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Abstract

We introducethe notion of problemsymmetryin seach-
basedSAT algorithms. We develop a theory of essential
pointsto formally characterizethe potential seach-space
pruning that can be realizedby exploiting problem sym-
metry We unify several seach-pruningtechniquesusedin
modernSAT solves under a single framavork, by show-
ing themto be specialcasesf the geneal theoryof essen-
tial points. e also proposea new pruningrule exploiting
problemsymmetry Preliminary experimentalresultsvali-
datetheefficacyof thisrule in providing additional search-
spacepruning beyond the pruning realizedby techniques
implementedh leading-edg SAT solves.

1 Intr oduction

The BooleanSatisfiability(SAT) problemis a coreprob-
lem in mathematicalogic andcomputingtheory Thelast
decadehas seensignificantimprovementsin SAT solver
technology[6, 7, 11]. Spurredby thesedevelopmentsSAT
solvershave beenactively usedin a numberof EDA appli-
cationsincluding ATPG[9], formal verification[1, 2],logic
optimization[5] andphysicaldesign10] amongothers.Al-
mostall leading-edgeSAT solvers usea backtrackingal-
gorithm basedon the classicalDavis-Putham-Lgemann-
Lovelandprocedue (DPLL) [3] enhancedvith someform
of non-chronologicabacktrackingandconflictbasedearn-
ing [6, 7]. This work developsthe notion of problemsym-
metryto formally characterizeandenhancehesearctspace
pruningof a SAT solver operatingn sucha setting.

The notion of problemsymmetrystemsfrom the simple
obsenationthatin certainregionsof the Booleanspacethe
unsatisfiabilityof the CNF undercheckcanbe established
without usinga certainvariable,sayz. In otherwords,in
this sub-spacehe CNF is symmetricwith respecto « (or
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Figure 1. lllustration of Symmetry in Search

thisis asymmetricsubspacevith respecto z)?. In thecon-
text of abacktracking-base8AT algorithmthiscanbeused
asfollows. Considerthe backtrackingsearchtree shavn

in Figure 1. Whenexploring the left branchof branching
variablez (z = 0) the algorithmcomputesan (under)ap-
proximationof the symmetricsub-spacgout of the space
exploredunderthe branchz = 0) with respectto x (sub-
spaceR1in Figurel) andin theright branchof z (z = 1)

thecounterpartof this symmetricsub-spacés pruned(sub-
spaceR2in Figurel).

Our maincontributionsin this work areasfollows:

e Weintroducethe notionof problemsymmetryandfor-
mally characterizehe potentialsearch-spacpruning
affordedby it throughthetheoryof essentiapoints

e We showv that mary popular searchpruning tech-
nigues(suchasthepure-literalrule, non-chronological
backtrackingandconflictbasedearning)emplo/edin
leading-edgeSAT solversarein fact specialcasesof
pruning underthe generaltheory of essentialpoints.
Therebythis work unifies theseapparentlydisparate
techniquesunder a single framavork and paves the
way for discoveringseveralnew pruningtechniques.

INotethatthis notionof symmetnyis distinctfrom theoftenusednotion
of aBooleanfunctionbeingsymmetricwith respecto certainvariables.



e We proposea new, simpleandefficient pruningtech-
nigue called supecubing based pruning basedon
problemsymmetry Preliminaryexperimentalresults
demonstratehis to be effective in providing search-
spacepruningover andabove the pruningaffordedby
existing techniquesn SAT solvers.

The restof the paperis organizedasfollows. Section2
presentshenotationalframewvork usedin theexposition.In
Section3 weillustratethenotionof problemsymmetrywith
afew examples.Thetheoryof essentiapointsandaformal
characterizationf problemsymmetryis developedin Sec-
tion 4. Sectionb presentsheoreticatesultsshaving several
popularpruningtechniquesisedin SAT solversto be spe-
cial casesf the generaltheoryof essentiapoints. In Sec-
tion 6 we presentanew pruningrule calledthe supecubing
rule. Thisis alsoa specialcaseof problemsymmetrybut
subsumesomeexisting pruningtechniquesandis orthog-
onalto others.Section7 presentgpreliminaryexperimental
resultsvalidatingthe efficacy of this rule. Conclusionsand
suggestion$or futureresearctarepresentedh Section8.

