TS product under
the restrictions of making synchronization by the same transitions
and the same enabling conditions.

Verification flow. The proposed verification method follows a
fully automated iterative approach (see Figure 3). The verifica-
tion starts by taking a LzTS equivalent to the underlying TS of the
system under analysis. In that case the enabling and the firing of
all events coincide since no timing information has been consid-
ered yet. Given a safety property P , a trace is identified that leads
to some state in which P is violated. If the trace is timing con-
sistent then the system violates the required property and the trace
provides a counter-example. However, if the trace is not timing
consistent, it is used to refine the untimed state space and remove
other timing inconsistent traces. Causality information between
the events in the trace is extracted and a CES is built from it. Tim-
ing analysis on the CES is performed by using the algorithm in
[10]. The extracted temporal information is incorporated obtaining
a LzCES which is composed with the original LzTS, thus includ-
ing the temporal information necessary to prove that some of the
states in the system are unreachable. The process is repeated until
no violation of P exists or a timing consistent failure trace is found.

Going back to the example in Figures 1(a,b), a failure trace from
s0 to s10 followed by the firing of d can be found (see Figure 2(a)).
From this trace, a CES with the same causality relations is de-
rived (Figure 2(c)). Note that, in the CES, c is triggered by a but
not triggered by b, i.e. only a subset of the causality relations is
captured. Figure 2(e) depicts the state space of the CES. After
the timing analysis we add the temporal relations to the CES, de-
noted as dotted lines in Figure 2(c), which make unreachable all
shadowed states in Figure 2(e). Hence, event c is prevented to
fire in some states, where its firing would be inconsistent with the
timing analysis. Finally, this information is incorporated by com-
posing the original system and the event structure. Some states
in the composed system are split into two instances depending on
whether they are reached by traces matching (enabling compatible)
the event structure or not (see states s5, s6, s11 and s13). Figure 1(c)
shows the resulting LzTS, where states annotated with the ? sym-
bol are not enabling compatible and thus the timing analysis on the
CES does not apply. It can be seen that the set of traces is smaller
than that of the original system, but larger than that of the actual

YX
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X’

X Y’

(e)
Y’

YX’
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(b)

Y’X
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Figure 4. Assume-guarantee verification using abstractions.

state space in Figure 1(a), and that only timing inconsistent traces
have been removed.

The first iteration of the algorithm has removed some failure
traces but not all of them. Figure 2(b,d,f) depicts one more refine-
ment, with. the final state space in Figure 1(d). In the resulting
system all the failure traces have been removed, which proves that
the system satisfies the property. Although it is not generally true,
in this case the final state space contains exactly the same traces
than the actual state space (the gray states) shown in Figure 1(a).

2.2. Compositional verification
The abstraction mechanism [12] allows to reduce the size of the

state space by removing details irrelevant for proving a given prop-
erty. When performing abstraction, information about the exact
behavior of the system is lost, therefore the truth of some proper-
ties cannot be determined by looking only at the abstracted system.

The assume-guarantee paradigm [14] exploits the modular
structure of systems. It reasons about the correctness of the overall
system by checking only the local properties of the components.
Unfortunately, a component is designed to operate only in the en-
vironment of that system, thus it is unlikely to satisfy any interest-
ing property unless analyzed together with such environment. The
assume-guarantee technique tackles this intimate relation. In the
system of Figure 4 (a), since the behavior of X depends on the
behavior of Y , the correctness of X can be proved if certain as-
sumptions are satisfied by Y . Then, one must guarantee that Y
actually meets such assumptions. A similar reasoning can be done
in the side of Y . By combining appropriately the assumed and
guaranteed properties, it is possible to establish the correctness of
the entire system. without building the global state space. More-
over, once a guarantee is proved it can be used as an assumption
for a later stage in the verification process. To prevent from er-
roneous conclusions circularity must be avoided in the reasoning
chain. Finally, the assumptions often come in the form of abstrac-
tions such that both techniques are combined. Figure 4 depicts the
verification scheme for the XkY system, using assume-guarantee
reasoning with abstractions: in (b) the local properties of X are
verified assuming Y 0 is a valid abstraction of Y ; in (c) the local
properties of Y are verified assuming X0 is a valid abstraction of
X; in (d) Y 0 is checked to be a valid abstraction of Y in order to
guarantee (b); and in (e) X0 is checked to be a valid abstraction of
X in order to guarantee (c). Each “guarantee” verification checks
for language containment of the implementation with respect to the
abstraction. In our framework, this is performed (following [13])
by checking that any output produced by the implementation can
also be produced by the abstraction under the same input stimuli.

