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Abstract

We present an extension of synchronous programming lan-
guages that can be used to declare program locations irrel-
evant for verification. An efficient algorithm is proposed
to generate from the output of the usual compilation an
abstract real-time model by ignoring the irrelevant states,
while retaining the quantitative information. Our tech-
nique directly generates a single real-time transition sys-
tem, thus overcoming the known problem of composing sev-
eral real-time models. A major application of this approach
is the verification of real-time properties by symbolic model
checking.

1. Introduction

Designing real-time systems is a relatively error-prone task,
especially when the systems consist of several processes,
which is usually the case. Decreasing time-to-market and
the overall design costs make it necessary to check as early
as possible in the design work flow whether the desired
specifications are met.

For real-time systems, the task is to verify that certain ac-
tions are executed within some strict deadlines or that they
will start only after some point of time. For this purpose,
several approaches to the verification of real-time systems
have been developed [1, 18, 6, 3, 11, 23, 20] that are based
on different formalisms for describing finite state transition
systems endowed with some notion of time.

In general, all verification tools that automatically tra-
verse finite state spaces suffer from the enormous number
of states. To overcome this problem, methods to abstract
from irrelevant details have been developed [8, 22], which
are closely related to abstract interpretation [10] of pro-
grams. Such abstractions are used for the proof of qualita-
tive temporal properties, like safety properties meaning that
a property always holds, or liveness properties meaning that
a property will hold at least once.

First approaches to abstraction techniques for the ver-
ification of real-time properties have been developed in
[30, 12, 20]. In [20], a real-time extension of CTL was
introduced, that allows abstractions without loss of quan-
titative information. The key to this approach is to interpret
timed transitions in such a way that only information about
the source and target state is given. In particular, no infor-
mation is given about the system’s state during a transition
(see definition 1).

Hence, many approaches to verify real-time properties of
formal real-time models already exist. However, far less is
known about translating programs to real-time models nec-
essary for later verification. Tools like [7, 3, 11, 23] all read
special formats that describe the formal models more or less
directly. For an application of these tools in an industrial
design flow, it is therefore important to develop appropriate
front-ends that compile system descriptions of early design
phases to real-time models which can then be formally veri-
fied. Of course, if the complete realization is not yet known
(in early design phases), one can not argue about physical
time, since this depends on the hardware chosen for the re-
alization.

Nevertheless, it is possible to reason about time at a log-
ical level as done by synchronous languages like Esterel
[4, 15]. The basic paradigm of these languages is the per-
fect synchrony, which follows from the fact that most of
the statements are executed as ‘microsteps’ in zero time.
Consumption of time must be explicitly programmed with
special statements like Esterel’s pause statement that con-
sumes a logical unit of time. Nowadays, synchronous lan-
guages are used in many industrial applications [15, 16, 29],
where often real-time embedded systems have to be im-
plemented. The semantics of synchronous languages lends
itself well for formal verification, and there already exist
tools [17, 19, 25, 14] for the verification of qualitative tem-
poral properties.

In this paper, we introduce an extension of Esterel-like
languages together with its translation to abstract real-time
models (in the sense of [20]). Our extension allows the



programmer to declare irrelevant program locations. After
the usual compilation of the program into a transition sys-
tem, certain states are thus to be ignored. For this purpose,
we present an efficient algorithm that uses symbolic1 tech-
niques to generate a timed Kripke structure (TKS) [20, 21]
as a real-time model from the output of the compiler. The
algorithms presented in [20, 21] are then used to check
quantitative temporal properties of the generated TKS.

Our goal is to show how abstractions can be incorpo-
rated in synchronous programs to obtain abstract real-time
models that retain the quantitative temporal information. In
particular, the programmer can generate abstract real-time
models without having the need of special knowledge about
verification techniques. A well-known problem of all ap-
proaches based on abstraction techniques is that the chosen
abstraction might be too coarse. In this case, our technique
is able to detect the problematic program locations.

It is important to note that our method allows the genera-
tion of real-time models without having the need of parallel
composition, which is one of the most important drawbacks
of other approaches: Most verification procedures based on
timed automata require the construction of a so-called re-
gion graph to reduce the infinite state space of timed au-
tomata to a finite state problem. However, the construc-
tion of the region graph is very expensive [2], and becomes
more complex for timed automata that are obtained by par-
allel composition. Another approach to real-time temporal
model checking which was introduced in [23] requires to
model the system as a parallel composition of several timed
Kripke structures. Again, the problem is thereby that the
composition of these models is a complex operation [23].