2 Definitions & Notation

The following discussionwill be with respectto SAT
instancesexpressedas conjunctive normal form (CNF)
formulas. A CNF formula f on n Boolean variables
X = {z1,z2,...,zn} iS @ conjunctionof m clauses
C1,Cs,,. .. Cy,. Eachclauseis a disjunctionof literalsover
the variablesX. Let ! denotea literal of one of the vari-
ablesX. lit(z) refersto a literal of variablez i.e. lit(z)
is eitherz or 7. 1 refersto a minterm or point in the
2™ Booleanspaceof variablesz, zs,... ,z,. Notethat
amintermq is a completeBooleanassignmento the vari-
ablesX. Further formula f canbe evaluatedunderthis
assignment.In the sequelwe will occasionallyusea lit-
eral of a variableto referto a particularvalue assignment
to thevariable(e.g. x = 0 = ) anda cube(minterm)to
referto a partial(completeyalueassignmento variableof
X. A(z) refersto the currentassignmenbf variablez or
alternatvely theliteral correspondingo thatassignment.

The underlying SAT algorithm usedfor the discussion
is the basic DPLL [3] algorithm, augmentedwith some
form of conflict analysis non-dironolagical badktradking
andconflict clauserecoding [6]. This is representati of
the SAT methodsimplementedn mostleading-edgeSAT
solvers[6, 7, 11].

As in [6, 7] a variablethat is consciouslychosenand
assigneda value by the branchingprocedureis referred
to asa decisionvariable (assignmentandis distinguished
from adeducedrariable (assignmentyvhosevaluehasbeen
implied throughBooleanconstaint propagation (BCP) A
conflictconditionis denotedby X'. A conflict conditionoc-
curswhenthecurrentpartialassignmenfduringbranching)

unsatisfiesoneor moreclauseof the CNE The conflictis
identifiedby oneof theseclauseswhichis referredto asthe
conflictclauseof conflict X anddenotedby C(X)2.

Z(1) refersto theclausethatwasusedto imply or deduce
theliteral . Although,therecanbe mary suchclausesZ(l)
is oneof them,which is heldresponsibldor the deduction.
Z(C) refersto thesetof deducediteralsof clauseC i.e. the
setof literalsassignedhroughBCPimplicationsfrom other
clauses. D(C) refersto the setof literals of C' assigned
throughdecisionassignments.

Givena conflict condition X', conflictanalysisperforms
the task of identifying a subsetof assignmentsdenoted
Ax(X) (outof the currentsetof decisionanddeducedas-
signmentswhich canbe heldresponsibldor X'. As noted
in [6, 12] there can be multiple ways at arriving at such
a subset(i.e. therecanbe multiple possible A (X) for a
given X). For the sale of concretenesae will usethefol-
lowing definitionof Az (X) in thesequel.

Consider the following recursve marking function
M(C), which operate®mn a clauseC andis definedas

M(C)=D(C)uz(C) | MEZO) 1
LleZ(C)

Then A(X) = M(C(X)). Further A(X) canbe split
into disjoint subsetsAp(X) and Az(X) which are re-
spectvely thedecisionandimplied assignmentsomprising
A(X). TheclauseCr (X) recordedn conflict X’ is defined
to be:

Ar(X) = Ap(X)
Or(x) = \/ 1 (2)
leAR(X)

Definition 2.1 Givena clauseC denoteby ¢ (C) the un-
satisfiabilitycubeof C which is the setof mintermgassign-
ments)which unsatisfyC, e.g. givenX = {z1, 25,23} and
C = (71 +72), U(C) = {12223, T122T3}.

Notethat/(C) canalsobeinterpretedasa cubeof liter-
als. For theabove examplel/(C) = Z1z». In thefollowing
we usethetwo interpretationsnterchangeably

3 Problem Symmetry in Search

The notion of problemsymmetryhasbeenintroduced
andits potentialin searchspacepruning motivatedbriefly
in Section1. In this Sectionwe provide two examples
to buttressthis understandingand illustrate that 1.) in-
stancef problemsymmetryare plentiful in typical SAT
instancesarising from EDA applications,and2.) current

2This shouldbe distinguishedrom the new clauseC (X) which is
recordecbr deducednaconflict X.
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Figure 2. Example of Symmetry in SAT on circuits

pruningtechniquesarnesonly a fraction (albeitinadwer-
tently) of the potential searchspacepruning afforded by
problemsymmetry

Considerthe sub-circuitshavn in Figure2(a). Assume
thatthisis partof alargercircuit on which someSAT prob-
lemis beingsolved. Herexz is aprimaryinputof thecircuit
andthe threegatesshavn arethe only fanoutsof z. Sup-
posethe backtracktree explored by the SAT algorithmis
of the form shown in Figure2(b). Considertheleft branch
(z = 1) of branchingvariablez. Supposehat underthis

branchthe algorithm subsequentlynakes the assignments
a = 1,b = 0 andc = 1 (andpotentiallyotherassignments

aswell) andreaches sub-spac&1 (shovnin Figure2(b)).
Note thatin sub-spacer1 thevalueof x is nolongerrele-
vanti.e. theformulais symmetriowith respecto z in R1.
Thus,if thealgorithmfindssub-spacét1 unsatisfiabléhen
it neednot explorethe sub-spacd?2, the counterpartf R1

underthe branchz = 0, asthattoo will be unsatisfiable.