Induction is used to prove properties on systems composed of
a number of similar components, organized in some inductively
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definable structure like a pipeline, a matrix, etc. These techniques
rely on the concept of invariant [6] or the so-called behavioral fixed
point [17], to reason about the behavior of systems with any num-
ber of components.

Formal frameworks that support assume-guarantee reasoning
with abstractions [11] often rely on: a preorder relation � and a
composition operator k for processes, and a logic to specify prop-
erties. X � X 0 denotes that the abstraction X0 captures more
behaviors than X , i.e. X refines or implements X0. Since we ver-
ify safety properties, the only condition we have to enforce for the
abstraction is that its state space is a superset of that of the original
system, so that the observable properties are preserved through the
abstractions. This, together with our relative-timing-based verifi-
cation approach [13], provides a sound framework for performing
assume-guarantee verification with abstractions.

3. Verification of IPCMOS circuits
3.1. The IPCMOS architecture

The Asynchronous Interlocked Pipelined CMOS circuit archi-
tecture (IPCMOS) [15] is an asynchronous clocking technique for
large devices operating at GHz clock frequencies. Thanks to its
pulse-based interlocking scheme, it can help addressing design is-
sues such as power consumption, noise reduction and clock syn-
chronization. A single IPCMOS module is relatively small and can
be used to build scalable architectures. Figure 5 shows a pipeline
composed of IPCMOS blocks and latches, with some details on the
internal structure of a single control block.

The IPCMOS block communicates with other blocks via re-
quest signals (VALID), acknowledgment signals (ACK) and pro-
duces a local data clock signal (CLKE). VALID indicates data
availability to the receiver(s), while ACK acknowledges to the
sender(s) that data has been received. Generally IPCMOS blocks
can be fed multiple ACK and VALID signals to enable safely pro-
cessing data from multiple sources and feeding the result to multi-
ple destinations.

IPCMOS circuits are pulse-driven or edge sensitive. Their op-
eration is illustrated by the diagram in Figure 7. It shows how
two data items propagate through an IPCMOS pipeline composed
of two-stages, S1 and S2. Initially the pipeline is empty: all
VALID signals are high, CLKE signals are high and ACK signals
are low. As soon as negative pulses are received at all VALID in-
puts of a stage (only one in case of a pipeline), a positive pulse
is generated at the ACK to acknowledge the data receipt. Input
data is clocked by a negative pulse on the CLKE signal (produced

ACK OUT

VALID S2

CLKE S2

ACK S2

VALID S1

CLKE S1

ACK S1

VALID IN

Figure 7. Two stage IPCMOS pipeline waveform.

by the strobe module of the IPCMOS architecture in the center of
Figure 5). After some delay designed to match the worst case com-
putation time of the logic, a negative pulse is generated by the valid
module at the VALID line indicating the data availability to the re-
ceiver. From this point on, the block waits for positive pulses to be
received from data consumers at all ACK inputs (recorded by the
reset module). Meanwhile VALID input pulses indicating the new
input data availability are also “recorded”. Hence, new data receipt
at every stage is interlocked with the acknowledgment of the data
by the following stages. The only restriction the IPCMOS modules
pose on the environment is the pulse length.

Even though a pulse-driven environment is accepted by each
pipeline stage, the internal communication between adjacent stages
is performed in a partially handshaked protocol between the posi-
tive edges of the pulses (see Figure 6). These additional causality
relations enable to abstract the behavior of such components when
interacting among them, in such a way that internal timing infor-
mation can be neglected. This phenomenon considerably simplifies
the verification of the pipeline.

The dashed boxes in Figure 7 show the affected edges while the
dashed arrows show the restricting causal dependencies that must
not exist in the environment (IN, OUT) but take place in the IPC-
MOS stages (S1, S2). On this diagram we also show that all stages
in a sequence cannot be filled with data at the same time, but ”bub-
bles” (empty stages) are needed to propagate data in one direction
and the acknowledgment in the other. The causal dependencies
demonstrating this fact are dotted in the diagram.