There is not much related work. In [28], an extension of
Esterel has been presented that focuses on the runtime ver-
ification of the perfect synchrony. However, it is assumed
that the compiler preserves the ordering of the microstep
statements, and therefore the approach is restricted to spe-
cial compilation techniques like those proposed in [13]. A
more powerful approach has recently been presented in [5].
There, Esterel programs are endowed with pragmas that
contain the quantitative temporal information. This has no
effect on code generation, but allows the generation of ap-
propriate models (timed automata [1]) for verification of
temporal properties. In contrast to our approach, [5] does
not support abstractions. The major difference to our ap-
proach is however that [5] requires a low-level worst-case
execution time (WCET) analysis in advance to obtain the
real-time constraints. In contrast, the real-time constraints
of our models are obtained by combining transitions while
removing irrelevant states. Hence, our approach only refers
to the system description in an early design phase, while [5]

1The notion ‘symbolic’ is used here in the sense of ‘symbolic model
checking’ which means that we represent transition relations and state
spaces implicitly by means of propositional formulas.

additionally needs architecture-dependent runtime data, and
therefore [5] can only be applied in late design phases.

The outline of the paper is as follows: In the next section,
we explain the basics of synchronous languages with our
Esterel variant Quartz [24, 25, 26, 27]. Using our Quartz
compiler, we can generate C-programs, circuit netlists, and
finite-state transition systems that are used for verification.
In section 3, we explain the basics of timed Kripke struc-
tures as introduced in [20, 21]. Section 4 contains the
main contribution of the paper: By extending the language
Quartz, it is possible to declare irrelevant program loca-
tions. After the usual compilation of the program into a
transition system, an efficient algorithm is proposed to gen-
erate an abstract real-time model by ignoring the irrelevant
states, while retaining the quantitative information. Our
technique directly generates a single real-time transition
system, thus overcoming the known problem of composing
several real-time models. A major application of this ap-
proach is the verification of real-time properties [20, 21].
It is important to note that all algorithms presented here
use symbolic techniques to efficiently manipulate large fi-
nite state transition systems.

2. The Synchronous Language Quartz

Quartz [25, 26, 24, 27] is a variant of Esterel [4, 15] that
differs from Esterel in some minor points. The semantics
of Quartz has been defined in [25] and a hardware synthe-
sis for compilation has been presented in [24]. An exten-
sion of the latter including schizophrenia problems has been
given in [27]. A complete reference is given in [26]. In
the following, we briefly describe the basics of Quartz and
Esterel; for more details on Quartz, the reader is referred
to [25, 26, 24, 27], for more details on Esterel, the reader
should consult the Esterel primer [4], which is an excellent
introduction to synchronous programming.

In synchronous languages, time is modeled by the natu-
ral numbers �, so that the semantics of an expression is a
function of type � → α for some type α. Quartz distin-
guishes between two kinds of variables, namely event vari-
ables and state variables. The semantics of an event vari-
able is a function of type � → B, while the semantics of
a state variable may have the more general type � → α.
The main difference is however the data flow: the value of
a state variable y is ‘sticky’, i.e. if no data operation has
been applied to y, then its value does not change. On the
other hand, the value of an event variable x is not stored: at
the next step, the value of x would be reset to 0 (we denote
Boolean values as 1 and 0), if it is not explicitly made 1 at
the considered point of time. Hence, the value of an event
variable x is 1 at a point of time if and only if there is at
least one thread that emits x at this point of time.

