
Arithmetic reasoning in DPLL-based SAT solving
Markus Wedler, Dominik Stoffel, Wolfgang Kunz

Dept. of Electrical & Computer Eng., University of Kaiserslautern/Germany
email: wedler@eit.uni-kl.de

Abstract
We propose a new arithmetic reasoning calculus to speed

up a SAT solver based on the Davis Putnam Longman
Loveland (DPLL) procedure. It is based on an arithmetic
bit level description of the arithmetic circuit parts and the
property. This description can easily be provided by the
front-end of an RTL property checker. The calculus yields
significant speedup and more robustness on hard SAT in-
stances derived from the formal verification of arithmetic
circuits.

1 Introduction

Bounded model checking (BMC) [2] has gained in-
creased significance in Electronic Design Automation
(EDA). It is used to verify that a digital circuit design meets
the desired behavior. In BMC the design of a sequential
circuit is unrolled for a finite number of time frames and
augmented with the property under verification. This can
be translated into a satisfiability (SAT) problem and is thus
handled by standard SAT solvers. These solvers will ei-
ther give a proof of unsatisfiability or a counter example for
the property. Figure 1 shows the standard flow for property
checking.
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Figure 1. Standard flow for RTL property checking

It is well known that SAT solvers have problems when
dealing with instances derived from the verification of arith-
metic circuits. Hence, although SAT-based property check-
ing can often be applied successfully to the control part of a
design, it typically fails on data paths with large arithmetic
blocks. One may resort to incomplete techniques like bit-
slicing in order to find bugs in arithmetic units. However,

they cannot prove the absence of a bug. Especially, it is very
likely to miss errors in corner cases.

This forced the development of automatic bit width re-
duction techniques like in [6, 7]. But still the resulting
model is often too large to be handled by a SAT solver and
there are cases where no reduction is possible.

Another idea is to use word-level solvers for integer lin-
ear programming (ILP) [3, 5, 13] or constraint logic pro-
gramming [12]. The problem with word-level solvers is
that they do not incorporate the large variety of pruning
techniques for the Boolean part of the problem. Therefore,
they usually perform poorly on the control part of a design.
Thus, a combination of word-level and Boolean solvers has
to be developed. This problem is not simple because the
different solvers cannot look into each other’s non-solution
areas. Two promising ways of integrating ILP and SAT have
been proposed in [1,4]. The first uses pseudo-Boolean con-
straints as clauses in a DPLL style solver and the second
uses linear equations as propositions. The method described
in this paper is integrated into a standard DPLL style SAT
solver [8] but it seems likely that also a framework like [4]
could benefit significantly from the proposed concepts. A
general problem for all ILP-based solvers is that multiplica-
tion leads to non-linear constraints and linearization leads
to large and hard to solve ILPs. Therefore, in this work we
propose a new reasoning scheme that targets these hard to
linearize cases.

The reasoning scheme is based on addition networks.
In [10] a method for equivalence checking of multipliers
based on arithmetic bit level description of the circuit was
proposed. The arithmetic bit level contains partial products
and addition networks. To verify that a circuit is a multi-
plier an arithmetic bit level representation is extracted from
the gate netlist. For property checking this extraction is not
necessary as the synthesis front-end can easily generate the
arithmetic bit level information needed for our reasoning
scheme. The arithmetic bit level information will be uti-
lized to prune the search space of the SAT solver. Figure 2
shows the modified flow for property checking.

The rest of the paper is organized as follows: Section 2
introduces an arithmetic reasoning calculus. In Section 3
this calculus is integrated into the DPLL search procedure
for SAT. Section 4 reports experimental results from our im-
plementation of the described techniques. Section 5 con-
cludes this paper.
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Figure 2. New flow for RTL property checking

2 Arithmetic Reasoning

Addition networks occur in many arithmetic circuits. For
example one can find them in digital filters, multiply ac-
cumulate units or multipliers. In this section we study a
calculus for carry propagation in such addition networks.
We shall see that this kind of propagation is much stronger
than conventional boolean constraint propagation (BCP).
Throughout this paper BCP always refers to the boolean
propagation derived by iteratively applying the unit literal
rule on the corresponding conjunctive normal form (CNF)
of the addition network.