Thisis a simpleandclassicalcaseof problemsymmetryin
SAT instanceslervedfrom logic circuits,whichmaynotbe
effectively coveredby existing searchpruningtechniques.
The next exampleis designedto illustrate that current
implementation®f conflict clauserecordingexploit only a
fraction of the searctspacepruningpotentiallyaffordedby
problemsymmetry Considerthefollowing CNF formula.
f = (b+ct+d)(b+ec+d)(b+c+d)(b+7)
(b+c+d)(b+c+d)(a+b+c+d)
(@+b+c+d) 3)

A typical backtrackingtree for solving this CNF is shovn
in Figure 3. The backtrackingalgorithm employs conflict
analysisclauserecordingetc. Therecordecclauseqasper
thespecificschemealescribedn Section2) areshavn belon

3This meansthat an appropriateCNF formula is extractedfrom the
circuit andsolvedby a SAT solwer.
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Figure 3. Symmetry in backtrack search

eachconflict. Also notedarethesetof decisionassignments
relevantto the conflict. An analysisof the conflictsin the
brancha = 0 revealsthata wasonly relevantto a conflict
whenb = 1 andc = 0. Therestof the sub-spacainder
a = 0 representshe symmetricspacewith respectto a.
Thus,whenexploring the right branchof a, i.e. a = 1 we
donotneedto explorethesub-spacé = 0Ac = 1. In other
words,on takingthebranche = 1 we canimmediatelyas-
sertb = 1 andc = 0. Note,thattheassertiorb = 1 is also
deducedy meanof therecordedconflictclause(b) butthe
additionalassignment = 0 comesonly throughexploiting
problemsymmetrymorefully. Note that this obsenation
is not an artifact of the specific conflict clauserecording
mechanisnusedin this work andin this example. Rather
it is a fundamentalimitation of conflict-basedearningin
that on a given conflict the recordedclause(s)represents
only a fraction of the implicatesthat can be learnedfrom
thatconflict. It is neitherfeasiblenor practicalto learnall
possibleimplicates.However, it may be possibleto extract
additionalpruningusinganotheycomplementaryechnique



basedon problemsymmetry The Supecubingtechnique
presentedaterin Section6 is asimpleexampleof onesuch
option.

Note that during the search,certainvariables,initially
pickedasdecisionvariableshbecomededucedrariablesdue
to BCPimplicationsfrom newly addedconflictclausese.g.
in Figure3, b = 1 canbetreatedasa deducedassignment
implied from the clause(b), recordedon conflict &;. Such
assignmentsare calledfailure-driven assertiongFDA) [6].
However, b = 1 mayaswell be treatedasdecisionassign-
ment. In our treatment,FDAs are treatedas deducedas-
signmentsfor the purposeof generatinghe recordedcon-
flict clauseC'z (X). However, for generatingheresponsi-
ble assignmentshowvn in Figure3 (andfor the supercubing
rule presentedn Section6) FDAs are treatedas decision
assignmentsBoth versionsof the analysisstill useEqua-
tions 1 and2 but generatalifferentsetsAp (X).

4 The Theory of EssentialPoints

In this sectionwe developthe notion of essentiapoints
to formally characterizahe searchspacepruningthat can
berealizedby exploiting problemsymmetry

Definition 4.1 A pointy) is calledl — essentialf all clauses
of f unsatisfiedy 1y (mustbe at leastone') containliteral
l,eg.givenf = (a+b)(c)(la+b+c)(@+c)(a+b+7)
themintermabc is ana-essentiapoint.

Definition 4.2 Let ¢ and ¢* be two points in the 2"
Booleanspace v* is said to be z-symmetricto v if it is
obtainedfrom ¢ by flipping the value of variable z in .
For example mintermsy = abcd andy* = abed are c-
symmetriavith respecto ead othet

Proposition4.1 Let ¢y be a completeassignmento vari-
ableszy, xs, ... ,z, (i.e. @ mintermof 2™) which satisfies
f- Thenassignment)* which is x-symmetrido 1 is either
lit(x)-essentiallit (z) € ) or satisfiesf i.e. is a solution.