The complexity of a IPCMOS stage depends on the number
of data suppliers and receivers. The number of transistors can be
computed as: Ntransistors = 21+7�Ninputs +4�Noutputs . A
single stage of a linear pipeline contains 32 transistors.

3.2. Verification steps
The correct operation of an IPCMOS pipeline initially empty,

is given by the following informal specification (S):
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Every data item sent to the pipeline is acknowledged
once and only once at every stage.

We verify the correctness of the IPCMOS control circuit, i.e.
the data path is assumed to be correct. Even though the previ-
ous property involves a liveness and a safeness condition, both can
be modeled as safety conditions during the calculation of the state
space. They can be modeled by means of a deadlock-freeness in-
variant in the control circuitry of the pipeline, such that the control
deadlocks when either some data is not acknowledged or some data
cannot move to the next stage.

Additionally, specific conditions about the correct behavior of
CMOS circuits must be also ensured. These conditions are de-
scribed in Section 5.1.

In particular, all properties required in this work have been
modeled with very simple temporal expressions that require at
most the analysis of 1-step transitions. Therefore, it is not nec-
essary a powerful engine to verify branching time or linear time
logic for such task.

Due to the pulse-driven nature of the architecture, its correct-
ness strongly depends on the delay margins associated to the com-
ponents of the control stage. The goal of the verification is to check
whether an IPCMOS pipeline with any number of stages behaves
correctly according to S, i.e. to check:

IN k I1 k � � � k In k OUT � S (1)

for any value of n > 0, where Ii are identical instances of the cir-
cuit implementation I of a stage. The environment is formed by the
data sender IN and the data receiver OUT, which are indeed part of
the specification in the sense that S also specifies the interface be-
havior of the pipeline, and IN and OUT can be obtained by simply
mirroring such behavior. The verification becomes exponentially
more costly as n increases, specially because the communication
protocol in both ends of a stage is highly decoupled. Thus, if the
verification is carried out using the level of detail provided by I ,
in practice n cannot go beyond 2 stages. In order to overcome the
complexity, the verification of longer pipelines must be carried out
using abstractions.

IN and OUT operate according to the pulse-based protocol and
so does the left side of a stage, whereas the right side of a stage
operates according to a two-phase handshake protocol (see Sec-
tion 3.1). Therefore, the communications between stages I2 and
In�1 inside the pipeline use the handshake scheme (thin arrows
in Figure 8), whereas the pulse-based behavior only appears at the
extremes of the pipeline (thick arrows in Figure 8). We propose
abstractions that hide the pulse-based behavior in a way that all the
timing restrictions related to the correctness of such protocol are
also encapsulated inside the abstractions (see Ain and Aout in Fig-
ure 8). Therefore, since Ain and Aout communicate through the
handshake protocol, the abstractions can be untimed and assume-
guarantee reasoning can be used. Hence, we pose the verification
of (1) in terms of:

Ain k Aout � S (2)
We proceed as follows:

� Build abstractions Ain and Aout for the components shown
in Figure 8. IN and OUT communicate by pulses with I ,
whereas I communicates by handshakes with the pipeline.

� Prove (2) assuming that Ain and Aout are correct abstractions
of the respective parts of the pipeline.

IN OUT
ACK

VALID

ACK

VALIDVALID

ACK

I I I I1 2 n−1 n

Ain Aout

VALID

ACK

VALID

ACK

Figure 8. Pipeline verification using abstractions.
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Figure 10. STGs for the abstractions Ain (a) and Aout (b).

� Guarantee the soundness of the abstractions. Discharge the
assumptions by proving that Ain and Aout are correct ab-
stractions of IN k I and I k OUT, respectively. Moreover,
prove that Ain is also a good abstraction of Ain k I , i.e. Ain

is a behavioral fixed point that abstracts the sender IN and a
chain of n stages.

� Finally, prove the correctness of a pipeline formed by a single
fully detailed implementation (I) of a stage. The verification
checks if I is a correct CMOS circuit and satisfies S in the
given environment, that is IN k I k OUT � S.

Section 4 covers the first three items, whereas Section 5 shows
in detail the use of [13] to perform the proof in the last item.