Let us take a look at a multiplier, for example. Table 1
shows the multiplication of two 4 bit numbers. Partial prod-
ucts are added up columnwise. Each column n can produce
cn+1
max carries carry1, ..., carry

c
n+1
max

that have to be added to
the next column, n + 1. The partial products and carries
derived from the previous column are called addends of a
column. Addends that are not carries are called primary
addends.

n 8 7 6 5 4 3 2 1
1 0 1 0 * 0 1 1 0

0 0 0 0
+ 0 1 1 0
+ 0 0 0 0
+ 0 1 1 0

carry1 + 0 0 0 0 0 0
carry2 + 0 0 0 0
carry3 + 0 0

0 0 1 1 1 1 0 0

Table 1. Multiplication of two unsigned 4-bit numbers

In the following we consider value assignments on the
set of addends A. A value assignment is a map x : A →
{0, 1, X}. The value of an addend a is called unspecified
if x(a) = X , otherwise it is specified. A value assign-
ment that leaves primary addends unspecified is referred
to as partial assignment. Note that during a run of a SAT
solver partial assignments will be generated. For each col-
umn n and each partial assignment x we denote the number
of specified carries with cn

x . Let us suppose we have the par-
tial assignment X1X1 and 1X1X on the inputs as shown

in Table 2. At least two addends in column 4 are one, thus
we know that at least one carry in column 5 has to be gen-
erated, hence we have c5

x = 1. In a tabular representation

n 8 7 6 5 4 3 2 1
X 1 X 1 * 1 X 1 X

1 X 1 X
+ X X X X
+ 1 X 1 X
+ X X X X

carry1 + X X X 1 X X
carry2 + X X X X
carry3 + X X

X X X X X X X X

Table 2. Partial assignments

as in Table 2 it is simple to derive this information. How-
ever, if the addition matrix is implemented by an addition
network composed of half adders, this is no longer the case.
The reason is that a specific implementation is based on a
specific order in which the addends of a column are added
up.

To illustrate this, consider the addition network of Fig-
ure 3 that could be part of some arithmetic block. The pri-
mary addends A1,1, . . . , A1,4 are added up into column 1,
the primary addends A2,1, . . . , A2,3 and the carries C1,1 and
C1,2 are added into column 2. As a result, further carries are
generated that contribute to columns 3 and 4. S1, . . . , S4

constitute the resulting column sums. Let us suppose we
have the partial assignment x with x(A1,1) = x(A1,3) =
x(A2,2) = 0 and x(Ai,j) = X otherwise. By BCP we
cannot derive the necessary assignment S4 = 0.
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Figure 3. Addition network

In fact, the number of specified carries in column 2,
c2
x = 1, cannot be observed on the physical carry signals

C1,1 and C1,2 using BCP. However, a key observation is that
the structure of the addition network can be rearranged us-
ing commutative and associative laws such that BCP spec-
ifies c2

x carries. In our case we have to swap addends A1,1

with A1,4 and A2,3 with C1,2. Then Boolean constraint
propagation yields S4 = 0. The resulting network is shown
in Figure 4.

The example shows that reordering of the addends in
each column of an addition network leads to stronger
Boolean constraint propagation. The question is whether
we can always find an order of the addends in column n
such that cn+1

x carries become specified (to either one or
zero) by BCP in this column. Unfortunately, the answer is
no. The addition network of Figure 5 is a counterexample.
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Figure 4. Addition network after swapping addends

No matter how we permute the addends a1, .., a6, a single
zero assigned to one of them will never propagate to any of
the carries c1, .., c3, even though it is mandatory that one of
the carries has to be zero.
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Figure 5. Addition network for counterexample

However, it is still possible to fix this problem. Fortu-
nately, there always exists a functionally equivalent addition
network and an order of the addends such that the number of
carries identified by Boolean propagation is cn+1

x . In fact,
a simple chain of half adders like in Figure 6 fulfills this
requirement. This is formalized by Theorem 1 and Theo-
rem 2.
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Theorem 1. Let A = {a1, ..., an} be a set of addends of
a column n. Further let x : A → {0, 1, X} be a partial
assignment on A, d := |{ai|x(ai) 6= X}| be the number of
specified addends and s := |{ai|x(ai) = 1}| be the num-
ber of addends that are 1. Then, there exists a functionally
equivalent addition network such that c carries are identi-
fied by BCP, with

c :=











d/2 − 1, if n is odd, d is even and s is odd

(d + 1)/2, if n is even, d is odd and s is even

bd/2c, otherwise.

