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Abstract

Phased logic has been proposed as a technique for re-
alizing self-timed circuitry that is delay-insensitive and re-
quires no global clock signals. Early evaluation techniques
have been applied to asynchronous circuits in the past in
order to achieve throughput increases. A general method
for computing early evaluation functions is presented for
this design style. Experimental results are given that show
the increase in throughput of various benchmark circuits.
The results show that as much as a 30% speedup can be
achieved in some cases.

1 Introduction

Phased Logic (PL) was devised in [14] as a design style
for digital logic that produces delay-insensitve circuits that
do not require a global clock signal. Implementation of
synthesis tools for PL [19, 20] have resulted in a pack-
age that is well-suited for implementation in a Field Pro-
grammable Gate Array (FPGA) type of device. A major
advantage of this design style is that designers may use
synthesis tools and design styles that are currently used
for the design of synchronous digital circuitry. Another
recently developed method for mapping synchronous cir-
cuit designs to asynchronous ones is described in [8] al-
though the target circuit technology is quite different from
that used here. As is described in [14, 15], direct mapping
from synchronous digital circuitry to PL circuitry is pos-
sible and has recently been implemented as is described in
[19, 20]. Phased Logic is based upon Level-Encoded Dual-
Rail (LEDR) signal encoding [6] and marked graph theory
[5].

PL circuits address the important issues of clock and
timing challenges since all PL circuits are guaranteed to
operate as fast as possible. Furthermore, since global
clocks are not used, issues related to clock distribution net-
works and clock skew correction are irrelevant. Neverthe-
less, the topology of the PL circuit does affect the overall
achievable throughput. Synthesis tools that are designed
for producing optimized clocked circuits do not take ad-
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vantage of characteristics inherent in the PL design style
although it is possible to directly map the output of such
tools to functionally correct PL circuitry. As is discussed
in [4], asynchronous circuit technology mappers should be
designed to optimize average-case delay versus worst-case
delay. Typically, synchronous circuit mappers are designed
to minimize worst-case delay, thus the direct mapping from
synchronous designs to PL based ones does not account for
this criterion. Here, we describe a PL circuit optimization
known as Early Evaluation (EE). Several other researchers
have investigated similar approaches and have referred to
them as Speculative Execution, Eager Evaluation or simi-
lar names [7, 17, 18, 21]. In addition, it is noted that sim-
ilar methods referred to as “telescopic units” have been
employed to speed-up synchronous pipelines [2, 3]. The
novelty in the approach described here is that it is general
and is not specifically designed to speed-up certain types
of sub-circuits.

In comparison to other approaches, a self-timed FPGA
based upon LUT3s and using LEDR encoding was pre-
sented in [12]. The PL gate design as shown in Figure 1
is a variation of the cell design used in [12]. In [12], three
feedback inputs are included in each cell, so the Muller C-
element [16, 24] has 6 inputs (3 data, 3 acknowledge). Also
in [12] the circuit is used in the context of micropipelines
[22] and self-timed iterative rings [9]. Both methods re-
quire a feedback signal for each output destination. The
PL methodology removes the need for a feedback for ev-
ery output signal destination as multiple output signals can
be covered by the same feedback signal, and some output
signals need no feedback signal if they are already part of
a loop.

An FPGA-based architecture for asynchronous logic is
also proposed in [11]. This FPGA architecture was aimed
at accommodating a range of asynchronous design styles,
and allowed for mixed synchronous and asynchronous de-
signs. All signals were single rail. By contrast, the PL gate
is only intended for supporting the PL design style and thus
implements PL designs more efficiently than [11].

The asynchronous design methodology known as Null
Convention Logic (NCL) also offers automated synthesis
of asynchronous designs using commercial synthesis tools
[13]. A restriction with the NCL methodology is that while
the design can be coded in VHDL RTL, the user must
write the RTL such that combinational logic and regis-



ters are separated. In comparing physical implementation
characteristics, NCL has some delay sensitivity between
NCL gates whereas PL has no delay sensitivity between PL
gates. Both NCL and PL use dual rail signals, where NCL
uses a NULL/DATA/NULL encoding instead of LEDR.
NCL has the same advantage of eliminating transient com-
putations as PL, and does not have the disadvantage of the
PL control overhead. The computation blocks in PL are
the same as their synchronous counterparts with only a dif-
ferent control scheme, while NCL computation blocks are
quite different from their synchronous equivalents.

In terms of Early Evaluation, several approaches have
been proposed for asynchronous circuits in the past. Most
of these are applicable only to special subcircuits within
a given design, most notably addition subcircuits. A
speculative-completion carry-lookahead adder is presented
in [17]. This technique is well suited for an ASIC imple-
mentation but its reliance on matched delays and a bundled
datapath makes an FPGA LUT4 implementation question-
able. Applying general speculative completion techniques
within a PL system is the subject of this work. Other ap-
proaches are described in [7, 18].

The remainder of the paper is organized as follows. A
brief review of PL is given and a description of the concept
of EE is provided. Next, the algorithm for determining EE
functions and a description of the cost function is given. Fi-
nally, experimental results and conclusions are provided.