Event variables are made present with the emit state-



ment, while state variables are manipulated with assign-
ments. Of course, any event or state variable may also be an
input variable, so that their values are determined by the en-
vironment only. Emissions and assignments are all data ma-
nipulating statements. The execution of these statements, as
well as the execution of most other statements does not con-
sume time (in the programmer’s view). A complete list of
all basic statements of Quartz is given below, where S, S1,
and S2 are also basic statements of Quartz, � is a location
variable, x is an event variable, y is a state variable, and σ
is a Boolean expression:

• nothing (empty statement)

• emit x and emit delayed x (emissions)

• y := τ and y := delayed τ (assignments)

• � : pause (consumption of time)

• if σ then S1 else S2 end (conditional)

• S1;S2 (sequential composition)

• S1 ‖ S2 (synchronous parallel composition)

• S1 � S2 (asynchronous parallel composition)

• choose S1 � S2 end (nondeterministic choice)

• do S while σ (iteration)

• suspend S when σ (suspension)

• weak suspend S when σ (weak suspension)

• abort S when σ (abortion)

• weak abort S when σ (weak abortion)

• local x in S end (local event variable)

• local y : α in S end (local state variable)

• now σ (instantaneous assertion)

• during S holds σ (invariant assertion)

In general, a statement S may be started at a certain point
of time t1, and may terminate at time t2 ≥ t1, but it may
also never terminate. If S immediately terminates when it
is started (t2 = t1), it is called instantaneous, otherwise
we say that the execution of S takes time, or simply that
S consumes time. Whether a statement is instantaneous or
not may depend on input or local variables. There is only
one basic statement that consumes time, namely the pause
statement. In other words, the pause statements were the
only statements where the control flow may rest. For this
reason, we endow pause statements with unique location
variables �. These labels are used in [25, 26, 24, 27] as state
variables to encode the control flow automaton.

A detailed explanation of the semantics of Quartz is
given in [25, 26, 27]. The control flow of a statement S has
been defined by the control flow predicates [25, 26] in (S),
inst (S), enter (S), term (S), and move (S), and the data
flow of S has been defined by the set of guarded commands
gcmd (ϕ, S):

in (S) is the disjunction of the pause labels occurring in
S. Therefore, in (S) holds at some point of time iff at
this point of time, the control flow is at some location
inside S.

inst (S) holds iff the control flow can not stay in S when S
would now be started. This means that the execution
of S would be instantaneous at this point of time.

enter (S) describes where the control flow will be at the
next point of time, when S would now be started.

term (S) describes all conditions where the control flow is
currently somewhere inside S and wants to leave S.
Note however, that the control flow might still be in
S at the next point of time since S may be entered
at the same time, for example, by a surrounding loop
statement.

move (S) describes all internal moves, i.e., all possible
transitions from somewhere inside S to another loca-
tion inside S.

gcmd (ϕ, S) is a set of pairs of the form (γ, C), where C is
a data manipulating statement, i.e., either an emission
or an assignment. The meaning of (γ, C) is that C is
immediately executed whenever the guard γ holds.

Using the above control flow predicates, one can define a
finite-state transition system that defines the control flow of
a statement [25, 26]. The data flow is determined by the
guarded commands gcmd (ϕ, S) that appear as conditional
emissions and assignments on the transitions of the control
flow transition system. In case that only finite data types
were used, it is possible to translate a program to a classical
finite state (Mealy) automaton.

Based on the presented basic statements, one can define a
couple of several macro statements whose semantics is then
simply given by the macro expansion. The most popular
ones (most of them are used by the Esterel language) are
the following:

• while σ do S end :≡



if σ then
do S while σ

else nothing end




• � : halt :≡ do � : pause while 1

• loop S end :≡ while 1 do S end
• � : loop S each σ

:≡ loop abort S; � : halt when σ end
• �0 : every σ �1 : do S end

:≡ �0 : await σ; �1 : loop S each σ
• � : sustain x :≡ do emit x; � : pause while 1

• � : await σ :≡ do � : pause while ¬σ
:≡ abort � : halt when σ

• � : await immediate σ
:≡ while ¬σ do � : pause end
:≡ abort � : halt when immediate σ



3. Timed Kripke Structures

We consider systems modeled as timed Kripke structures2

over some set of variables V . These timed Kripke structures
are formally defined as follows:

Definition 1 (Timed Kripke Structures (TKS)) A timed
Kripke structure over the finite set of variables V is a tu-
ple (I, S, R, L), such that S is a finite set of states, I ⊆ S
is the set of initial states, and R ⊆ S ×�×S is a finite set
of transitions. For any state s ∈ S, the set L(s) ⊆ V is the
set of variables that hold on s. We furthermore demand that
for any (s, t, s′) ∈ R, we have t > 0 and that for any s ∈ S,
there must be a t ∈ � and a s′ ∈ S such that (s, t, s′) ∈ R
holds.