4. Verification of IPCMOS pipelines
The verification methodology of [13] is used in this section to

perform the experiments of the assume-guarantee strategy outlined
in Section 3.2.

4.1. Abstractions
The models Ain and Aout must describe the observable behav-

ior of the abstracted parts of the pipeline at a higher level (see Fig-
ure 8). The two-phase handshake protocol in the communication
interface of the abstractions is modeled by the fact that the rising
edge of ACK to acknowledge a data portion is always interlocked
within the falling edge and the next rising edge of VALID. The
models for the environment (IN and OUT) used for the verifica-
tion are shown in Figure 12. Figure 10 depicts the models for the
abstractions Ain and Aout. These models are represented by Sig-
nal Transition Graphs (STG), i.e. Petri nets in which transitions
are interpreted as rising (+) and falling (�) signal transitions. The
underlined transitions represent inputs in their respective models.

Ain: abstraction of IN-I1 � � � � � In�1. Ain hides the pulse-
based communication between IN and the last stage of the pipeline.
Ain signals the data availability at the input of the next stage of the
pipeline by lowering the output VALID line. VALID is not raised
again until the pipeline acknowledges the receipt of the data. The
two-phase handshake protocol (see Figure 6) is completed by reset-
ting the VALID line independently of the resetting of the ACK line
by the pipeline.

Aout: abstraction of I-OUT. Aout hides the pulse-based com-
munication between the last stage of the pipeline and the OUT
module. Aout samples the data available at the end of the pipeline
signaled by the low value of VALID, and acknowledges it by pro-
ducing a positive ACK pulse.
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Figure 9. Scheme of the guarantee part of the verification, to prove the correctness of the various abstractions.

4.2. Assume-guarantee verification
We want to prove that the abstract system built from Ain and

Aout is a good abstraction of an IPCMOS pipeline, i.e.:

IN k I1 k � � � k In k OUT � Ain k Aout

We use assume-guarantee reasoning in five steps in order to carry
out the proof. Steps 3 and 4 are the ones that use induction to prove
the correctness of an n-stage pipeline, for n � 2.

Some of the verification steps are graphically depicted in Fig-
ure 9. The symbol 3 models a component that checks that any
event produced by the refinement is also produced by the abstrac-
tion (i.e. the language produced by the refinement is included in
the one produced by the abstraction).

1. Assume: We must prove that the system formed by the ab-
stractions meets the specification of the IPCMOS pipeline, that is:
Ain k Aout � S . The task is straightforward and completes
successfully in a few seconds of CPU time.

2. Guarantee correctness of Aout: We prove the correctness of
Aout with respect to the system formed by a stage I and the OUT
module, when I communicates with the rest of the pipeline using
the handshake protocol. That is: Ain k I k OUT � Ain kAout .
For this, the system shown in Figure 9(a) is built. The verification
consists in checking the language containment of I k OUT with
respect to Aout, which is reduced to checking that any output pro-
duced by I k OUT can also be produced by Aout at the same time
instant. In this case, the only relevant output is signal ACK.

3. Guarantee correctness of Ain with one stage: We prove the
correctness of Ain with respect to the system formed by the pulse-
based IN module and the implementation of a stage of the pipeline
I , when I communicates with the next stage in the pipeline using
the handshake protocol. That is: IN k I k Aout � Ain k Aout .
For this analysis, the system shown in Figure 9(b) is built. The
verification consists in checking that whenever I is ready to change
the value of VALID, Ain is also ready for that, thus guaranteeing
language containment of IN k I with respect to Ain.

4. Guarantee Ain is a behavioral fixed point: The previous proof
only guarantees the correctness ofAin as an abstraction of IN and a
single stage. That result serves as the induction hypothesis to prove
thatAin is a correct abstraction of IN k I k � � � k In�1, for any n �
2, as shown in Figure 8. Namely, Ain k I kAout � Ain kAout .
For this, the system shown in Figure 9 (c) is built and the verifi-
cation is done similarly to the previous proofs, but now checking
signal VALID.

Proofs 3 and 4 prove the correctness of an n-stage pipeline. Ain

is an abstraction of the IN module and a chain of IPCMOS stages

Experiment CPU time Refinements
1. < 1 min. –
2. 28 min. 7
3. 9 min. 3
4. 10 min. 3
5. 35 min. 40

Table 1. Summary of experimental results

and is said to be a behavioral fixed point [17], since no matter how
large n is, Ain can be used as a correct abstraction.

