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Abstract
We define the concepts of z -sets and z -detections for
combinational circuits (or the combinational logic of scan
circuits). Based on these concepts we define structural
characteristics and characteristics based on fault simula-
tion. We show that these characteristics determine the
numbers of fault pairs that are guaranteed to be dis-
tinguished by a given fault detection test set. These fault
pairs do not need to be considered during diagnostic fault
simulation or test generation. We demonstrate that bench-
mark circuits as well as industrial circuits have these
characteristics to a larger extent than may be expected.
As a result, only small percentages of fault pairs need to
be considered during diagnostic fault simulation or test
generation once a fault detection test set is available. In
addition, these fault pairs can be identified efficiently.

1. Introduction
Fault diagnosis [1] is a process that requires direct or
indirect consideration of pairs of faults. For example, the
goal of diagnostic test generation is to ensure that for
every pair of faults f i and f j there is at least one test t
such that the circuit-under-test produces a different output
response depending on whether f i or f j is present in the
circuit. Efficient procedures for diagnostic fault simulation
and test generation rely on implicit consideration of fault
pairs [1]-[10]. For example, in a diagnostic tree based on a
test set T [1], a test t ∈ T partitions a subset of faults F
into two subsets. The subset FP ⊆ F contains the faults
that pass the test t , while the subset FF ⊆ F contains the
faults that fail the test t . After considering all the tests in
T , the subsets of faults obtained in the leaves of the diag-
nostic tree contain indistinguished faults, while two faults
in two different subsets are distinguished by T .

The methods of [1]-[10] are based on the use of
data structures or test generation techniques that will
result in efficient manipulation of fault pairs. A different
approach is to use structural circuit information to speed
up the diagnostic process. In [11], if a circuit-under-test
�����������������������������������
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exhibits a faulty value on output z , it is concluded (under
the single fault assumption) that the circuit contains a fault
which is located in the cone of logic driving output z . All
other faults can be excluded from consideration.

In this work, we show new circuit properties based
on structural information and information available from
fault simulation for combinational circuits (or the combi-
national logic of scan circuits). The properties are based
on the concept of z -sets, which are related to structural
information, and the concept of z -detections, which are
derived from fault simulation. We show that fault pairs
possessing certain properties based on z -sets and z -
detections are guaranteed to be distinguished by a given
fault detection test set. Such fault pairs do not need to be
considered during diagnostic fault simulation or test gen-
eration. All the benchmark circuits we analyzed as well
as industrial circuits possess these properties to a larger
extent than may be expected. As a result, only small per-
centages of fault pairs need to be considered for diagnos-
tic fault simulation or test generation once a fault detec-
tion test set is available. This result is consistent with the
results of earlier works; however, this is the first time this
phenomenon is explained, and it is done through the con-
cepts of z -sets and z -detections. Furthermore, these con-
cepts provide a way to efficiently identify fault pairs that
are not guaranteed to be distinguished by a fault detection
test set.

It is important to note that the concept of z -set is
independent of any test set. The concept of z -detection is
test set dependent; however, a fault is either z -detected by
a test set or not, and thus it is not related to any individual
test. As a result, fault analysis based on these concepts is
done independent of any individual test.

In the following sections we define the concepts of
z -sets and z -detections and the related circuit properties.
We demonstrate the extent to which benchmark circuits
and industrial circuits possess these properties, and the
effects of these properties on the numbers of fault pairs
that are distinguished by a fault detection test set. For
simplicity of presentation we consider only single stuck-at
faults. We use the collapsed set of single stuck-at faults in
all the examples we consider.
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2. Z -sets and related properties
To present the first property we use the following nota-
tion. We consider a circuit with n outputs denoted
z 0,z 1, . . . ,zn −1. For a line g in the circuit, we denote by
Z (g ) the set that contains every output zi such that there is
a directed path in the circuit from g to zi . We refer to
Z (g ) as the z −set of g .