Timed Kripke structures may be pictorially drawn as given
in Figure 1, where initial states are drawn with double lines.
It is possible to consider certain infinite sets of transitions;
we will see this in more detail in section 4.3. Roughly
speaking, we could allow labels with linear constraints, as
e.g. {2n + 3m + 5 | n,m ∈ �} or {n ∈ � | n > 10}.
The reason is that these labeled transitions can be replaced
by finitely many states including some cycles. On the other
hand, labeling transitions with intervals [a, b] of time is not
an extension of the model: It is easily seen that our TKSs
subsume these models, since we can add for any t ∈ [a, b] a
new transition between the considered two states.

{} s2

{}
s1

{p} s3

1

1

4

3

Figure 1. A Timed Kripke Structure

It is crucial to understand what is modeled by a TKS: A
transition from state s1 to state s2 with label t ∈ � means
that at any time t0, where we are in state s1, we can perform
an atomic action that requires t units of time. The action
terminates at time t0 + t, where we are in state s2. There is
no information about the intermediate points of time {k ∈
� | t0 < k < t0 + t}.

Traditional Kripke structures without labels on their tran-
sitions are special cases of TKSs where all labels are 1.
Clearly, these labels can then be omitted. In the follow-
ing, we call such special cases of TKSs unit-delay structures
(UDSs).

2Other authors use different names for timed transition systems like
timed transitions graphs [6] or timed temporal structures in [23]. Following
the CTL notations, we prefer the name timed Kripke structures.

4. Compiling Quartz Programs to TKSs

We now present the main contribution of the paper: In
the first section, we present our extension to the language
Quartz, which makes it possible to declare irrelevant pro-
gram locations. After the usual compilation of the program
P into a UDS KU , an efficient algorithm is proposed in sec-
tion 4.2 to generate a TKS KR by ignoring the irrelevant
states, while retaining the quantitative information. In sec-
tion 4.3, we then present the relationship between the TKS
KR and the corresponding UDS KU .

4.1. Abstraction from Irrelevant Locations

Using the available algorithms for compiling Esterel and
Quartz, one can compile every program into an equivalent
sequential program. If only finite data types were used, then
additionally hardware circuits and UDSs can be generated.
This is sufficient for code generation and for the verification
of temporal properties.

To enhance the efficiency of the verification, it is often
advantageous to omit irrelevant details so that the gener-
ated formal models are as small as possible. In the opinion
of the authors, the choice between relevant and irrelevant
program locations must be left to the programmer. For this
reason, we propose a new statement to explicitly mark these
locations by emitting a special signal δ. To this end, we in-
troduce a new macro statement of the form abstract S end
that can be defined as follows:

abstract S end :≡




local t in
S; emit t

‖
abort

loop
� : pause;
emit δ

end loop
when immediate t

end local




Hence, abstract S end behaves like S, but additionally
emits the variable δ whenever the control flow moves in-
side S. The entering and termination transitions (from and
to S) do not emit δ. The above definition has however the
drawback that an additional pause statement and an addi-
tional local signal t are used. This additional overhead can
be circumvented by the following alternative definitions:

• in (abstract S end) :≡ in (S)
• inst (abstract S end) :≡ inst (S)
• enter (abstract S end) :≡ enter (S)
• term (abstract S end) :≡ term (S)
• move (abstract S end) :≡ move (S)



• gcmd (ϕ, abstract S end)
:≡ gcmd (ϕ, S) ∪ {(in (S) ∧ ¬term (S) , emit δ)}

Hence, the control flows of abstract S end and S are the
same, and the data flow differs only in that abstract S end
additionally emits the variable δ whenever the control flow
moves inside S. Using this direct definition via the seman-
tics given in [25, 26] instead of the above macro expansion,
we circumvent the use of the additional local variable t and
the additional pause statement.

Using our new statement abstract S end, it is easily
seen that the following statements were equivalent for any
n ∈ � and any Boolean condition σ:

• abstract � : await σ end

≡




do
� : pause;
if ¬σ then emit δ end

while ¬σ




• abstract � : await n end

≡




local c in
c := 0;
do
c := delayed c+ 1;
� : pause;
if c 	= n then

emit δ
end

while c 	= n
end local




The abstract await statements are important to model de-
lays. As can be seen, these statements can be easily defined
in terms of existing Esterel/Quartz statements so that ex-
isting tools can be used for their compilation. Hence, using
the available compilers, we obtain a transition system where
each irrelevant state is marked with the special variable δ.
Note that await n will definitely terminate after n macro
steps, while the termination of await σ is not guaranteed
unless we could guarantee that σ will eventually hold. The
termination of abstract statements must be considered in the
generation of TKSs as described in the next section.

