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Abstract

This paper proposes a comprehensive model for test
planning in a core-based environment. The main contribu-
tion of this work is the use of several types of TAMs and the
consideration of different optimization factors (area, pins
and test time) during the global TAM and test schedule def-
inition. This expansion of concerns makes possible an ef-
ficient yet fine-grained search in the huge design space of
a reuse-based environment. Experimental results clearly
show the variety of trade-offs that can be explored using
the proposed model, and its effectiveness on optimizing the
system test design.

1. Introduction

The design of a system is a process that involves several
constraints, features and trade-offs of different cost factors,
such as area, performance, power and test time. Nowadays,
test planning has become one of the most expensive steps
during the design flow of an electronic circuit built in a core-
based design paradigm. Access to embedded cores, the inte-
gration of several test methods (not to mention the diversity
among the cores themselves) and the optimization of cost
factors such as area overhead, test time, and number of test
pins in the interface, are just a few of the several problems
that need to be tackled during test planning. If extra hard-
ware is ultimately required it enormously complicates the
synthesis equations for balancing system constraints.

A great deal of effort has been expended in the last few
years, towards the development of suitable solutions for the
test of core-based systems [1]-[15]. The main drawback of
the current solutions is that the test planning task is con-
ceived as an “after the design” step. Although the definition
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of the test solution is performed before synthesis and al-
though some approaches use partial information about con-
nectivity and placement of the system, none of the solutions
presented so far considers test planning as early as during
the design of the system itself. This means that a good so-
lution from the logical point of view is accomplished, al-
though its physical implementation according to the system
characteristics is rarely considered. This kind of approach
limits the quality of the solutions basically to the set of cores
being used in the system, instead of tackling the system as
an entity. Usually, the presented results do not provide to
the system designer an accurate information about critical
points of the system that could be improved, either in con-
junction with the core provider, or during the design and
synthesis process. Besides, current approaches usually have
a restricted model for the test access mechanisms (mostly
bus-centered) and based on this model the remaining pa-
rameters are optimized.

This work proposes a comprehensive model for the sys-
tem, representing different aspects of each core, as well as
the different conditions and restrictions of the system, in
a unified structure. The main contributions of this model
are fourfold: 1) we do not assume a single type of connec-
tion for the internal TAMs in the system. Partial busses are
considered along with functional connections, transparency,
and other bypass modes available through the wrapper or
the core configuration; 2) the diversity of the test require-
ments among the embedded cores is used as an advantage
to find the global test solution, by privileging critical cores
with more test resources. This way, the global solution does
not have to optimize fully every single core in the system;
3) both the schedule and the global TAM are defined to-
gether, and not as independent tasks as in other approaches;
4) the model represents a step closer in the integration of
DFT planning early in the design process, and to a fruitful
relationship between core designers and users. The itera-
tive search method provides the system designer with ac-
curate information about critical points in the system being
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developed. The designer can either suggest specific mod-
ifications to the core provider or use this information to
guide the synthesis tools in order to find the best solution
for the whole system, not only in terms of testing, but with
respect to all parameters of the design. The multi-TAM
model and the definition of the scheduling and the global
TAM in parallel are the key for the fine-grained exploration
of the design space so that good compromises among the
various trade-offs being sought in the design as a whole can
be found.

The paper is organized as follows: in section 2 we review
some related works. Section 3 briefly presents the trade-offs
involved when using the multiple TAMs model. Then, the
algorithm for test planning is described in section 4, while
experimental results are discussed in section 5. Section 6
presents the conclusions and possible expansions of the pro-
posed model.

2. Related Works

In terms of test access mechanism definition, several ap-
proaches have been proposed [1]-[7]. These approaches
range from adaptations of traditional test techniques, such
as the 1149.1 standard, to the development of hierarchical
and generic methods for test access. The P1500 standard
proposal [8, 15] has emerged as a conciliatory proposal for
the easier integration of the several possible solutions in a
single step. The CTL language also proposed by the P1500
group is another feature to catalyze an accurate communi-
cation between core designers and core users. As for the
performance of the test solution, several approaches have
been proposed to tackle the TAM definition considering test
time issues [9]-[14], [16].