Proof: Suppose)* is neithera solutionnor lit(z)-essential
(wherelit(z) € ). ThenthereexistsaclauseC of f such
thaty* unsatisfiesC andC doesnot containany z literal.
But thenC is unsatisfiedby 1 aswell. Thereforey is nota
solutionof f. Contradiction! [

Proposition 4.2 If assignment) is lit(z)-essentiathenas-
signment)*, xz-symmetrido v, is eitherlit (z)-essentiabr
is a solution.

Proof: Suppose)* is neitherasolutionnorlit (z)-essential.
Thenthereexists a clauseC of f which doesnot contain
any z literal, suchthat * unsatisfiesC. But thenC is

4Thus,satisfyingassignmentsf f arenotessentiapoints.

unsatisfiedy ¢ aswell. Thereforey is notlit(x)-essential.
Contradiction! [

For aliteral I, the setof I-essentiapointswith respecto
thecurrentCNFis denotedy £(1). Thesubsebdf £(1) lying
in a sub-space is denotedby £4(1) andby &, (1) when
thesub-spacéeingreferredto is clearfrom the context.

The searchspacepruningthatcanbe achiezedusingthe
notion of essentialpoints canbe operationallydefinedby
thefollowing theorem.

Theorem4.1 Supposehe algorithm has explored the left
brand of variable z (withoutlossof geneality x = 0) and
found no solution. Moreover, supposethe algorithm has
computedéz(z) (the subsetof £(z) in the Booleansub-
spacespannedby the z = 0 branch). Thenunderthe
branch x = 1, solutionsof f mustlie in the setof points
x-symmetrido pointsin &z (z) (denotedby £X(x) ).

Proof: For correctnessthe algorithmonly needso ensure
thatit doesnot skip ary solutionsof the CNF in the branch
x = 1 (it canpruneeverythingelse). By Proposition4.1
solutionscanonly bepointsz-symmetricto pointsin Ez(z).
|

Theoremd4.1 implies that for testingsatisfiability of f,
whenexploringthebranchz = 1, thealgorithmonly needs
to explorethe setof points&X(x). It is alsoeasyto seethat
it is not necessaryo computethe set&z(x) exactly. Any
over-approximationof it would work aswell, thoughthe
amountof pruningwould bereducedoroportionally

Under a clauserecordingscenario,i.e. whenthe algo-
rithm progressiely addsmplicatesof the CNFto theclause
databaséor examplethroughconflictclauserecording)he
setof essentiapoints&() for eachliteral I eitherremains
unchangear shrinks.

Theorem4.2 Let CNF f* be obtainedfrom f by adding
clauseC* to f where C* is animplicateof f. Then,for
any literal I, the setof essentialpointsof  in f+, denoted
ET (1) mustsatisfy£* (1) C £(1).

Proof: Considerary mintermy ¢ £(I). Then,theremust
exist a clauseC of f suchthat! ¢ C andy € U(C). But,
sinceft = f ACT, Cisalsoaclauseof f*. Thus,y ¢
ET(1). Thereforegy & E(1) = o € EF(). L]

The relevance of Theorem4.2 is that under a clause
recordingscenariowhena new clauseis added all partial
setsof essentiapointscomputedup to that point continue
to bevalid with respecto thenew CNP°.

SHoweverthey canpotentiallybe over-estimateof the essentiapoints
with respecto thenewv CNF



5 Popular Pruning Techniques:
Casesof EssentialPoint Pruning

Special

In the following we showv that several popular search
pruning techniquessuchas the pure-literal rule [4], non-
chronolggical badtracking (NCB) and conflict clause
recoding (or conflict-basedearning) [6] arespecialcases
of the pruning afforded by the theory of essentialpoints.
This unifiesthesetechniquesindera singleframeavork and
paves the way for developing potentially more powerful
variantsof problemsymmetrybasedpruning.

5.1 The Pure-Literal Rule

The Pure-Literalrule [4] canbe usedto effect pruning
in branchingby looking for variablesthat appearin only
onepolarity (thepure polarity) in open(undecidedxlauses,
at the currentpoint in the search,and then assertingthe
variableto the pure polarity. In effect this meanspruning
the otherbranchof the variable. If no solutionis foundin
the exploredpure-branchthe pruningeffectedby the pure-
literal rule canbeexplainedby thetheoryof essentiapoints
asfollows.

