
Reducing Test Application Time Through Test Data Mutation Encoding

Sherief Reda and Alex Orailoglu

Computer Science & Engineering Department
University of California, San Diego

La Jolla, CA 92093
e-mail: fsreda, alexg@cs.ucsd.edu

Abstract
In this paper we propose a new compression algorithm

geared to reduce the time needed to test scan-based designs.
Our scheme compresses the test vector set by encoding the
bits that need to be flipped in the current test data slice in
order to obtain the mutated subsequent test data slice. Ex-
ploitation of the overlap in the encoded data by effective
traversal search algorithms results in drastic overall com-
pression. The technique we propose can be utilized as not
only a stand-alone technique but also can be utilized on
test data already compressed, extracting even further com-
pression. The performance of the algorithm is mathemati-
cally analyzed and its merits experimentally confirmed on
the larger examples of the ISCAS’89 benchmark circuits.

1 Introduction
As VLSI technology moves to nanometer scales, fabri-

cation facilities have been able to cram more logic into dig-
ital devices than ever before. At the same time, designers
have been utilizing advancements in fabrication technology
to achieve higher levels of unprecedented integration of dig-
ital circuits. The ability to manufacture with such high in-
tegration has also resulted in increased test volume. The in-
creased test volume necessitates a test time increase which
hinders volume manufacturing in a demanding market.

The problem of test time has been exacerbated by the
need to test multiple cores in System-on-Chip (SoC) de-
signs. The increasing number of cores, each with its own
test data, have resulted in a dramatic increase in the amounts
of storage in the Automatic Test Equipment (ATE), well ex-
ceeding gigabit levels. The ATE not only has to store prodi-
gious amounts of data but also needs to supply them to the
chip in rapid succession in order to shorten test time. These
demands have resulted in dramatic increases in current ATE
prices. An ATE, at over $3.5 million a piece for a 512 pin,
400-MHz version, constitutes a striking component of over-

all test costs.
The aforementioned factors have resulted in active re-

search towards improving test costs. There are two main
themes that could be followed in order to reduce test costs.
The first approach, that of incorporating BIST to the SoC,
attempts to reduce the investment in the ATE and decreases
test time as well. Yet frequently pseudorandom resistant
faults limit the fault coverage attainable by BIST and con-
sequently its applicability. The second approach, that of an
on-chip decompression coupled with compressing test data
at the ATE, attempts to reduce memory requirements and to
alleviate timing constraints on the ATE.

In order to be able to compress the test data, researchers
have suggested various compression techniques coupled
with building on-chip decompression circuits to decom-
press the test data stream into test slices to be injected into
the scan chains [9], [1], [7], [3], [8]. The overriding goals
in the design of compression techniques are comprised of
a superior compression ratio and minimal hardware over-
head. These often conflicting goals are both simultaneously
achieved in the technique we herein propose through cost
effective encodings of the flips in the test data.

In the proposed approach, the test data stream is used
to indicate which bits need to be flipped in the current test
slice to obtain the subsequent one. In order to decompress
the test data stream, a decompression hardware consisting
of a decoder with its inputs forming a shift register is con-
structed. Through the use of a decoder and a shift register,
we are able to specify which bits need to be flipped in order
to obtain the next mutated test slice.

In order to obtain optimal compression ratios, we explore
the problem of finding the minimal number of bits needed
to traverse a combination of states in the state transition di-
agram of the decompression circuit shift register. We also
develop the mathematical means to analyze the state tran-
sition diagram and obtain a priori the possible achievable
compression ratios. The mathematical analysis is backed
up by an extensive set of experimental results on practical

1

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

benchmark circuits.
The flexibility of the proposed approach allows its appli-

cability as a stand-alone technique or as an extra layer of
compression on top of existing techniques. The successful
application of the proposed approach is attributed to the cor-
relation of the test slices in practical circuits which decrease
the number of changes between consecutive test slices.

The paper organization is as follows. Section 2 provides
a brief overview of the state-of-the-art testing compression
techniques. Section 3 illustrates our approach for compres-
sion of test data through the use of decoders. Section 4
analyzes the compression ratio that could be achieved us-
ing our methodology. Section 5 discusses how to overcome
synchronization problems. Experimental results are given
in section 6, while section 7 briefly summarizes the contri-
butions of the paper.