Recently, a number of frameworks and increasingly
more comprehensive models have been proposed to cope
with global optimizations for the final solution. These
frameworks differ by the type of core test methods ad-
dressed and the TAM definition, but they all manage the
distribution of test resources considering a variety of cost
factors.

Benso et al present in [17] a tool for integration of
cores with different test requirements (full scan, partial scan
and BIST ready cores). The TAM follows a bus-based
model that connects a group of cores to a BIST controller.
Scheduling of BIST resources and data pattern delivery are
also considered in the test solution.

Nourani and Papachristou propose in [18] the definition
of the test access architecture by taking advantage of the
connections already present in the system. The method is
well suited for structural testing, but it can be quite limited
for other test methods, such as scan-based ones, where no
previous functional connections exist for the scan pins in the
cores. This model has been improved and presented in [12],

where other structures in the system, such as busses and tri-
state ports, are also considered for the test path definition.
After defining the TAM for each core, the tool defines the
test scheduling so that a minimum test time for the system
is achieved.

Larsson and Peng propose in [19] a framework for SOC
testing which considers test time minimization, TAM op-
timization, test set selection and test resource placement,
along with test resources and power consumption con-
straints. The tool is based on the fact that different test
sets can be used to test a core. This way, each test set is
evaluated under power, time, memory requirements, and so
on, and the best test set is chosen according to the system
constraints. They further assume that scan chains can be
divided into smaller ones, to accelerate test time. BIST re-
sources are then placed in the system according to their us-
age by the cores. After the TAM definition, the test schedule
is generated so that the minimum test time for that specific
TAM is achieved.

Each method considers a subset of the system constraints
and assumes restricted TAM models on top of which the
solution is searched. Even the methods that contemplate
several cost factors at the same time still define only the
TAM based on the restricted set of test resources, and then
optimize the schedule to achieve smaller test times. Then,
it is up to the designer to provide different amounts of test
resources (as BIST controllers, TAM bitwidth, number of
TAMs or test sets of the cores) and perform a number of
searches under a variety of constraints.

However, the design space for the system integrator is
huge and fine-grained and the consideration of DFT inclu-
sion in the earlier steps of the design process becomes cru-
cial for a good test strategy. Thus, an automatic test plan-
ning scheme (model and search algorithm) that can cope
with the various trade-offs being sought for each system is
the key for solving system test requirements within specific
design constraints.

3. TAM Definition and Cost Factors

In a model that aims at optimizing several parameters at
the same time and at finding the best global solution, dif-
ferent options for internal connections must be available, so
that the best one can be selected among all.

We have defined a multiple yet not exhaustive model for
connecting a core under test (CUT) to another core in the
system, called here a neighbor core. Each type of con-
nection implies distinct costs for the area overhead of the
connection, the number of pins for the CUT in the inter-
face, and CUT test time. The area overhead includes the
values for the wrapper (basic mandatory operations and a
1-flip-flop boundary cell model) and extra wiring (connec-
tions and bypasses). The number of extra pins for each core
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is the number of new pins created in the system interface
when the TAM for that core is completely defined.

Each pair of cores in the TAM is connected by one of the
methods defined below. The algorithm that selects the type
of connection and combines the pairs in a global solution is
explained in section 4. The TAMs were defined for scan,
external (non-scan) and BIST testing schemes.

3.1. Direct External Access

In this mode, no previously existent connection is reused.
A direct connection between the CUT interface and the sys-
tem interface is established. The bitwidth of this connection
is assumed to be as large as the number of bits that need to
be propagated to the interface. This implies an overhead of
n in the number of pins, for n the number of test signals
being propagated. The area overhead is proportional to n
and to the routing distance from CUT to the system inter-
face. The impact on CUT test time, on the other hand, is the
smallest possible, since only one cycle delay is required for
the test application or observation.