The pure-polaritybranchof thevariable(sayz = 0) can
be consideredhe left branchof z, which the algorithmex-
plored and found no solution. The other polarity branch
x = 1 whichwasprunedby the pure-literalrule is the po-
tential right branch. Thus, if we can prove that the sub-
spaceunderthe pure-branchr = 0 doesnot containary
z-essentiapointsthenthe pruningdoneby the pure-literal
ruleis explainedby Theoreny.1.

It is sufficient to only considerthe casewhenthe pure-
literal branchof thepure-literalvariableis unsatisfiablebe-
causdf thereis a solutionunderthe pure-literalbranchthe
algorithmterminates.In sucha casethe claim of pruning
the otherbranchhasno meaning.

Theorem5.1 The sub-space under the pure-polarity
brand (sayz = 0) of a pure-literal variablex cannotcon-
tain any z-essentiapoints.

Proof: Considerexploring the pure polarity branch(say
x = 0) of the pure-literalvariablez. By assumptiorthere
is no solutionunderthis branch.Now considerthe follow-
ing algorithmwhich just exploresthe sub-spaceinderthis
branchusingastripped-davn DPLL procedurdi.e. no0BCP
or pure-literalrule).

Suchan algorithm would explore the entire sub-space
underthe z = 0 branch, stoppingand chronolagically
backtrackingevery time the currentassignmentinsatisfes
aclauseof the CNFE Let the setof suchconflict clausesn-
counteredwhile exploring this branchbe Cy,Cy, ... , C;.

It is easilyseenthat/(C1) UU(C3) U ... UU(Cp) sub-
sumesthe entire sub-spaceainderthe x = 0 branch. Ad-
ditionally, noneof theseclausescontainvariablez sincea
conflict clausehasall literals unsatisfiedby the currentas-
signmentandthe pure-literalassignment = 0 merelysat-
isfiessomeclausesandrestrict§ none. Theresultfollows.
|

5.2 Non-ChronologicalBacktracking (NCB)

Thenotionof non-cronolagical badtracking (NCB)[6]
is usedto pruneareaof thesearchspacedy backtrackingo
the last variableresponsiblégor the currentconflict, rather
thanthe lastvariablein the currentassignmenstack. This
methodeffectspruningby skippingtheright branchof some
of the stackvariables. Operationally this is accomplished
by deducinganimplicate (throughconflict analysis)whose
unsatisfiabilitycubesubsumesheregionsto be pruned.

Another way of looking at this pruning is that NCB
prunesthe right branchof a variablez, if andonly if all
conflictsin the left branchof = wereindependenof (sym-
metricin) z. Thisis obviously a specialcaseof symmetry
(describedby the theory of essentiaboints)which tamgets
pruningsub-spacesymmetricin a particularvariable.Be-
fore proving this we statea few simplefacts,without proof,
to formalize the operationaldefinition of NCB. The inter-
estedreaderis referredto [6] for details.

e Fact 1: NCB pruningis donein a settingwherecon-
flict analysiss usedto produceconflictclausegimpli-
catesyesponsibldor the conflict’.

e Fact 2: Thedeductionprocedurefor a conflict clause
may be simulatedby a tree of resolutionstepswhere
theleafclausesreclause®f theoriginal CNF (or pre-
viously addedconflict clausesyandthe variablebeing
resohedoutatanodeis adeducedrariable.

e Fact 3: NCB to prunethe right branchof variablex
happensnly ondeducingaconflictclausewhich does
not containary literal of x andwhoseunsatisfiability
cube subsumeghe subspacéeing prunedunderthe
right branchof z.

Proposition5.1 If clauseC is the resolventproducedby
resolvingclausesC; andCs; in somecommorvariable (say
.T) thenu(C) - U(Cl) U U(Cz)

Proof: Without loss of generality let C; = C3 VvV z and
Cy = Cy V7, whereCj andC, aresomedisjunctionsof
literals. ThenC' = C3 Vv Cy, U(Cy) = zC3 andU(C2) =
zCy. ThUSU(C) =C3-C4 C (503) U (.7,‘04) u

8An assignmenwhich setsonemoreliteralsin a clauseto 0 is saidto

restrictthatclause.
"Thededucectonflict clausesnayor may notbeaddedo the CNF.




Theorem 5.2 If the right branch of a variable z is eligi-
ble for pruning under NCB, then the subspacainder the
left branch of = (withoutloss of geneslity x = 0) cannot
containany z-essentiapoints.