2 Phased Logic

A PL netlist can be thought of as a marked graph with
data tokens flowing throughout the graph. Each data to-
ken has a phase that is either even or odd. A data token is
represented by a dual-rail signal that uses LEDR encoding
[1]. A PL gate has an internal state bit used to represent
the gate phase and a phased logic gate fires whenever all
of the phases of the inputs matches the internal gate phase.
In [15] it was shown that for correct operation of a PL sys-
tem, the marked graph equivalent had to be both live and
safe. A live marked graph has an active token on each di-
rected circuit of the graph and every signal must be part
of a directed circuit. This essentially means that each di-
rected circuit in the phased logic netlist must have at least
one PL gate ready to fire at any time. A graph with a live-
ness problem will result in no token circulation, and hence
no activity in the PL system. A safe marked graph is one
in which each directed circuit has only one active token on
it at a time. This means that there can only be one PL gate
ready to fire within a given directed circuit.

2.1 PL Cell Structure

Figure 1 shows the structure of a PL gate as used in
our implementation. This figure originally appeared in [23]
and is currently being implemented as a custom cell for im-
plementation in a prototype integrated circuit. A PL gate
consists of a control circuit shown as a set of equivalence

gates and a Muller-C element, a function circuit shown as
a 4-input Look-Up Table (LUT4), two latches for storing
the output LEDR signal and a small amount of control cir-
cuitry. The operation of a PL gate is such that when all
valid input tokens have arrived, the Muller-C element tog-
gles and causes the output of the LUT4 and a new gate
phase to be latched.
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Figure 1. Phased Logic Gate Structure

The output of the PL gate is a dual-rail signal denoted
as v and t signals in Figure 1. Both tokens and gates carry
a phase that is referred to as even or odd. The phase of a
signal is computed as p = v � t with p = 1 denoting odd
phase and p = 0 denoting an even phase. The phase of a
gate is the output of the Muller-C element.

The v bit contains the logic value of the signal as nor-
mally used in single-rail systems. For this reason, the func-
tionality of the LUT4 is the same as would be represented
in a clocked sequential system mapped to FPGA cells con-
taining LUT4 elements. The Muller-C element monitors
the phases of all 4 input signals and toggles when the all
have the same phase which in turn causes the output of the
LUT4 to be latched and the feedbacks and gate phases to
change. In this way, PL gates “fire” when all input signals
have the opposite phase of the input signals.

Feedback signals are generated within each PL cell that
can be used for producers of tokens and consumers of to-
kens. The feedback signals for token producers is used to
acknowledge that new tokens may be produced for the PL
gate and is computed as the inverse of the gate phase (in-
verse of the Muller-C circuit). This essentially creates a
queue of unit depth at the input of the PL gate. The feed-
back signal for the consumer is used to signal that new to-
kens are available for processing and is the inverse of the
phase of the current output token.

3 Early Evaluation

Each PL gate in a circuit can potentially be coupled with
another PL gate in order to achieve Early Evaluation (EE).
We refer to such PL gate pairs as “master” and “trigger”
PL gates. Figure 2 illustrates an EE-PL gate pair. As is
shown in Figure 2, a small amount of additional control
circuitry is needed for an EE pair that consists of a pair of
Muller C-elements and some control signals generated in



the trigger PL gate and used to cause the master PL gate to
“fire” or “evaluate” before all valid inputs to the master PL
gate have arrived. Details of the this implementation are
given in [23] including a discussion of the preservation of
a safe and live network when these elements are used.
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Figure 2. Early Evaluation PL Gate Pair

The idea behind the trigger PL gate is to extract a sub-
function from the master PL gate that depends on a subset
of faster arriving input signals only. When such a subfunc-
tion can be found, an output from the trigger gate can be
used to cause the master gate to produce an output value
before all inputs are present. Since all PL gates in the
current implementation depend only on 4 input signals, all
possible subfunctions with a support set of three or fewer
inputs are evaluated and a cost function is applied to choose
the trigger function with the best characteristics.

The cost function is based upon the degree of cover-
age that the trigger function provides versus the master
Boolean function realized in the LUT4 and is weighted by
the relative arrival times of the maximum-delay trigger ver-
sus master gate input signal. The arrival times are assumed
to be equivalent to the maximum path length in terms of
PL gates from the primary circuit inputs to the inputs of
the PL gates. The cost function is given in Equation 1. The
term Coverage is the percentage of minterms that are in
common with the trigger and master function (both 0 and
1-valued). The higher this percentage is, the more often
early evaluation can occur. Mmax and Tmax are the max-
imum delay of the input signals to the master and trigger
PL gates respectively.

Cost = (%Coverage) �
Mmax

Tmax

(1)

As an example, consider the truth table for a carry-out
function of a full adder cell, c(a+ b)+ ab, as shown in the
fourth column of Table 1. Since this function depends on
three input signals, a search for the trigger function would
consist of generating all candidate functions with support
sets of fag, fbg, fcg, fa; bg,fa; cg and fb; cg. In column
5 of Table 1 a trigger function is shown, ab + ab, that is
based on the support set fa; bg. Since the trigger function
contains 4 minterms in common with f

ON
[ f

OFF of the
master function, an overall coverage of 4/8=50% is com-
puted. Each time the trigger function evaluates to ‘1’, the

master gate can go ahead and evaluate even if the input sig-
nal c has not arrived since it’s value is a don’t care in these
cases.