3.2. Reuse of Functional Connections

In this TAM, functional connections already present be-
tween CUT and another core are reused. If the bitwidth of
the connection is smaller than the number of bits that must
be propagated, extra wires are created between a CUT and
the neighbor core. However, this is the only point in the
system where a full bitwidth connection is created. A paral-
lel bypass is established between the full bitwidth connec-
tion (neighbor-CUT) and one of the functional inputs of the
neighbor core. Such functional input is the one that mini-
mizes the test time of CUT at this point, that is, the one that
presents the smallest number of cycles for the serial/parallel
conversion operation. The test time of CUT using this con-
nection is d n

m
e + 1 cycles per test vector, where m is the

number of bits of the selected input of the wrapper of the
neighbor core.

Figure 1 shows an example of a connection using this
TAM for a core with external testing. For scan-based cores,
when there is no previous functional connection between
scan pins of two cores, this TAM can be similarly used.
However, the area overhead will be higher than for the
functional pins, since the whole connection must be added
into the system. The cost for extra pins is zero, as in the
functional case, and the test time for a CUT is given by
(d sc

sn
e+1)L, where sc is the number of scan chains in CUT,

sn is the number of scan chains in the neighbor core and L
denotes the maximum length of the scan chains of CUT.

It is important to state at this point that our model as-
sumes, in this first prototype, internal scan chains of iden-
tical length. This precludes better test time optimizations
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Figure 1. Access via functional connections

for scan pins, but it simplifies the algorithm by avoiding the
problem of finding the best association between available
and required pins, as shown in [20]. Thus, for example, if
32 test pins are being propagated and the neighbor core has
27 pins to be used, only 16 out of 27 pins will be considered
for the serial/parallel conversion (chains are concatenated
in groups of two). If the internal scan chains have similar
lengths, test time is not deeply affected and total area over-
head is reduced.

3.3. Use of Serial Bypass

The use of this TAM implies the transformation of the
inputs (outputs) of CUT in an external scan-chain. A test
vector is loaded serially, and an “update” cycle is required
for its application to the core. This TAM is very inexpensive
in terms of area, since a single wire traverses between the
two cores being connected. On the other hand, it requires
the largest number of cycles for test application. The new
test time for CUT is n + 1 (external testing) or L(sc + 1).
Once this TAM is chosen, only serial bypass is considered
from this point on, until the system interface is reached. The
pin overhead for this TAM is 1.

3.4. Use of Transparency Functions

This TAM is considered for test pattern justification in
the system when all inputs of the core under test are con-
nected to the transparent core. The penalty on CUT test
time is the number of cycles required for the propagation
of the test vectors from the inputs of the neighbor core to
its outputs. Transparency is usually the cheapest solution,
since no extra hardware is required at the system level. The
number of bits to be justified from this core to the system
interface is the number of bits that control the transparency
function.

3.5. Parallel Bypass

This TAM represents a bus-based access mechanism,
where functional connections are reused only in the first
level (from CUT to the first chosen neighbor). From this
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point on, extra connections of bitwidth n are created accord-
ingly. This is a compromise between the direct access TAM
and the TAM presented in figure 1. Although the area cost
for the extra connections may be higher for a single core,
the possibility of reusing the bus is high, and the cost is at-
tenuated among all cores using the bus. The pin overhead is
n for the first core using this TAM, but is zero for any other
core reusing it. In terms of test time, on the other hand, not
only does the CUT manifest only a small increase on its test
time (1 cycle), but also all other cores reusing the bus gain.

Although the TAMs were presented from the perspective
of justification of test patterns, a similar model can be de-
fined for the propagation of test results as well.

The defined TAMs are not the only possible ones. Dif-
ferent associations, as the one presented in [13], or the use
of all functional connections in a multiple path search can
also be modeled. However, as one can see in the experi-
mental results, even this slightly expanded model allows a
smoother search for the different possible solutions.