Proof: From Fact 3, theremustexist animplicate C, de-
ducedthroughconflict analysiswhich doesnot containlit-
eralsz or T and which subsumeghe subspacainderthe
unexploredright branch,z = 1. SinceC doesnot contain
literals of z it mustalsosubsumehe sub-spaceinderthe
left branchz = 0. Moreover, from Fact2 theremustexist
clausesCy, Cs, . .. Cy, of the currentCNF which form the
leavesof theresolutiontreesimulatingthe deductionof C.
Fromtherecursve applicationof Propositionb.1it follows
thatt/ (C) CU(Cy) UU(Cy) U ... UU(Cy). Thus,clauses
C1,Cs,,. .. Cy collectively coverthesubspacendertheleft
branchof z. Also sincetheresolutioncouldonly bedoneon
deducedvariablesclauses’, Cs, . . . C cannothave vari-
ablez. Thereforenoneof the pointscoveredby themcan
bez-essential. =

5.3 Conflict ClauseRecording

Conflictclauserecording[6] is a powerful pruningtech-
niguethatis employedin severalsuccessfuBAT solvers[6,
7, 11]. Thebasicideais to deduceanimplicate (through
conflict analysis)responsiblefor the currentconflict and
addit to the clausedatabasevith the aim of avoiding fu-
ture occurancesf the sameconflict.

Although not apparenfrom the above statemenbf the
notion, the recordedconflict clausesdo in fact effect sym-
metry basedpruning. Considerthe following situation. In
theleft branchof variablez, sayz = 0, aconflict X occurs
onwhichaconflictclauseCr (X) is learned Now, suppose
Cr(X) doesnot containliteral z (it cannotcontainz). Let
thesetof assignmentgrecedinge begivenby cubeA. Let
A1 = ANTAU(CR(X)) andAs = ANz AU(CR(X)).
Notethat.A; is preciselythe sub-spac@otentiallyprunable
by Cr(X) in theright branchz = 1 of z.

As shavn below, the pruningof sub-spaced; by clause
Cr(X) can be accountedfor by the theory of essential
points.Dueto spacdimitationswe statetheresultswithout
proof. Theinterestedeadelis referrecto [8] for the proofs.

Theorem 5.3 The symmetrybasedpruning afforded by a
recodedconflictclauseCr (X) with respecto a variable
x is subsumedy the pruning potentially realizableusing
essentiapointbasedpruning (Theoem4.1).

Interestingly the entire pruning potentially accom-
plishedby a recordedclause,subsequento its recording,
canbe broken down into a seriesof right-branchprunings
like the above situatior?.

8provided the searchs organizedasasingletreei.e. withoutrestarts.

Theorem5.4 The seach space pruning provided by a
recodedclauseCr, canbedividedinto a setof sub-spaces
sud that eadh sub-spacdies underthe right brand of a
variable y, which doesnot appearin Cz, whee Cr was
recodedin theleft brand of y.

FromTheorem$.3and5.4it followsthatconflictclause
recordingis a specialcaseof essentiapoint pruning.

6 Supercubing-BasedPruning

In this sectionwe develop a simple newv pruning rule
basedon exploiting problemsymmetry This rule is called
the supecubingrule after the supercubeoperatordefined
belav, whichis the coreoperationusedin implementingt.

Definition 6.1 Supecubing Opemrtor (S): Given two
cubesc; andc, overthe2™ Booleanspace S(c, cz) com-
putesthe smallestcubecontainingboth ¢; andcs, i.e. the
supecubeof ¢; andcs.

6.1 Supercubing Procedure & Pruning

Thealgorithmmaintainsa cubecalledthe supecubefor
eachdecisionvariablecurrentlyon the decisionstack. The
supercubef variabler (denotedS,) isinitializedto () when
z is first choserfor branching.In theleft branchof = (say
z = 0) S, isupdatedneachconflictX wherez € Ag(X)
(Ax(X) is computedconsideringFDAs as decisionvari-
ables)asfollows:

S, = 8(8z,cs) where cgs =

A

lEAR(X)

After the algorithmhasexploredthe left branchz = 0
andfoundnosolution,it would have computedsomesuper
cubefor z, denotedSfi", SaySfinal = ZAl AlgA. . . Alg
Thenin the right branch,z = 1 we immediatelyassert
l1 = TRUElx = TRUE,...l; = TRUE i.e. the region
zA(ly VI V... V) is pruned.

Note that the assertecassignmentsre treatedas con-
scious assignmentsfor the purpose of future conflict
analysisand supercubingi.e. it is as though thesevari-
ableswv,,, v, ... ,v;, were consciouslybranchedon and
the branchesly, I, ... ,1; were pruned, while the other
branchesvereexplored.