5. Guarantee correctness of a 1-stage pipeline: The previous
proofs demonstrate the correctness of IPCMOS pipelines with 2 or
more stages. It is still needed to prove the correctness of a pipeline
with a single stage, that is IN k I k OUT � S. This step is nec-
essary to consider the case in which a stage is interacting with a
pulse-driven environment at both sides. This is the step in which
more timing constraints are required to guarantee a correct behav-
ior of the components. Despite of its complexity, since this step
also requires the refinement of the model at the level of transistors,
we describe it in detail in Section 5.

Table 1 summarizes the results of the five verification steps, us-
ing the transyt tool implementing the relative-timing-based verifi-
cation approach described in [13]. The CPU times, indicated in the
second column, have been rounded to minutes and correspond to
executions in a 866Mhz PIII computer with 1Gb of RAM running
Linux. The number of refinements, indicated in the third column,
correspond to the number of iterations needed by transyt to suc-
cessively incorporate the timing constraints that help pruning the
failure traces from the state space of the corresponding models.

In the first experiment, no refinement is required since the ver-
ification only consists in computing the untimed state space of the
abstractions involved and realizing that no violation of the speci-
fication arises. Notice also, that although experiments 2, 3 and 4
require a few refinements the CPU times are comparatively high
with respect to that of experiment 5. This is due to the complex-
ity of the required models (see Figure 9) and the resulting BDD
explosion when doing reachability analysis.

5. Verification of a 1-stage IPCMOS circuit
This section addresses the verification of the circuit implemen-

tation of an IPCMOS pipeline stage (I), in an environment formed
by a data sender IN and a data receiver OUT. We will show the
modeling mechanisms to describe the transistor-level circuit, the
description of environment and the verification results.

5.1. Modeling CMOS circuits
The behavior of the system is modeled by a TTS with a set of

events that update the value of variables and therefore modify the
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Figure 11. General structure of the strobe (right) and strobe switch (left) circuits.

state of the system. We use a boolean variable to model each circuit
node and several events that model the rising and falling transitions
of the node value. For every event a transition relation is defined,
including an enabling condition and a delay interval [Æl; Æu] speci-
fying the delay bounds of the signal switch once enabled.

A node in the circuit may be driven by stacks of pull-up and
pull-down transistors, and possibly pass-transistors. Each stack is
modeled by an event that sets the proper value to the variable (one
for pull-up, zero for pull-down and copies the value of another vari-
able for a pass-transistor). Note that we do not consider bidirec-
tional pass-transistors. Delay intervals can be computed using the
technology parameters and the fan-out conditions for each signal.
The broader the delay intervals for which the circuit is proven to
be correct, the more general is the verification, i.e. the more robust
is the circuit.

As an example, we show the transition relations for signal Y in
the strobe switch circuit (see Figure 11). Y+, takes place if Y is
low and it is pulled up by the p-transistor controlled by Z. Thus,
the enabling condition is given by En(Y+) = Y^Z. The enabling
condition for Y� is given by En(Y�) = Y ^ ACK because Y can
only be pulled down by the n-transistor controlled by the ACK sig-
nal. No specific technology library is used, hence the delay bounds
for each stack of transistors to be in the range of [1,2] delay
units. Other appropriate delay ranges are used in case of weak
transistors or fan-out considerations.

Provided this modeling mechanism, correctness of CMOS cir-
cuits can be posed in terms of the following properties:

Persistency. The temporal behavior of a gate is described by the
inertial delay model. In this model, input pulses shorter than the
lower delay bound Æl are not propagated to the output. Pulses
longer than the upper delay bound Æu are always propagated. How-
ever, propagation of pulses with duration between Æl and Æu is un-
certain and may produce glitches, hence signal persistency condi-
tions are imposed. Persistency implies that every transition must
fire once it is enabled and cannot be disabled by the firing of an-
other transition.

Short-circuits. Custom designs exploit the flexibility of CMOS
technology, relaxing the complementarity between the pull-up and
pull-down stacks. This introduces a potential source of short-
circuits. Although short-circuits can be exploited by considering
the pull-up/pull-down relative impedance, generally they are unde-
sirable because they may leave the driven signals undefined.