4.2. Generating TKSs

We now consider the generation of a TKS from a given
Quartz program. For this purpose, we assume that we al-
ready have a function QuartzCompileUDS that computes an
equivalent unit delay structure (UDS) KU of a given Quartz
program P . Such a function is essentially implemented by
any compiler, like the one described in [24, 25, 26, 27]. To
finally obtain an equivalent TKS KR, it is therefore suffi-
cient to be able to compute a corresponding TKS from a
given UDS where certain states are marked to be irrelevant.

In the following, these irrelevant states are labeled by the
variable δ.

The overall idea is to replace finite paths s0 → s1 →
. . . → sn−1 → sn of states where s1, . . . , sn−1 were la-
beled with δ, but s0 and sn were not labeled with δ, by sin-
gle transitions s0

n→ sn. This will generate a TKS, where
the quantitative properties of the UDS are preserved. How-
ever, if a cycle of states labeled with δ is reachable, then the
generation of the corresponding TKS transition can not be
performed: If such a cycle is between two states s and s ′

that are not labeled with δ, then this means that there would
exist infinitely many transitions in the TKS between these
states (see Figure 2). Such cycles arise when too large parts
of the program are embraced within an abstract statement.

p0 p1 p2 p3

p0 p3

{2x+ 3 | x ∈ �} ∪ {∞}

Figure 2. Impossibility of TKS Generation

For this reason, we have to check for reachable cycles of
states that are labeled with δ. To be concise in the following,
we call states labeled with δ simply ‘δ-states’, and cycles
consisting of δ-states ‘δ-cycles’.

A first attempt is to directly compute δ-cycles, and to
check if one of them is reachable. However, this is not nec-
essary. It is sufficient to know if there is a reachable δ-cycle,
but we have no need to compute such a δ-cycle.

Given a transition relation U of a UDS KU , the function
Deadends computes the set of states where all paths starting
in these states are finite. The computation starts with those
states that have no successors, and adds in step k + 1 those
predecessors that only have successors with finite paths of
length ≤ k (thus obtaining the set of states with finite paths
of length ≤ k + 1). At the end, the result is the set of states
where all paths leaving these states are finite. The function
Reach clearly computes the set of states that are reachable
from the states Sϕ by the transitions of U .

Consider now the overall translation of a Quartz pro-
gram P to an equivalent TKS, as given in Figure 3. We
first compute the corresponding UDS U and their initial
states I with the function QuartzCompileUDS as given in
[24, 25, 26, 27]. Our next task is to check whether there is a
reachable δ-cycle. For this reason, we restrict the transitions
to δ-states, thus obtaining Uδ , and compute the set of states
Sfin that only have finite paths in Uδ. If Sfin = Sδ holds,
then we have no δ-cycles at all, since all δ-states have only
finite paths. In this case, we can compute the desired TKS
by calling Chronos(U ,Sδ). We will discuss that function
below.



function Deadends(U)
S0 := {s ∈ S | ¬∃s′ ∈ S.(s, s′) ∈ U};
repeat
S1 := S0;
S0 := S0 ∪ {s ∈ S0 | ∀(s, s′) ∈ U .s′ ∈ S1};

until S0 = S1;
return S0;

end function

function Reach(U ,Sϕ)
Sreach := Sϕ

repeat
Sold := Sreach;
Snext := {s′ ∈ S | (s, s′) ∈ U ∧ s ∈ Sreach};
Sreach := Sreach ∪ Snext;

until Sreach = Sold;
return Sreach;

end function

function Chronos(U ,Sδ)
R := {(s, 1, s′) | (s, s′) ∈ U ∧ {s, s′} ∩ Sδ = {}};
Uout := {(s, s′) ∈ U | s ∈ Sδ ∧ s′ 	∈ Sδ};
τ := 1;
repeat
τ := τ + 1;
U0 := {(s, s′) | ∃s1.(s, s1) ∈ U ∧ (s1, s′) ∈ Uout};
R := R∪ {(s, τ, s′) | (s, s′) ∈ U0 ∧ s 	∈ Sδ};
Uout := {(s, s′) ∈ U0 | s ∈ Sδ};