2 Previous Work
In response to the increasing testing time of digital cir-

cuits, researchers have suggested a variety of techniques to
compress the test data [9], [1], [7], [3], [8]. One of the
suggested techniques utilizes Huffman encoding [7] to com-
press the most frequently occurring patterns. The patterns to
be compressed are selected so as to minimize the area over-
head by the on-chip decompression network. The technique
delivers acceptable compression ratios but suffers from syn-
chronization problems, since the bit-output from the decom-
pression network has to be injected into the scan chain at
a rate faster than the incoming test data in order to avoid
buffer overruns.

LFSRs have been utilized in the work of [9] and [1] to
build the required decompression network. The proposed
idea in [9] is to reduce the scan chain length visible to the
tester to well below the actual scan chain length by dividing
the original scan chain into a number of scan chains. The
test data stream is used to initialize the seeds of all but one
of the LFSR generators. After the LFSRs are initialized,
they are run in autonomous mode to fill the scan cells of all
but one of the scan chains. The input test data stream is used
to initialize the remaining scan chain.

Run length encoding has been proposed in [8] to reduce
the test volume. In this work, the authors suggest compress-
ing the difference vectors instead of the test vectors in order
to obtain longer runs of 0s, thus achieving higher compres-
sion. Golomb coding has been utilized in the work of [3] to
produce the necessary test data compression for embedded
cores in SoCs. In this work, the authors have proposed the
use of variable-to-variable-length Golomb codes and inter-
leaved core testing to achieve effective results.

A novel compression technique has been proposed [1]
for reducing the number of scan chains visible to the tester
by building a decompression network based on LFSR se-
quences. In this scheme a test data vector is used as a seed

Enable

Input test−data
n

DSR

DOR

nx2 decoder

To 2 scan chains
n

n

Figure 1. Hardware organization of the pro-
posed decompression technique

to the decompression network to produce a test bit for each
scan chain. The decompression XOR-based network is con-
structed in a such a way so as to reduce the linear depen-
dencies between the seed bits, enabling superior encoding
of the test data vectors. The experimental results demon-
strate considerable compression over the method suggested
by [9], but at the cost of extra hardware overhead for the
decompression network.

3 Compression using decoders
In this work we propose the use of decoders to indicate

which bits need to be flipped in the current test slice to ob-
tain the subsequent one. In our approach the test data is
used to indicate which bits need to be flipped in the out-
put register of the decompression network, rather than di-
rectly loading the scan chain with the test data. Under this
scheme the technique can be used as a stand-alone compres-
sion scheme or as an augmentation to existing compression
techniques with a small hardware overhead, consisting of a
small decoder for most practical cases.

The hardware decompression circuit consists of a de-
coder that receives its inputs from a shift register, the De-
coder Shift Register (DSR), and delivers its outputs to an
output register, the Decoder Output Register (DOR). The
hardware organization of such a scheme is illustrated in Fig-
ure 1. As illustrated in the figure, the DSR receives its in-
puts from the test data input stream, and a control signal en-
ables the flipping of the DOR bits. After loading the DSR
with the position of the DOR bit to be flipped, the control
signal is enabled to flip the required DOR bit. The process
is repeated until all the required DOR bits are flipped. The

2

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

0

000

0

0 0

001100

110
011

111

010

101

01

1
0001

1 0

11

0

1

Figure 2. State Transition Diagram of the DSR

DOR result is then loaded into the scan cells by enabling
the clock.

The proposed scheme operates by loading the DSR in-
put with the binary representation of the bit positions to
be flipped in the DOR. Typically, multiple positions will
need to be flipped in order to attain the next mutated test
slice; however, no order in the manner in which these in-
dices are loaded in the DSR is preordained. The number
of bits needed to be shifted into the DSR to encode the in-
dices of the bits to be flipped depends on the order in which
these indices are loaded. In order to calculate the minimum
number of bits, we construct the State Transition Diagram
(STD) of the DSR. The STD consists of 2d states where d
is the length of the DSR. Any state has exactly two possible
next states, corresponding to shifting right and inserting the
bit “0” or “1”. 1 This STD is referred to commonly in the
relevant literature as the DeBruijn diagram [5]. Construct-
ing the STD enables the calculation of the minimal number
of bits needed to traverse from one state to the other. This
minimal number of bits needed to go from one state to the
other is stored in a distance matrix with each entry indi-
cating the minimum number of shifts needed to reach the
column state from the row state.

Using the distance matrix, the problem of finding the
minimum number of bits is transformed to calculating the
tour that has the least total number of bits. For practical
DSR sizes, this number of bits can be calculated optimally
by using a brute-force enumeration algorithm [4]. The
following example illustrates the use of the distance matrix
in the computation of the optimal tour.