Proof: W. l. o. g. we suppose x(ai) = 1, i = 1..s,
x(ai) = X, i = s + 1..l and x(ai) = 0, i = l + 1..n.

(Otherwise we permute the inputs of the addition network.)
By assumption we know n − l + s = d.

As addition network we take a chain of half adders.
Two succeeding carryout signals in this chain are exclud-
ing each other. Therefore we can add the carryout signals
of every 2k’s and 2k − 1’s half adder. The sum-outputs of
these additional half adders are carryout signals of the ad-
dition network. The carries are always zero and will never
be used.

We will now show that in this addition network, with the
above ordering of the addends, c carries are specified by
Boolean propagation. The first bs/2c carries are only af-
fected by the first s + 1 addends if s is even, and the first s
carries if s is odd. As all of these inputs (except one in the
even case) are 1 the ones are propagated to the carries by
Boolean propagation. A similar analysis gives us the num-
ber of zeros propagated to carries at the end of the chain.
Here we have to conduct a case split whether we have an
even or odd number of half adders in the chain. We omit
this for reasons of space. Please refer to [11]. �

Theorem 2. Under the conditions of Theorem 1

cn+1
x = c =











d/2 − 1, if n is odd,d is even and s is odd

(d + 1)/2, if n is even, d is odd and s is even

bd/2c, otherwise

holds, i.e., c is the number of carries that are specified to
either one or zero.

Proof: Is omitted, please refer to [11].
In other words our theoretical results state that appropri-

ate restructuring makes the forward implications in an addi-
tion network complete. Hence, backtracks in the SAT solver
can only be caused by output constraints and dependencies
of the addends.

Our approach heavily exploits the arithmetic bit level in-
formation for signal swapping. We have seen that it is not
sufficient to only permute the addends of each column of
the addition network. Instead we may additionally have to
swap a certain addend with a certain partial sum. It has
been shown in [9] that we can generate whatever architec-
ture of the addition network is required using a series of
signal swaps. In our context this means that we can also
always generate the addition chains and addend orders re-
quired by Theorem 1. An attractive possibility is to let the
front-end of the property checker generate addition chains
rather than balanced trees like in the proof of Theorem 1.
In this case we can expect that even conventional BCP will
specify more carry signals than for non-chain architectures.
This is also supported by our experimental results in Sec-
tion 4. However, in order to identify the exact number of
carries additional signal swaps have to be performed. In the
chain architecture it is sufficient to consider swapping only
addends of a column and not partial sums.
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3 Integration into DPLL
Signal swaps change the functions of many internal

nodes. If we want to integrate this into a SAT solver this im-
plies that many of the learnt clauses become invalid when-
ever we perform a swap. Another drawback is that the swap
itself is a complex task on a CNF.

Therefore, in our reasoning scheme we want to virtual-
ize signal swapping. The information we want to calculate
is how many carries are specified and what the values of the
specified carries are. This can be done by counting the spec-
ified carries for each column. From the number of specified
addends and the number of specified carries of the previous
column we can calculate the number of specified carries and
their values, like in the proof of Theorem 2.