until Uout = {};
return R;

end function

function QuartzCompileTKS(P)
(I,S,U) := QuartzCompileUDS(P);
Sδ := {s ∈ S | δ ∈ L(s)};
Uδ := {(s, s′) ∈ U | s, s′ ∈ Sδ};
Sfin := Deadends(Uδ);
if Sfin = Sδ then

return Chronos(U ,Sδ)
else
Sreach := Reach(U , I);
Sδc := Sreach ∩ (Sδ \ Sfin) ;
if Sδc = {} then
Ureach := {(s, s′) ∈ U | s ∈ Sreach};
return Chronos(Ureach,Sδ)

else
raise exception AbstractionTooCoarse(Sδc)

end
end;

end function

Figure 3. Algorithms for Generation of TKSs

On the other hand, if Sfin 	= Sδ holds, then the δ-states
of Sδ \ Sfin occur on at least one δ-cycle. There is still a
chance to generate a TKS, namely if none of these states
is reachable. For this reason, we next compute the set of
reachable states Sreach, and check if a δ-cycle is included
in Sreach (note that Sδc is the set of reachable δ-cycles). If
no δ-cycle is reachable, then we can generate the TKS by
calling Chronos with the transitions restricted to reachable
states.

Finally, if there is a reachable δ-cycle, then the construc-
tion of some TKS transitions is not possible (cf. Figure 2),
and therefore an exception is raised where the reachable δ-
cycles are returned. With this information, the programmer
can identify the program locations that lead to the too coarse
abstraction. In this case, there are two possible solutions:
either the programmer proceeds with the verification at the
UDS level or the programmer has to weaken the abstraction.
We consider the first case in the next section in more detail.
In the second case, one must consider that the specifications
must also be adapted.

Now, consider how Chronos works. Recall, that we may
assume that the transition relation U does not contain any
δ-cycle, when Chronos is called. We first compute the tran-
sitions between states s and s′ that both are not labeled with
δ. These transitions are labeled with time duration 1. To
compute the further transitions, we have to compute the
transitions Uout that leave a δ-sequence. In the following
loop, we have as an invariant that the timed transitions with
duration < τ have already been computed, and that U out

contains transitions (s, s′) such that s′ is not a δ-state, and
that there will be a timed transition leading to s ′ with dura-
tion ≥ τ .

To compute the timed transitions with duration τ+1, we
consider the δ-states s that are connected by a U-transition
to a state s1, such that (s1, s′) ∈ Uout holds. Then, the
transition (s, τ, s′) is added to R. If, on the other hand, s
is labeled with δ, then this transition will be extended in a
later loop iteration until no δ-state remains.

It is easily seen that the loop in Chronos will be repeated
at most dlen times, where dlen is the maximal length of a
finite sequence of δ-states. An example for the execution
of Chronos is given in Figure 4. The different loop itera-
tions for the UDS given in the upper half of Figure 4 are as
follows:

• U (1)
out = {(s1, s0), (s5, s3), (s5, s6), (s7, s8), (s10, s6)}

• R(1) = {(s3, 1, s3), (s8, 1, s9), (s9, 1, s9), (s0, 1, s3)}
• U (2)

out = {(s2, s0), (s4, s3), (s4, s6),
(s6, s6), (s3, s8), (s9, s6), (s6, s3)}

• R(2) = {(s6, 2, s6), (s3, 2, s8), (s9, 2, s6), (s6, 2, s3)}
• U (3)

out = {(s6, s0), (s3, s6), (s3, s3)}
• R(3) = {(s6, 3, s0), (s3, 3, s6), (s3, 3, s3)}
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Figure 4. A UDS with its corresponding TKS

At the end, we obtain the TKS given in the lower part of
Figure 4.

4.3. Verifying Real-Time Properties for Programs

Recall that our task is to check for a given program P
whether a temporal property Φ holds. To describe real-time
temporal properties, we use the CTL real-time extension
JCTL [20] that is defined on TKSs.