1An analogous scheme can be explored that relies on left shifting. How-
ever, in the average case, both schemes should produce identical results.

0 1 2 3 4 5 6 7

0 0 3 2 3 1 3 2 3
1 1 0 2 3 1 3 2 3
2 2 1 0 3 2 1 2 3
3 2 1 2 0 2 1 2 3
4 3 2 1 2 0 2 1 2
5 3 2 1 2 3 0 1 2
6 3 2 3 1 3 2 0 1
7 3 2 3 1 3 2 3 0

Table 1. Distance matrix for state transition
diagram in Figure 2

Example 1 Assume the STD given in Figure 2 with the
corresponding distance matrix in Table 1. In order to
calculate the optimal trip for visiting the states (2, 6),
assuming that the initial state is (4), we calculate the total
distance for the trips (4, 2, 6) and (4, 6, 2). Consulting the
distance matrix, we find that the trip (4, 2, 6) results in a
total distance of 3, while (4, 6, 2) results in a distance of 4.
Evidently, the optimal trip is (4, 2, 6).

In the previous example, the enumeration was com-
putationally feasible since there were only 2 states to
visit. However, if the number of flipped bits is exceed-
ingly large that attaining their optimal order of flipping
is computationally infeasible, a greedy method can be
utilized instead to compute the order of flipping. The
greedy strategy is based on moving to the nearest state
from the current state. Starting from the initial state,
this greedy strategy is repeatedly applied until all the
required states are visited. The following example illus-
trates an application of the proposed compression approach.

Example 2 Assuming we have an 8-bit DOR feeding 8
scan chains, we would require a 3x8 decoder. The state
transition diagram of the 3-bit shift register acting as the
decoder input is illustrated in Figure 2. The minimal
number of shift bits needed to transition from one state
to the other is given by the distance matrix in Table 1.
Assume that the initial state of the shift register is “100”
and that we would like to flip bits 2 and 6. Using a brute
force enumeration algorithm to calculate the optimum trip
yields the sequence 4� 2� 5� 6 with the control signal
for flipping the LFSR enabled for all states except state
5. In this case the data shifted in would be “011”. This
constitutes a reduction of 62.5% in time compared to the
original 8 shifts bits. 2

2Though the control signal constitutes an additional increase in the test
volume, this is not of much relevance in our case since we focus on test
time reduction and the control signal is shifted in parallel to the test data.

3

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

An interesting special case of our approach occurs in the
case of compressing incompletely specified slices. In this
case, the don’t care values are initialized to minimize the
number of flips between two consecutive slices. However,
this does not result in the minimal number of shift bits,
since it is possible to flip positions corresponding to
intermediate states while traversing from an initial state to
a final state. This flipping is used to specify a binary value
for a don’t care position in anticipation for a future change.
This anticipation saves a shift bit or possibly more later
on. This special case is illustrated in the following example.

Example 3 Assume that we are given the following three
test slices to compress “11100110”, “x0xxx0xx” and
“0x0xxxxx”, where the leftmost bit (bit 7) is the most
significant bit. A straightforward don’t care initialization
yields the following test slices “11100110”, “10100010”,
“00000010”. Example 2 has shown that the trip (4, 2, 5, 6)
is the optimal one to mutate test slice 1 into 2. In example
2, we had disabled the flipping of bit number 5, but in this
example this is not a good choice since this flipping can be
achieved at no extra cost and at the same time saves 2 bits
in mutating test slice “10100010” to “00000010”.

The potential of the proposed compression approach is that
it could be also used to further augment most currently pro-
posed compression approaches. In the worst case, we would
need to tour all the STD states to flip all the bits. This would
require 2d bits which is equivalent to directly loading the
existing decompression networks with the compressed data.
However, in the common case the number of bits that need
to be flipped is apparently low. From this perspective, our
approach is able to achieve large compression ratios as an-
alyzed in the next section.

4 Compression Ratio Analysis
In this section we derive the relation between the length

of the DOR corresponding to the number of scan chains and
the maximum compression ratio σ that can be achieved us-
ing the proposed approach. Assuming ν vectors of n bits
to be compressed, with the average number of changed bits
in two consecutive vectors denoted by s, we calculate η, the
average number of input bits needed to invert s changed bits
in a DOR of length n.