6.2 Proofof Correctness

The proof of correctnessf thealgorithmrequiresprov-
ing two propositions:

1. Everysupercube-basgatuningis legal, i.e. thepruned
spacecannotcontaina solution.



2. At ary point in the algorithmthe following property
holdfor eachpoint(minterm)in theBooleansub-space
thatthealgorithmhasalreadyexplored(andfoundun-
satisfiable).

Definition 6.2 A point ¢ satisfies Property A if there ex-
ist a cubecy, suth thaty C ¢, andc, wasprocessedy
supecubing(Equation4) undersomepreviousconflict.

Proof: The algorithmprunesoff (explores)regionsof the
Booleanspaceahroughtwo kindsof pruningevents namely
1.) regularconflictsand2.) supercubédasedoruning.

We prove the abore two propositionssimultaneoushby
induction on the sequencef pruningevents. The overall
ideais to prove thatif all the pointsprunedby all previous
pruningeventssatisfyPropertyA then:

a.) Pointsprunedby the currentpruningeventsatisfy Prop-
erty A, andb.) supercube-basqutuningis legal.
BaseCase: Sincepruningoccursonly in theright branch
of avariable,thefirst pruningeventmustbe a conflict and
by definition,thealgorithmwould generatea conflictclause
coveringthe prunedregion anddo supercubingnit. Soall
prunedpointssatisfyPropertyA.

Induction hypothesis: Supposeointsprunedby thefirst
k pruningeventssatisfypropertyA andarelegal prunings.
Induction proof : Considerthe k& + 1** pruning event.
If this is a regular conflict the proof trivially follows as
per the basecase. So considerthe casewhenit is super
cubebasedpruning performedin the right branchz = 1
of somevariable z. The region prunedby supercubing
Sprune — g A 3z - 81 Considerary pointy* € Sprune
andpoint, whichis z-symmetricto ¢*. Obviously ) was
examinedby the algorithmin theleft branchof xz. Further
¢ ¢ Sfmal. Also, by the induction hypothesisthere ex-
ists cubecs suchthaty € cs andcs was processedy
supercubing.Thus, sincecs Z Sf*"* cubecs mustnot
have variablex whichmeanghatit coverspointy* aswell.
Henceall pointsin S2"“"¢ are coveredby conflict clauses
thathave alreadybeendiscoveredandprocessedby the al-
gorithm. This alsomeanghatthe currentpruningis alegal
one(sincethe prunedspaceds obviously unsatisfiable).

Notethatin reality thereis a third kind of pruningevent,
namelyBCPdeductionsHowever, thesub-spacerunedby
themis completelyaccountedor by the conflict clausef
the conflictslying below this deduction. A simpleway to
prove this is to take the currentbranchingtree and“push”
all BCP deductiondo the leavesof thetreei.e. afterall the
consciousassignmentf eachbranch. Sincein our proce-
dureall conflict clausesarecomposecntirely of conscious
assignmentthesameconflictswill still occur but therewill
benoBCP-prunedireaghistime. Here theconflictclauses
canbetrivially seento cover the entireprunedareas.Also
we have not consideredoure-literalrule basedpruningin

BestOrder WorstOrder

Benchmark # Nodes # Nodes

Orig. | With SC Orig. | With SC
SSA-0432-003 1371 1050 3316 1074
SSA-2670-130 44039 38812 | 109766 66142
BF-0432-007 11487 10811 | 27298 9099
Queueirvar8 3211 2983 5842 5842
Aim-50-1.6-no-2 27 26 150 84
Aim-100-16-no-1 120 64 881 455
Aim-200-16-y-1-4 291 193 1155 354
Aim-200-16-no-3 457 559 6671 1252
Par-16-1-c 6543 6543 6543 6543
Hole 6 719 719 817 817

Table 1. Supercubing: Experimental results

this proof sincethis rule is a specialcaseof Supercubing
(seeProposition6.1). =

6.3 Supercubing and Other Pruning Techniques

Proposition6.1 The pure-literal rule is a special caseof
supecubingbasedpruning

Thereaderis referredto [8] for the proof. The essential
ideais thatin someof theinstancesvhereanull supercube
is computedfor a decisionvariablez, supercubinghased
pruningof theright branchof z is synorymouswith anap-
plication of the pure-literalrule on z. In othersuchcases
thebehaior of thealgorithmis identicalto NCB. Thus,su-
percubingoverlapswith someinstance®f NCB. In fact,we
conjecturethatsupercubingubsume®CB. All our exper
imentsthusfar have not yieldeda single casewhereNCB,
implementedin the corventional fashion, could prune a
sub-spacé¢hatsupercubingould not. However, the opera-
tional definitionof NCB givenin theliteratureis notprecise
enoughto prove or challengeour conjecture.This couldbe
aninterestingproblemfor futureresearch.