Using traditional compilers, it is possible to compute for
a given programP the corresponding UDS KU , so that tem-
poral properties can be checked for the program. The algo-
rithm given in the previous section allows furthermore to
compute a TKS KR for P to increase the efficiency of the
verification. Clearly, the structuresKU andKR are different
and therefore satisfy different formulas. In this section, we
explain the relationship between the verification at the TKS
and the UDS level. For this purpose, we define a function
Θδ that computes for a JCTL formula Φ a corresponding
JCTL formula Θδ(Φ) that holds on the UDS KU iff Φ holds
on the TKS KR.

Definition 2 Given a JCTL formula Φ and a variable δ, we
define a corresponding JCTL formula Θδ(Φ) as follows3:

• Θδ(x) :≡ x for variables x
• Θδ(¬ϕ) :≡ ¬Θδ(ϕ)
• Θδ(ϕ ∧ ψ) :≡ Θδ(ϕ) ∧ Θδ(ψ)
3The semantics is given in [20], except for E[ϕXWκψ]. E[ϕXWκ ψ]

holds in a state s iff there is a path starting in s such that at some position
(different from the starting one) of the path ψ holds, and at the first such
position (different from the starting one) ϕ holds, and the time required to
reach this first position satisifies the time constraint κ.

• Θδ(ϕ ∨ ψ) :≡ Θδ(ϕ) ∨ Θδ(ψ)
• Θδ(EXκϕ) :≡ E[Θδ(ϕ) XWκ (¬δ)]
• Θδ(AXκϕ) :≡ A[Θδ(ϕ) XWκ (¬δ)]
• Θδ(E[ϕ Uκ ψ]) :≡ E[(δ ∨ Θδ(ϕ)) Uκ (¬δ ∧ Θδ(ψ))]
• Θδ(E[ϕ Uκ ψ]) :≡ E[(δ ∨ Θδ(ϕ)) Uκ (¬δ ∧ Θδ(ψ))]
• Θδ(A[ϕ Uκ ψ]) :≡ A[(δ ∨ Θδ(ϕ)) Uκ (¬δ ∧ Θδ(ψ))]
• Θδ(A[ϕ Uκ ψ]) :≡ A[(δ ∨ Θδ(ϕ)) Uκ (¬δ ∧ Θδ(ψ))]

Θδ(Φ) is of length O(|Φ|), i.e., there is only a linear blow-
up. The above definition is used to transform a given JCTL
Φ to another corresponding JCTL formula Θδ(Φ) such that
only states not labeled with δ are considered for evaluation
of Θδ(Φ). If no state is labeled with δ, then it is easily seen
that Φ and Θδ(Φ) were equivalent. The following theorem,
which is one of the main results of this paper, reveals the
entire relationship between Φ and Θδ(Φ):

Theorem 1 (Relationship between UDS and TKS)
Given a UDS KU such that the corresponding TKS KR
exists, then we have for any JCTL formula Φ and any state
s of KR the following relationship:

KU , s |= Θδ(Φ) iff KR, s |= Φ

The theorem is easily proved by an induction on the struc-
ture of Φ. The essential property for the induction steps is

thereby that (by construction of KR) a transition s
t→ s′

in KR corresponds to a sequence of transitions s → s1 →
. . . → sn−1 → s′ of states where s1, . . . , sn−1 are labeled
with δ (of course, s and s′ are not labeled with δ, since they
belong to KR).

The above theorem precisely states that if an equivalent
TKS KR exists, then we have the choice between check-
ing KU , s |= Θδ(Φ) or KR, s |= Φ. Both model checking
problems are equivalent to each other.

5. Conclusions and Future Work

We propose a special statement for synchronous program-
ming languages to declare program locations that are irrele-
vant for verification. After the usual compilation of the pro-
gram into a transition system, an efficient algorithm is pro-
posed to generate a TKS by ignoring the irrelevant states,
while retaining the quantitative information. Our technique
directly generates a single real-time transition system, thus
overcoming the known problem of composing several real-
time models.

Current research of compiling synchronous programs
considers how the UDS can be computed in a modular
way, exploiting the modular structure of the given program.
Analogously, future directions of this work may consider
how the TKS could be computed in a modular way 4.

4Given arbitrary statements P and Q with their UDSs KP and KQ,
the equation KP‖Q = KP × KQ is in general not valid. It is also not
valid in general for the corresponding TKSs.
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