\ 0 1 x
0 0 NULL 0
1 NULL 1 1
x 0 1 x

Table 2. Intersection operator semantics

i j ci
j New

Reachable States
000 0 000 1

1 x00 1
2 xx0 2
3 xxx 4

001 0 001 1
1 x00 2
2 xx0 2
3 xxx 3

Table 3. New reachable states calculation

Let d = dlog2 ne represent the number of bits needed by
the decoder to specify an inversion on any of the n bits of
the DOR, and let the number of bits shifted into the DSR
be denoted by j where s� 1 � j � 2d � 1. These j bits
shall be used to flip the required s positions.

Let’s assume that the initial state in the DSR register is i
and that ci

j denotes the cube that results from shifting right
by j-bits the binary pattern of i. Using k shift bits, the cube
ci

k is able to reach 2k states; however, some of these states
could have been visited by j � k bits. In order to calculate
the exact number of new states that could be visited using
k bits, we take the intersection, according to the semantics
defined in Table 2, of ci

k with all the cubes ci
j where j � k.

A NULL intersection in Table 2 indicates no common cube
between the two cubes being intersected. We demonstrate
the operation of the intersection operator by the following
example for the simple case where s = 1.

Example 4 Let n = 8 as in Example 2 and s = 1. In order to
calculate the average number of bits needed in transitioning
from one state to the other, we calculate the number of the
new states that can be reached using j bits where 0� j � 7.
Assuming that the initial state is “001”, we can construct
the number of new reachable states using j bits by means
of the intersection operator. The corresponding results are
given in Table 3. In order to calculate the average number
of bits η when s = 1, we repeat the previous calculation for
each initial state and average the total number of bits. The
various values of η for each initial state are given in Table 4.

The previous example illustrates an important key point.
The number of shift bits needed to reach s states from an

i 0 1 2 3 4 5 6 7
ηi 2.125 1.875 1.75 1.625 1.625 1.75 1.875 2.125

Table 4. Average number of shift bits in the
case of s = 1

4

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

s
n 1 2 3 4 5 6 7 8
4 1.13 1.92 2.50 3.00
8 1.84 3.13 4.14 4.95 5.62 6.17 6.63 7.00

16 2.66 4.55 6.09 7.36 8.49 9.51 10.43 11.26
32 2.53 6.15 8.31 10.19 11.71 12.39 13.63 15.37

Table 5. Average number of shift bits needed

initial i is not only a function of the initial state but also of
the particular combination of the s states to be visited. For
the general case where s � 1, there are

�n
s

�
possible modifi-

cations of the DOR with s changed positions. The average
number of bits needed to visit these s positions can be cal-
culated by the following formula,

η(d;s) =
2d
�1

∑
i=0

2d
�1

∑
j=s�1

j �
m(i; j;s)

2d �
�2d

s

� (1)

where the function m(i; j;s) gives the number of s-state
combinations that could be reached from state i using j bits.
Table 5 gives the average number of shift bits needed to flip
s positions for practical values of n and s. In this table, we
have used brute force enumeration to calculate the values
for the function m. The average number of shift bits in the
last 4 columns of the last row are approximate values cal-
culated by averaging the shift bits for the first 100,000 s
combinations.

Using the data in Table 5 and calculating the compres-
sion ratio as given by equation (2),

σ =
n

η(n;s)
(2)

we derive the expected compression ratio for some typically
encountered values of n and s in practical circuits. The cal-
culated results, given in Table 6, demonstrate that the ap-
proach is capable of achieving high compression ratios for
small values of s; the experimental results in section 6 con-
firm this mathematical analysis.

s
n d 0 1 2 3
4 2 4 3.54 2.08 1.60
8 3 8 4.35 2.56 1.93

16 4 16 6.02 3.52 2.63
32 5 32 12.64 5.2 3.85

Table 6. Achieved compression ratio

5 Synchronization of the Test and the Enable
Signals

In this section we devise a method for the synchroniza-
tion of the Test Data Input (TDI) and the Enable signal. To
avoid an extra pin for the Enable signal, we configure the
Test Data Output (TDO) pin as a bidirectional input/output
pin. During the input mode, the pin is used as a source for
the Enable data, and during the output mode, the pin is used
as a means to extract the signature from the MISR.

In a typical test environment, a large number of test pat-
terns are applied to the circuit under test in order to achieve
the required fault coverage. After the conduction of these
tests, the signature is ready to be shifted out from the MISR
through the TDO pin. During the test session, the TDO
pin is of no practical use and can be configured as the En-
able pin. In order to configure the mode of operation of the
TDO/Enable pin, a simple control circuitry is devised. Ini-
tially, the control circuit configures the TDO/Enable as an
Enable pin, and the Enable signal is shifted in parallel with
the test data. After the required DOR bits are flipped and the
mutated test slice is attained, the clock is enabled to capture
the DOR into the scan cells. This process is repeated until
all the scan cells are loaded with the required test patterns.