4. Global TAM and Scheduling Definition

Consider the arbitrary system shown in figure 2. It is
composed of 10 cores from the ISCAS’85 and ISCAS’89
benchmarks. This system was proposed in [13], but no
functional connection or placement is assumed on that work
for this set of cores. The internal connections and placement
were randomly assigned. Information about the number of
test cycles for each core is also presented in the figure, and
was calculated assuming a full bitwidth test access for each
one. Dashed lines on some cores represent the number of
scan chains defined for them. Internal scan chains are as-
sumed to have equal or near equal lengths.
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Figure 2. Synthetic system used as example

For a system with N cores, with ti as the number of
test cycles for each core 1 � i � N , the minimum sys-
tem test time possible is given by max(ti); i = 1::N .
To accomplish this minimum test time, the core k with

tk = max(ti); i = 1::N must have a full bitwidth and ex-
clusive TAM. In the system of figure 2, core 6 is the core
with the largest test time. The other cores with smaller test
time can be accommodated in a scheduling as shown in fig-
ure 3, for example.
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Figure 3. Test schedule for minimum test time

The schedule is represented as a series of time slots.
Each time slot contains a group of cores that can be tested
at the same time. Two cores can be tested in parallel if they
do not share any test resource.

If a global TAM is defined based only on the availability
of test resources, the test schedule must be defined so that
cores sharing the same test resource do not overlap. This
can increase the total test time enormously, depending on
the set of resources available. On the other hand, if the
schedule is defined to optimize only the global test time, the
cost in terms of pins and area in the system interface may
be huge, since several cores may need to have exclusive test
access mechanisms.

The combined definition of the access mechanism and
the test scheduling can provide composite solutions with
affordable requirements both in terms of test resources and
test time. For cost reduction, for example, we can use the
idle time in any row of the schedule to increase the test time
of a given core in that row. With the different models of
TAMs proposed in section 3, every solution that increases
the test time of a core up to the time limit defined by the
idle time can be used. Then, the cheapest solution can be
selected.

4.1. System Modeling

A system is defined as S = 1; 2; :::; N , a set of N cores.
For each core, the following information is given:
� dimensions (approximate length and width);
� number of test inputs and outputs (for BIST, scan and

external test);
� number of test vectors;
� maximum length in the scan chain;
� neighborhood: a core “neighborhood” is defined based

on the placement information. The fact that a core b is
a neighbor of core a, on either direction, means that
either the wrapper of core b or the transparent mode of
core b can be used to shortcut the path to/from core a
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from/to the system interface. This information is in-
timately related to chip placement, since the location
of the pins in the interface may have some restrictions.
A core b may be a neighbor of core a in both direc-
tions, if no special rule needs to be observed in test pin
placement.

The minimum test time for each core is calculated as-
suming an exclusive and full bitwidth TAM for each one.
With this assumption, the test time is given by ti = (pi +
1)L + pi, for 1 � i � N , where pi is the number of test
patterns of core i [13]. If a core uses only external test (L =
0), the minimum test time reduces to pi cycles.

For the system, the following information is required:

� routing distances between each core and from the core
to the system boundaries.

� functional connectivity among the cores.
� cost and time constraints (number of extra pins al-

lowed, test time limit, etc).
� optimization factors to be considered: area, pins, test

time, power, etc.

4.2. The Algorithm

For the general case, where several cost factors are being
considered at once, the algorithm is a search process that
starts with the optimum solution for time (minimum test
time for the system), with an exclusive TAM provided to
the core that sets the time limit for the system. Then, every
other core is placed in the schedule in such a way that the
best solution for the defined time limit is found. If, after all
cores are scheduled, the solution does not satisfy the system
constraints, a small perturbation is done in the solution, so
that the time limit is slightly increased and a new solution
is sought. This process continues until the constraints are
attained or until a preset number of iterations is completed.

Figure 4 shows the pseudocode for the implemented al-
gorithm. A main loop controls the TAM definition and eval-
uates the cost of each global solution found, in steps 5 to 21.

The TAM for each core is represented by a tree on
which the search algorithm for the shortest path takes place.
The main difference of this search compared to similar ap-
proaches is that the tree is built on the fly (steps 11 to 14
in figure 4), according to the current test scheduling restric-
tions and available TAMs in the system. The cost of each
arc in the tree is actually a set of costs, representing the op-
timization factors being considered. Each core has two sub-
trees representing the input and output paths, respectively,
and each one is traversed independently. Since the tree rep-
resents a core-to-core connection, loops are prevented by
the correct definition of CUT neighborhood so that a path
to the system interface is always found.