The potential short-circuits in the strobe circuit of Figure 11 are
identified by the following invariants:

IN OUTCLKE

I

VALID

ACKACK

VALID

VALID−

VALID+ ACK−

ACK+

VALID+

VALID−

ACK−

ACK+

Figure 12. Scheme of the verification of an IPCMOS stage.

1. Z ^ ACK: Y is pulled down by the n-transistor controlled by
ACK and pulled up by the p-transistor controlled by Z.

2. VALID^ Y^CLKE: VALID is pulled down by the input and
pulled up by the p-transistor controlled by CLKE.

5.2. Modeling the environment
Figure 12 depicts the communication protocol implemented by

the IN (left) and the OUT (right) parts of the environment, in the
form of Signal Transition Graphs. The underlined transitions rep-
resent the behavior of the circuit stage signals. The IN and OUT
modules operate in a pulse-based manner. Therefore, the environ-
ment we use in this experiment is the most general possible to en-
sure the correct operation of the IPCMOS stage.

The OUT module acknowledges the data available at the out-
put of the stage by rising the ACK line. Once this happens, both
the stage and the OUT module reset the respective VALID and
ACK lines independently. A restriction must be imposed to OUT
to avoid early resetting of ACK. That is, if ACK� arrives too fast
after ACK+, the falling edge of ACK may not be properly recorded
by the reset switch circuit of the stage. Therefore a minimum width
is required to the positive pulse of ACK.

The IN module notifies new data availability at the input of the
stage by lowering the VALID line. The stage acknowledges the
incoming data by rising the ACK line. The reset of both lines is
carried out independently and no new data can be issued by IN
until the stage has acknowledged the previous data portion.

5.3. Verification results
Provided the models above, the verification succeeds proving

that the invariants characterizing the circuit correctness conditions
always hold, i.e. the circuit implementing the IPCMOS stage op-
erates correctly in the given IN-OUT environment and shows no
short-circuits, no persistency violations and no deadlocks. The ver-
ification process finishes in less than an hour of CPU time.

The verification succeeds and also provides back-annotation in-
dicating a set of sufficient timing relations between events that
guarantee the correctness of the implementation. These relations
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Figure 13. (a) Failure trace and (b) corresponding LzCES. (c)-(f) LzCESs showing other relative timing constraints (dotted arcs)
that guarantee correctness.

are provided as the timed event structures obtained at every itera-
tion of the verification. This information permits to guess about the
delay margins allowable to keep the correctness.

Figure 13 shows some of the timing relations obtained during
the verification, that guarantee the correctness of the strobe switch
module (see left side of Figure 11). For example, Figure 13(a)
shows a trace leading to a failure situation in which the early fir-
ing of ACK+ causes a short-circuit at node Y. Event structure (b)
shows the ordering of Z+ and ACK+ in the time domain proving
that trace (a) is not timing consistent. This situation corresponds
to the case where a falling edge of VALID occurs, followed by the
fall of signal Vint and the rise of ACK to indicate the data receipt.
Z+ must be faster than ACK+ to avoid the short-circuit at Y cor-
responding to invariant (1). Event structure (c) shows that after
rising signal ACK, the transition Y� turns off the n-transistor iso-
lating Vint from VALID remaining low before it is reset (pulled up)
by CLKE�. This ordering is required to guarantee invariant (2).
Event structure (d) shows that the event ACK� is ordered with Z�
ensuring invariant (1). Indeed it shows that signal ACK always
falls before Z thus, avoiding the short-circuit. Event structure (e)
shows the ordering relation between CLKE+ and VALID�. The
delay of VALID� is set to reset CLKE before the falling edge of
VALID. This ordering contributes to guaranteeing invariant (2).

6 Conclusions
A complex example has been presented in which the use of

relative-timing-based verification has been crucial to prove the cor-
rectness of the system. Although some other parametrized systems
have been verified in the past (see e.g. [9]), this is the first case in
which delay information and refinements down to transistor level
have been provided.

A relevant feature of the presented approach is the report of
relative timing constraints that describe the slacks that guarantee
the correct operation of the system.

The abstractions of different components of the system have
still been derived manually. Automatic extraction of timed abstrac-
tions is one of the important topics for future work in this area.
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