In our example of Figure 3 we had the partial assignment
x(A1,1) = x(A1,3) = x(A2,2) = 0 and x(Ai,j) = X
otherwise. We know that two out of four addends in the
first column are set to zero. This implies that one carry is
specified to zero and the other is unspecified. Note that we
do not need to know whether C1,1 or C1,2 is specified. In the
second column we know that one addend and one carry is
specified to zero. This implies again that one of the carries
in this column is zero. Lastly, in the third column only these
carries are added up and no carries are produced. Hence, the
carry S4 of this column has to be zero.

dpll() {
preprocess();
while (true) {

decide next branch();
status = deduce();
if (status == conflict) {

blevel= analyze conflict();
if (blevel == 0)

return UNSAT;
else backtrack(blevel);

}elseif (status == SAT) return SAT;
else break;

} }

Table 3. Pseudocode of the DPLL algorithm

Now we study how to integrate the above reasoning
scheme into the DPLL procedure. Table 3 presents the
pseudo-code of the top-level solving routine. We will de-
scribe how the key routines of this algorithm have to be
modified to incorporate arithmetic reasoning. Our solver
inherits all the features of modern SAT solvers.

3.1 Preprocessing

At the end of the preprocessing routine of the base
solver we read the arithmetic bit level information prepared
by the front-end of the property checker. We mark all the
variables that are addends or sums in an addition network.

In the following these variables are referred to as arithmetic
variables. For each of them we store:

- the addition network the variable belongs to,
- the column of the network it belongs to,
- whether the variable is the result or an addend of the column.

For each addition network we set up a table storing
the following information for each column:

maxSumCount number of primary
addends in the column.

maxCarryCount number of carries derived from the
previous column.

sum number of primary addends set to 1
in the current assignment.

sumCount number of primary addends set to
either 0 or 1.

carrySum number of carries from the previous
column specifi ed to be 1 under the
current assignment.

carryCount number of carries from the previous
column specifi ed under the
current assignment.

result expected result for the column.
These variables relate to our notions of Section 2 as
follows: maxCarryCount = cn

max, sum + carrySum = s,
sumCount + carryCount = d and carryCount = cn

x . Note
that maxSumCount and maxCarryCount do not change
during the solving process but are fixed for a given ad-
dition network. For any addition network carrySum and
carryCount of the first column are always zero. All the
dynamic values are initialized with zero. The extra memory
needed for these additional data structures is negligible
compared to the memory used by the clause database.
Moreover, it remains constant during the whole solver run.

3.2 Decision rule
When selecting the next branching variable, we prefer

arithmetic variables if they occur among the first k variables
that the original decision rule would take. k is a user defined
value. A typical value is k = 100. Note that scanning such
a small constant number of variables does not corrupt the
overall runtime of the solver.

3.3 Update of the sum counts

Every SAT solver has some base routines
set value(variable value) and unset value(variable) that
are called during branching, BCP and backtracking when-
ever the value of a variable changes. The data structures
used in the solver allow them to perform in constant time.
Usually they only make a few assignments to internal
memory that represents the state of a variable. At the end of
these procedures we check whether the variable is marked
to be arithmetic. In this case we update sum and sumCount
in the corresponding table.
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In the worst case these modifications lead to only a small
number of additional operations. Therefore, they do not
corrupt the runtime behavior of the solver. On a modern
pipelined CPU the difference will not even be measurable.

3.4 Deduction

Deduction is based on the standard techniques employed
in state-of-the-art SAT solvers. In Table 4 we refer to
the deduction technique inherited from the base solver as
old deduce(). If old deduce() did not find a Boolean con-
flict and we have not yet detected an arithmetic conflict, we
update carrySum and carryCount for all columns of all ad-
dition networks. This is done in routine calculate carries()
and is based on the same analysis as in the proof of Theo-
rem 2. We stop when the first arithmetic conflict is detected.
This is the case if we detect a column that is full, i.e., all ad-
dends and carries are specified, and inconsistent, i.e., the
sum does not match the result. After an arithmetic con-
flict is detected for the first time the current decision level is
stored as arith dl. Table 4 presents the pseudocode for the
new deduction routine.

deduce(arith status) {
status = old deduce();
if (status != conflict and arith status !=conflict)

for each (addition network)
for each (column ) {

calculate carries();
if (column is full and inconsistent) {

arith dl = d level();
arith status =conflict;
return (status, arith status);

} } }

Table 4. Pseudocode of deduction routine

3.5 Conflict analysis

The new conflict analysis has to handle two different
kinds of conflicts. When a Boolean conflict occurs we can
use the standard mechanisms to generate a conflict clause.
When an arithmetic conflict occurs this is not the case. The
problem is that there are no unsatisfied clauses. Hence, we
have no starting clause for conflict analysis. Therefore, we
generate a conflict clause that forbids the current assign-
ment and perform chronological backtracking.