Table 1. Truth Tables for Master and Trigger
Functions

a b c Master Trigger
0 0 0 0 1
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

Early evaluation for addition circuits is well known and
has been exploited in several asynchronous design styles
[7, 17, 18]. If the signal c represents the carry-in of a
full-adder the trigger function in this example evaluates
the presence of generate or kill signals in the carry-out cir-
cuitry and does not allow for EE if the carry propagate sit-
uation arises. For addition circuits this case is particularly
advantageous since carry-in signals are the latest in arriv-
ing among the three inputs.

In the results presented here, we have generalized the
notion of EE to work for any arbitrary master function.
We search over all 14 possible support sets of 3 or fewer
variables, compute the cost of each candidate trigger func-
tion and implement the best choice. Although the search
is exhaustive, our restriction to a LUT4 in the PL gate al-
lows for the approach to be practical. Candidate trigger
functions are computed by processing the cube list repre-
sentation of the f

ON and f
OFF functions for the master

function. Table 2 illustrates this process. Since 2 cubes in
Table 2 depend only upon master inputs a and b and each
of those two cubes covers 4 of the 8 possible outputs of
the master function, a coverage of 50% is computed for the
trigger function ftrig = ab + ab. The trigger function is
easily found as the function corresponding to the cube list
given by f

ON

trig
= f00�; 11�g.

The cost function is also weighted by the relative arrival
times of the input signals to the master and candidate trig-
ger PL gates. This is necessary since, unlike the case of the
adder circuit, a large coverage of a potential trigger func-
tion may depend on slowly arriving signals and thus not
be as effective in terms of a speed-up mechanism as using
a trigger function with less coverage but based on faster
arriving inputs.

4 Experimental Results

Several benchmark circuits were synthesized both with
and without the use of the EE algorithm. The benchmarks



Table 2. Determination of Candidate Trigger
Functions

Master Master fa; bg Trigger
Cube Outputs Coverage Function
00- 0 2 1
010 0 0 0
100 0 0 0
11- 1 2 1
1-1 1 0 0
-11 1 0 1

used were the International Test Conference 1999 (ITC99)
suite [10]. These are available in RTL level VHDL format
and were synthesized using the Synopsys Design Compiler
tool. The resulting EDIF netlist was then mapped to PL
technolgy using the tool described in [20] and then post-
processed for the inclusion of EE circuitry. For the 15
benchmarks presented in Table 3, an average speedup of
over 13% was achieved with an average increase in the
amount of circuitry for the EE gates resulting in 33%. In
these results, EE circuitry was added to all PL gates where
a speedup was possible. It is also possible to reduce the
increase in area by requiring a candidate trigger function
to have a cost value that exceeds some threshold. Thresh-
olding the cost function allows for a tradeoff in area versus
delay of a PL circuit.

Table 3 contains columns representing the description
of the benchmark circuit, the number of PL gates required
without EE, the number of EE gates when the circuit is
synthesized using EE, the average delay with no EE, the
average delay with EE, the difference in the delay values,
the percent of area increase in terms of additional gates
when the EE algorithm is applied and the percent decrease
of delay when EE is used in the synthesis of the benchmark
circuits. These results are based upon the average statistics
of 100 simulations where the input vectors were randomly
generated.

For each PL circuit, we determined the average delay
time between the presence of a stable input vector and a
stable output word. In a PL circuit, new values cannot
be presented to the inputs until a stable output is gener-
ated for the current input values. Furthermore as is dis-
cussed in [19], delays are statistically distributed based on
the value of an input vector and are not constant in PL cir-
cuits. To determine the delay values between the PL cir-
cuits with and without EE, we computed the average of
the difference between the cycles for both circuits. Mentor
Graphic’s qhsim was used to simulate the PL VHDL we
generated for each test bench.

Because a master/trigger pair of PL gates requires the
use of an additional Muller-C element, some benchmarks
suffered a slight degradation in overall delay values when
the EE algorithm was applied. Overall, the EE algorithm

resulted in a speedup for most of the benchmarks. Not
surprisingly, those benchmarks with significant amounts
of arithmetic circuitry tended to take more advantage of
the EE algorithm since arithmetic circuits tend to be com-
posed of addition circuits where EE techniques are known
to perform well.

5 Conclusion

A generalized technique for increasing the throughput
of PL circuits was presented. The technique works for ar-
bitrary functions and is not dependent upon certain classes
of subcircuits such as adders. The technique was imple-
mented and run for several large benchmark circuits with
an average speedup in excess of 13% with an average in-
crease in circuitry of approximately 33%. Threshold values
may be used such that no EE circuits are produced unless
a candidate trigger function has some minimal cost. In this
case the increase in area may be controlled and reduced.

This synthesis optimization results in local transforma-
tions of the logic network for overall circuit delay reduc-
tion. Future work will consist of identifying other trans-
formations both local and global that also enhance perfor-
mance.
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