One can observe that the kernel of the algorithm, pre-
sented at steps 11 to 16 in figure 4, is the possibility of

2. Schedule core k
1.  Find core k = max(t i ), i=1..nk with t

kt

While (there are unscheduled cores)
select CUT
For each direction of CUT ports

= critical core for cost factors

accumulated cost <= current cost)

 = available time slot in the current schedule

CUT10.
11.
12.
13. 
14.
15.
16.
17. 

9.
8.
7. 
6.
5. 
4.  While (systems constraints not satisfied)
3.  Set test time limit to

node = CUT

Select best TAM CUT−neighbor

For (each modelled TAM)
time_slot

While (not in the interface) AND (

For (each core in neighbors)

evaluate costs of TAM connection CUT−neighbor

Select best neighbor for CUT
accumulated cost += cost CUT−selected neighbor
node = selected neighbor18.

19. GO TO step 9.
20. Insert CUT in the schedule

Update conflict list

set test time limit = infinity
select CUT = critical core for cost factors
Find a less expensive TAM to CUT
Schedule CUT

22.
23.
24.
25.
26.

28.

21.

27. Set new test time limit for the system
GO TO Step 4.

IF (constraints not satisfied)

neighbors = retrieve ( neighborhood) AND (node neighborhood)

Figure 4. Pseudo-code of proposed model

choosing the best connection (step 15) among the mod-
eled TAMs described in section 3, and the best point to
advance the search towards the system interface (step 16).
This range of possible decisions that can be evaluated and
compared is the key for the fine grain search proposed. On
the other hand, placement information can accelerate the
search by indicating the most promising eligible neighbors
for a core according to the location of the pins in the core
periphery.

For each eligible neighbor retrieved in step 10 of the al-
gorithm, the schedule is checked to define the amount of
time available for the core under test, according to a list of
conflicts over test resources. Cores that share a test resource
cannot be placed in the same time slot in the schedule. No-
tice that, if an eligible core is not scheduled yet, a search in
the schedule must ensure that a time slot remains for this
neighbor to be placed subsequently. Since the cores are
scheduled in a decreasing order of cost, less critical cores
will have less impact on the global solution. Thus, they can
keep a more expensive TAM (direct access, for example),
while other cores are privileged.

The selection of which core is scheduled first is defined
according to the cost of the current solution in terms of pins
in the interface, and area and test time for each core. For dif-
ferent combinations of optimization factors, different costs
are considered when selecting a core to be placed in the
schedule. The most critical core (the most expensive one
according to the cost factors being optimized) is selected
from the list of unscheduled cores. Similarly, a TAM is de-
fined first for the direction (input/output) that is using more
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resources in the current solution.
The small perturbation in a current solution that allows

a refined search for the global minimum, is shown at steps
22 to 27 of figure 4. It consists of selecting the most criti-
cal core using the same criteria used in step 6 of the algo-
rithm. For this core, a new solution is searched as described
at steps 7 to 19. However, at this point no scheduling check-
ing is done (step 12). Any possible solution that reduces the
cost of the available TAM for the critical core is considered.
For test time minimization, the selection of the best neigh-
bor at any level of the tree (step 16) is performed so that the
neighbor that implies the smallest increment on the core test
time is selected. Then, based on the conflicts of the current
global solution, a new test time limit is calculated (step 27)
such that current optimizations can be retained if necessary.
The schedule is reinitialized and the search starts from the
beginning (step 4).

5. Experimental Results

A prototype tool based on the described model was de-
signed using Matlab version 6.0 [21]. Around 12500 lines
of code implement the data structure and the search algo-
rithm described in sections 3 and 4.2. In this paper, we
describe the results provided by this tool for two represen-
tative examples.