Figures 7 and 8 show two situations possible in the deci-
sion tree. For the situation shown in Figure 7 the arithmetic
conflict is detected after one of the early decisions. Boolean
conflict analysis at a deeper level of the search tree cannot
detect this reason for the Boolean conflict. In this case we
can benefit from the arithmetic conflict.

However, we also encounter situations as in Figure 8.
Here the arithmetic conflict occurs only a few levels be-

BOOLEAN
CONFLICT!

chronological
backtrack

ARITHMETIC
CONFLICT!

non-chronological
backtrack

Figure 7. Decision tree

fore the Boolean conflict and Boolean conflict analysis de-
termines a backtrack level far beyond that level. In this case
Boolean conflict analysis gives us much more benefit.

BOOLEAN
CONFLICT!

non-chronological
backtrack

ARITHMETIC
CONFLICT!

chronological
backtrack

Figure 8. Decision tree

We would like to benefit in both situations. Therefore
we do not backtrack when the arithmetic conflict occurs.
Instead we remember the current decision level (arith dl in
deduce()) when the arithmetic conflict is detected for the
first time and proceed deeper into the decision tree until a
Boolean conflict occurs. After the Boolean conflict analysis
we can decide whether it is more beneficial to backtrack to
the arithmetic or the Boolean decision level.

4 Results

The ideas presented in this paper have been implemented
on top of the well-known SAT solver zChaff [8]. In our
experiments we took a 16x16 and a 20x20 multiplier with
chain architecture and a 20x20 multiplier with tree architec-
ture and tried to justify 200 randomly selected output vec-
tors for all of them. Furthermore we created two miters
containing 8x8 and 10x10 multipliers with chain architec-
ture and checked the outputs for equivalence. Last we com-
pared both solvers on 98 random sat formulas without any
arithmetic information. Table 5 summarizes the results. It
is organized as follows: Column 1 contains the name of the
instance class and column 2 specifies whether the instances
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are satisfiable. In column 3 the number of instances in the
class is specified. Columns 4 and 5 specify the maximum
speedup/slowdown of our solver compared to zChaff. Col-
umn 6 compares the sum of all run times in the class needed
by our solver against the sum of the times needed by zChaff.

Class Result # Max Max overall
speedup slowdown Speedup

8x8Miter UNSAT 16 3.3 1.4 2.0
10x10Miter UNSAT 20 2.2 2.6 1.8
16x16chain SAT 22 8.0 11.8 1.4
16x16chain UNSAT 178 2.8 11.8 1.4
20x20chain SAT 35 166.8 42.9 4.9
20x20chain UNSAT 165 29.8 3.9 3.5

20x20tree SAT 35 770.4 69.3 14.1
20x20tree UNSAT 165 32.5 -1.7 7.8

random SAT/UNSAT 98 1.1 1.5 -1.03

Table 5. Experimental results

Figures 9 visualizes the runtime distributions for both
solvers. The instances are plotted in ascending order of the
CPU times zChaff needed to complete the instances with
chain architecture. We show results for chain as well as tree
architecture instances. The plot clearly demonstrates that
zChaff performs significantly better on the chain architec-
ture than on the tree architecture of the addition network.
However, even these results are clearly outperformed by the
proposed extensions to the basic SAT procedure. The right
margin of the plot impressively shows the increase in ro-
bustness. The results on the random sat instances indicate
that there is no loss of performance when no arithmetic in-
formation is available.
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Figure 9. Runtime distribution

5 Conclusion
We have presented an arithmetic reasoning as a tech-

nique to speed up SAT solving for instances derived from
circuits containing addition networks. Our results show that
incorporating arithmetic reasoning into DPLL yields signif-
icant speedup and more robustness. The presented tech-
nique is orthogonal to all other pruning techniques used
in modern SAT solvers. Furthermore it can be easily inte-
grated into current verification environments. In those cases
where no arithmetic information is available the solver ex-
actly performs like its base solver without any run time
penalty.
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