After the application of all the required test patterns, the
TDO/Enable pin should remain idle for a number of clock
cycles equal to the width of the DSR of the decompression
network; this idle period indicates that there are no more
bits to be flipped and signals that the test session is com-
pleted. Upon detecting this, the control circuitry configures
the TDO/Enable pin as TDO and starts shifting the MISR
output for a number of cycles as dictated by the length of
the MISR. The hardware organization of such a scheme is
illustrated in Figure 3.

M
IS

R

ControlDecompression
 Hardware

TDI

Enable

T
D

O
/E

na
bl

e

Figure 3. Overall hardware organization
scheme of the proposed approach

5

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

Circuit PIs MinTest Virtual Scan Chains Golomb Coding Proposed Approach σ
PC SCC PC SCC PC SCC PC SCC

s38584 1464 110 161,040 343 101,185 110 104,111 110 73,464 2.19
s38417 1664 68 113,152 547 154,254 68 92,054 68 45,003 2.51
s35932 1763 12 21,156 NA NA 12 59,573 12 7,222 2.93
s15850 611 94 57,434 210 38,010 94 40,717 94 26,021 2.21
s13207 700 233 163,100 199 60,894 233 41,658 233 74,423 2.19

Table 7. Compressing the MinTest test vectors

Circuit PIs MinTest Virtual Scan Chains Proposed Approach σ
PC SCC PC SCC PC SCC Before SCC After

s38584 1464 110 161,040 343 101,185 220 322,080 47,886 6.11
s38417 1664 68 113,152 547 154,254 231 384,384 55,848 6.88
s35932 1763 12 21,156 NA NA 25 19,075 11,298 1.69
s15850 611 94 57,434 210 38,010 185 113,035 14,676 7.70
s13207 700 233 163,100 199 60,894 274 191,800 16,913 11.30

Table 8. Compressing incompletely specified test vectors

Circuit PIs Chain Concealment Proposed Approach σ
PC SCC PC SCC

s38584 1464 203 38,976 186 22,636 1.72
s38417 1664 312 89,856 307 42,264 2.13
s35932 1763 33 7,128 29 3,972 1.79
s15850 611 178 22,784 176 10,798 2.11
s13207 700 264 25,344 259 15,783 1.61

Table 9. Results of proposed approach augmenting [1] on ISCAS’89 benchmarks

6 Experimental Results

After calculating the expected compression ratio in sec-
tion 4, we now experimentally evaluate the achieved com-
pression ratio for the larger circuits of the ISCAS’89 [2]
benchmarks. For all the given experiments, it is required to
calculate the optimal number of shift bits needed to flip the
required positions. To achieve such a goal, we use a brute
force enumeration algorithm [4] to pick the best tour, unless
the number of bits to be flipped exceeds 10, in which case
the greedy strategy previously discussed is used to tour the
required states. The greedy strategy application may result
in a slight reduction in compression compared to the one
derived in the Section 4.

In the first series of experiments we set up our compres-
sion technique as the only compression hardware. The pur-
pose of this experiment is to assess the compression ratio
that could be attained by our approach as a stand-alone de-
compression technique. In this experiment, the scan chain
is divided into 4 smaller scan chains, with its inputs driven
from the decompression hardware. The inputs to the de-
compression network form the boundary scan chain driven
by the Test Data Input (TDI) input pin. Figure 4 illustrates
the organization of such hardware. We compress the test
vectors generated by MinTest [6], and compare our results
to MinTest, Virtual Scan Chains [9] and the results of ap-

plying Golomb Coding to MinTest [3]. Table 7 presents the
experimental results. Columns 1 and 2 provide the circuit
name and the number of primary inputs (PI) respectively.
Columns 3 and 4 list the Pattern Count (PC) and Shift Clock
Cycles (SCC) [6] needed to transfer the test data into the
chip. Columns 5 and 6 list the PC and SCC in [9], while
columns 7 and 8 list the results of [3]. Our results are pre-
sented in columns 9 and 10. Finally, column 11 lists the
achieved compression ratio over MinTest.