5.1. Synthetic Benchmark

The first example considered here is the system pre-
sented in figure 2, from [13]. The main advantage of this
example is its diversity in terms of number of test vectors
and test requirements present among the cores. The avail-
ability of the test information in regards to these circuits is
another factor that makes its use easier as a first benchmark
for this kind of tool. On the other hand, the fact that no spe-
cial function is realized by the defined system, and that the
connections among the cores have been randomly assigned,
is burdensome for tools that use this information.

The set of experiments performed for this example in-
clude a number of combinations of optimization factors,
variations in the limit of extra test pins, and small variations
in the system characteristics. Due to space limitations, only
the more significant results are shown in table 1. The place-
ment presented in figure 2 was used in all experiments. The
first three rows represent the optimization of a single fac-
tor during the search, that is, only pin minimization, only
area minimization and only time optimization. Even for this
limited sample of the results obtained, one can see how this
kind of comprehensive tool is suitable for a smooth design
space exploration. From the first three experiments, we can
note that the range for optimization is very large. Experi-
ments 4, 5, 6 and 7 show the real trade-offs found by the

tool.
The fourth experiment is the solution for the optimiza-

tion of all cost factors with a limit as to the number of extra
pins set to 48. These extra pins are used only for testing and
do not include the pins for wrapper configuration.

If the system is such that more test resources are avail-
able, this information is used to improve the previous solu-
tion. For example, when increasing the limit of extra pins
to 108, as shown in experiment 5, the area overhead is min-
imized. In this experiment, there are no restrictions regard-
ing the location of the extra pins in the interface. Since less
available pins need to be reused, TAMs could be defined
by creating new pins closer to CUT than the available ones,
reducing wiring area. Besides, test time reduces 56.2% for
this experiment, as compared to the initial case (experiment
4).

In experiment 6 the pin limit is also set to 108, but area
is not optimized. Note that a solution with fewer pins than
the limit (105) is achieved, but the area increase from exper-
iment 5 to experiment 6 is considerable, showing that this
factor cannot be neglected during the search.

Experiment 7 shows how internal connections can influ-
ence the test decisions. For this experiment, the number of
pins and internal connections for each core in figure 2 was
reduced by half, making the system somewhat more realis-
tic, since fewer internal pins remained unconnected. Then,
for the same limit of extra pins (48), a solution with op-
timization of all factors was sought. The results for this
experiment, in terms of area, are much better than in exper-
iment 4. This shows that, in real systems, where internal
connections are more regular, the area overhead is expected
to be acceptable, as we show in the next example. Addition-
ally, the number of pins used in this solution was reduced to
45 (4% less than the established limit).

Table 1. Test planning results for synthetic
system

Experiment Cost Test No. of Area
Factors Time Pins Overhead

1 only pins 544234 3 22%
2 only area 43663 1098 0.19%
3 only time 9634 1669 3%
4 all factors 42053 47 21%
5 all factors 18435 108 14%
6 no area 19714 105 48%
7 all factors 42053 45 15%

Comparing the results of experiment 6 with the results
presented in [13], where only the test time and the num-
ber of pins are considered, the tool proposed here returns
a test time only 4% higher than the test time achieved by
the method proposed in [13]. However, we can see that,
for the configuration of the cores presented in figure 2, the
area overhead can be prohibitive when it is not considered.
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We cannot compare the area of our solution with the one
of [13], since no such results are presented therein. On the
other hand, the area of experiment 6 is drastically reduced
when this factor is also optimized, as shown in experiment
5. The penalty is a slight increase in the number of pins. Ex-
periment 5 also shows that the proposed tool finds the same
test time presented in [13] for the same number of pins, even
when area is also optimized.

Despite the quality of the final test solution found by
the proposed model, the iterativity of the method provides
the system designer with partial solutions found during the
search. With this information, it is possible to detect which
cores are using more test resources and are the bottlenecks
for the system. In this example, core 6 and core 10 appear as
the two most critical cores in 54% and 46% of the partial so-
lutions, respectively. Since core 6 is placed in the middle of
the system in this example, the displacement of this core to
the boundary could help reduce the area overhead. In terms
of time, core 6 uses 37% of the total test time. This forbids
its wrapper to be used by any other core during this time.
However, if the test time of core 6 is internally optimized
by reducing the number of test vectors or by using BIST,
for example, the global solution can be highly improved.