7 Experimental Results

This sectionpresentspreliminary experimentalresults
validatingtheefficacy of the supercubingpruningrule. The
pruning rule has beenimplementedin a prototype SAT
solver modeledon the lines of the GRASPSAT solver [6].
The prototypesolver implementsall the algorithmic fea-
turesof GRASPIncluding conflict analysis NCB, conflict
basedlearningand various orderingheuristics. However,
the solver has not yet beensoftware engineeredor effi-
cieng sinceits purposeis simply to evaluatethe first or-
derefficacy of somepruningtechniques.Thereforethe re-
portedresultsarein termsof numberof nodesin the SAT
searchtree, ratherthan CPU runtimessince reportingthe
latterwould be unfair andnot particularlyinformative.



Preliminaryresultson selectedSAT benchmarksrom
the DIMA CS suiteandboundednodelchecking[1] arere-
portedin Tablel. Thebenchmarlexampleshave beencho-
sento be representatie of the examplesthatwe ran, rang-
ing from the oneswhere supercubinggave the maximum
improvementto oneswhereit wasnot soeffective.

For eachbenchmarkhe solver wasrun in two configu-
rationswith four possibleorderings DLCS, DLIS, MSTS,
MSOS (i.e. eight configurations)l.) ORIG: without su-
percubingout with NCB andclauserecordingand2.) With
SC: sameas ORIG exceptsupercubings also used. For
eachbenchmarkthe bestand the worst ORIG results(in
terms of numberof nodesin the searchtree) were cho-
senandarereportedin columns2 and4 respectiely. The
correspondingesultswith SC (i.e. with the sameordering
heuristicasthe ORIG result)arereportedn columns3 and
5 respectiely.

As shown in Table 1 the searchtree size decreasein
mostcasessometimegyuite significantly In the odd case
(in our experiencdessthan1% of the casesk.g. Aim-200-
1.6-no-3thereis a slight increase.This is becausesuper
cubingdisturbsthe numberof recordedclausesandhence
the variable order slightly. However, overall supercubing
provedbeneficiafor boththebestorderandtheworstorder
The improvementsin the caseof the worst orderingwere
moresignificantsuggestinghatthis pruningtechniquecan
partially correcta poor ordering. The supercubingtself
addedvirtually nothingto the runtimessince mostof the
book-keepingrequiredfor it was being done by conflict
analysis. The additional supercubingoperationswere ef-
ficiently implementedby bit-vectoroperations.Thusgains
in numberof searchreenodedranslatedirectly to runtime
gains. Also, sincesupercubingasedpruning partly over-
laps with the pruning provided by conflict-basedearning
usingsupercubindrequentlyled to fewerrecordectlauses.
This featureof supercubingcanbe usedto partly alleviate
the clausedatabasenemoryproblemshatarebecomingan
issuein currentSAT solvers[7].

8 Conclusions& Future Directions

In this paperwe have introducedandformalizedthe no-
tion of problemsymmetryin search-base8AT algorithms.
We have developedthetheoryof essentiapointsto formally
characterizeéhe potentialsearch-spacpruningthat canbe
realizedby exploiting problemsymmetry We have unified
several powerful searctpruningtechniquesisedin modern
SAT solversundera single framework, by shaving them
to be specialcasesof the theory of essentialpoints. We
have alsoproposeda new pruningrule exploiting problem
symmetryandshown it to provide additionalsearchspace
pruningover the pruningrealizedby currenttechniques.

9Referto the GRASPusermanualfor detailson theseheuristics.

CurrentSAT solwversintegratefairly sophisticatedearch
pruning techniquesn a very tightly and efficiently engi-
neeredsoftware framavork. However, thereis very little
fundamentaunderstandingf how thesetechniquednter-
act, what searchspacethey pruneandwhatthe magin for
improvements. Our currentwork is a steptowardsanswer
ing thesequestions We believe thatit is possibleto derive
a whole family of searchpruningtechniqueswith varying
cost-paver tradeofs, underthe generalpurview of the the-
ory of essentiapoints. The supercubingule presentedn
Section6 is a simplecasein point. It is quite obviously a
very weakandcheaprealizationof essentiapoint pruning.
However, it still improvesover the state-of-the-artdemon-
stratingthe immensepotentialfor improvement. Our cur-
rentandfutureresearclefforts areaimedat realizingsome
of this potential.
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