In a second series of experiments, we compress incom-
pletely specified test vectors. These vectors were obtained
using Atalanta [10] and further compacted. These test vec-
tors should provide an ideal case for our approach since
unspecified bits in the test vectors dramatically reduce the
number of bits to be flipped from one test slice to the other.
However, as should be expected, the number of test vec-
tors in this case should be slightly higher than the case of
completely specified vectors. In this experiment, we com-
pare our results against results of both [6] and [9] . A 4x16
decoder is used to derive the inputs of the scan chains. Ta-
ble 8 gives the compression results. The compression ratio
is calculated from the values of SCC before and after the
compression.

In a third series of experiments, we augment existing de-
compression techniques with our decompression hardware.

6

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

2x4 decoder

scan chain 1/4

TDI

Enable

M
IS

R
Si

gn
at

ur
e

scan chain 2/4

scan chain 3/4

scan chain 4/4

DSR

Figure 4. The proposed approach as the sole
decompression hardware

We build our hardware as an extra layer of compression on
top of the technique in [1]. We assume that the existing in-
puts to the decompression hardware form a boundary scan
chain, and after adding our hardware, the DSR becomes the
boundary scan chain driven by the TDI pin. Table 9 pro-
vides the comparative compression results for the proposed
approach.

From the experimental results, we conclude that com-
pressing incompletely specified vectors attains the best re-
sults. In order to utilize this, the core provider should pro-
vide the compressed test data to the system integrator, and
integrate the decompression hardware to the core. This
would make the compression scheme transparent to the sys-
tem integrator.

The experimental results have clearly demonstrated that
our technique results in a decrease in the number of bits
shifted through the TDI input, and thus reduces the time
needed to test the chip. Furthermore, we are able to achieve
such a decrease with a very small overhead in hardware, i.e.,
2x4, 4x16, 5x32 decoders for the experiments cited above.

7 Conclusions
As the complexity of chips keeps on increasing, the

difficulty and amount of testing data needed for such chips
keep on escalating. In this paper, we have proposed a
new compression algorithm for reducing test data volume
and time. The proposed method encodes the changes in
the test vectors and utilizes decoders and shift registers to
provide the necessary on-chip decompression. We have
proposed the construction of the state transition diagram of
the shift register in order to calculate the minimal number
of shift bits needed to flip the required bits in the test slices.
We have also analyzed the performance of the proposed
technique, and proved that its use would be advantageous
both as a stand-alone technique or as an augmentation to
current compression techniques at the cost of an additional

small amount of hardware. We have furthermore illustrated
the effectiveness of the approach on the larger ISCAS-89
benchmark circuits. The results confirm the mathematical
treatment. The low hardware overhead and the high com-
pression ratios attained by the proposed approach establish
it as an effective technique for test time reduction.

Acknowledgments
The first author would like to thank his colleague Ismet
Bayraktaroglu for supplying the test vectors needed to carry
out the second and third experiments.

References
[1] I. Bayraktaroglu and A. Orailoglu. Test volume and

application time reduction through scan chain con-
cealment. In Proc. of Design Automation Conference,
pages 151–155, 2001.

[2] F. Brglez, D. Bryan, and K. Kozminski. Combina-
tional profiles of sequential benchmark circuits. In
Proc. of the International Symposium on Circuits and
Systems, pages 1923–1934, 1989.

[3] A. Chandra and K. Chakrabarty. Test data compres-
sion for system-on-a-chip using Golomb codes. In
Proc. of VLSI Test Symposium, 2000.

[4] N. Dershowitz. A simplified loop-free algorithm for
generating permutations. BIT, I5(1975):158–164.

[5] H. Fredricksen. A survey of full length nonlinear shift
register cycle algorithms. SIAM Review, 24(2):195–
221, 1982.

[6] I. Hamzaoglu and J. H. Patel. Test set compaction
algorithms for combinational circuits. In Proc. of In-
ternational Test Conference, pages 283–289, 1998.

[7] A. Jas, J. Gosh-Dastidar, and N. Touba. Scan vector
compression/decompression using statisitical coding.
In Proc. of VLSI Test Symposium, pages 25–29, 1999.

[8] A. Jas and N. Touba. Test vector decompression via
cyclical scan chains and its application to testing core-
based design. In Proc. International Test Conference,
pages 458–464, 1998.

[9] A. Jas and N. Touba. Virtual scan chains: A means for
reducing scan length in cores. In Proc. of VLSI Test
Symposium, pages 73–78, 2000.

[10] H. K. Lee and D. S. Ha. On the generation of test
patterns for combinational circuits. Technical report,
Tech. Report No. 12-93, Department of Electrical En-
gineering, Virginia Tech.

7

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