5.2. Industrial Example

Figure 5 shows an instrumentation system for power
measurement in industrial plants. This system was devel-
oped at UFRGS and is fully operational in the local indus-
try.

The micro-processor is tested by 20 scan chains of length
52 each. Digital filters use around 3000 ATPG based vectors
for testing. In the system configuration, the input is serial
from the A/D converter and it is the same during test, since
the filter assembles the data internally. A/D converters are
assumed to have a BIST method for test. The memory has
also an embedded BIST method that takes 262,144 cycles to
execute. Core 9, a small watchdog implemented as a FSM,
needs only 15 test vectors to be checked.
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Figure 5. Industrial Example

The experiments with this example were performed to
show how the system designer can use the test solution for
making design decisions as well. In addition to the bus-
based connection shown in figure 5, another configuration,
without the bus and with direct connection between the
cores was evaluated. The results are presented in table 2.
All cost factors were set to be optimized, and the limit on
the number of pins was set to 4 (less than 10% of system
functional pins).

Table 2. Test planning results for industrial
system

Experiment Test No. of Area
Time Pins Overhead

1 (bus) 262144 4 0.16%
2 (no bus) 262144 4 0.25%

The first conclusion from this experiment is that the sys-
tem test time is defined mainly by the test of the memory. If
the test of the A/D converters were considered, the system
test time would be defined by them, since the sample ratio
of each converter is much smaller than the system clock.
If we consider, for example, a 10-bit converter running at
100Khz, the test time for 1024 test vectors (samples) would
be 675,840 system cycles. The converters used on the sys-
tem of figure 5 have 16 bits, which implies even higher test
times. The test time for all other cores is 128,204 cycles.
From the four pins included in the system, two are used by
the scan chains of the micro-processor and the other two are
used for the memory. Thus, all other cores could manage to
use functional pins.

From the point of view of testing, this system is very
limited by the test of the memory and probably by the test
of the A/D converters. On the other hand, as an embedded
application, area overhead is a very important factor for the
final product. As the results show, the designer can decide
for the cheapest solution without impacting the number of
pins and test time.

The execution time for all experiments performed is
around 20 minutes for the first example and 1 minute for the
second one. However, since the prototype was developed in
an interactive system (Matlab) where each function is in-
terpreted before being executed, these times can be over-
estimating the real execution time of the program. Indeed,
according to the profile run on the code, most of the exe-
cution time (39.6%) was spent by Matlab built-in functions
used to access the data structure, while the search function
itself used 32.6% of the running time. A much better perfor-
mance in a tool implemented in a non-interpreted language
can be easily expected.
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6. Final Remarks

This paper presented an innovative model for test plan-
ning of core-based systems. The model is based on the
definition of multiple TAMs inside the chip and on a
fine-grained search algorithm for exploration of the de-
sign space. Experimental results have shown how differ-
ent trade-offs can be achieved for a variety of system con-
straints, even when using the same set of embedded cores.

Although the proposed model is quite generic, contem-
plating different test methods (BIST, scan, external) and five
types of TAM connections, some other extensions can still
be studied. The possibility of exploring an independent path
for each port of a core, for example, can optimize and take
advantage of built-in features of each embedded block in
the system, such as transparency and compaction modes.
Besides, the reuse of available functional connections will
also be intensified.

In addition to the current cost factors being considered
(area, pins and test time), other ones can be easily inserted.
Power consumption during test, for example, can be consid-
ered when searching a time slot in the available schedule. A
core can only be part of a time slot if the power limit at that
time is not exceeded.

In conclusion, the proposed model can be used as a pow-
erful tool in the design process, by providing the designer
with detailed information about test bottlenecks in the sys-
tem. Moreover, the use of the proposed model in the core
design process makes possible the evaluation of the impact
of different test and design decisions in the core on a future
system.
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