We represent a z -set Z (or Z (g )) using a vector
ζ0ζ1

. . . ζn −1 where ζi = 1 if zi ∈ Z and ζi = 0 if zi ∈/ Z .
For a fault f , which is associated with line g , we

define the z -set Z (f ) = Z (g ). The fault f can be the fault
g stuck-at 0 or the fault g stuck-at 1. We denote by F (Z )
the set of faults that contains every fault f such that
Z (f ) = Z .

For illustration, we show in Figure 1 a circuit with
two outputs z 0 and z 1. For line 1 we have the z -set
Z (1) = {z 0}, for line 3 we have the z -set Z (3) = {z 0,z 1},
and for line 9 we have the z -set Z (9) = {z 1}. The lines in
the circuit are partitioned into three subsets depending on
the outputs they drive. Each (non-empty) subset of lines
corresponds to a different z -set. The three z -sets in this
example are Z 0 = {z 0,z 1} (represented as ζ0ζ1 = 11),
Z 1 = {z 0} (represented as ζ0ζ1 = 10) and Z 2 = {z 1}
(represented as ζ0ζ1 = 01). The faults are partitioned into
subsets F (Zi ) according to the same z -sets. Denoting the
fault g stuck-at a by g /a we have F (11) = {3/1, 4/1, 8/0,
8/1} (these are the faults whose sites have paths to both
outputs), F (10) = {1/1, 2/1, 7/0, 10/0, 12/0, 12/1} (these
are the faults whose sites have paths to z 0) and F (01) =
{5/1, 6/1, 9/0, 11/0, 13/0, 13/1} (these are the faults whose
sites have paths to z 1).
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Figure 1: Example circuit
For further illustration, we consider the combina-

tional logic of MCNC finite-state machine benchmark
train 4. The circuit has three outputs, z 0,z 1,z 2 and 34
faults. The lines in the circuit are partitioned into five
subsets depending on the outputs they drive. Each subset
of lines corresponds to a different z -set. The five z -sets
are Z 0 = {z 0,z 1,z 2} (or 111), Z 1 = {z 0,z 1} (or 110),
Z 2 = {z 1} (or 010), Z 3 = {z 0} (or 100) and Z 4 = {z 2} (or
001). The faults in F (Zi ) are the ones whose fault sites
drive the outputs in the z -set Zi . We show the numbers of
faults for each z -set in Table 1. Under column z −set we

show the z -set and under column f lts we show the
number of faults in the z -set. The numbers under column
z −det will be explained later.

Table 1: z -sets for train 4

z-set flts z-det� ���������������������������������������
0 111 9 3
1 110 15 6
2 010 6 6
3 100 2 2
4 001 2 2
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It is important to note that the number of z -sets that
can be defined for a circuit with n outputs is 2n −1. How-
ever, only some of these z -sets correspond to any fault.
For example, in the case of train 4 that has three outputs,
we can define seven z -sets; however, only five of them
(shown in Table 1) have any faults associated with them.
In general, the number of relevant z -sets is not larger than
the number of faults.

Next, we focus on faults whose z -sets contain a sin-
gle output. Such a fault can only be propagated to the sin-
gle output contained in its z -set. Two faults f i and f j such
that | Z (f i ) | = | Z (f j ) | = 1 and Z (f i ) ≠ Z (f j ) are
guaranteed to be distinguished as long as at least one of
them is detected. Since detection is a necessary condition
for diagnosis, diagnosis is achieved without any additional
effort for such faults. This is the motivation for our
interest in these faults. In this section we concentrate on
the number of faults with z -sets of size one. We will
return to the effect on diagnosis later.

For the circuit of Figure 1, we have two z -sets of
size one, 10 and 01. The sets of faults with these z -sets
are F (10) = {1/1, 2/1, 7/0, 10/0, 12/0, 12/1} and F (01) =
{5/1, 6/1, 9/0, 11/0, 13/0, 13/1}. Thus, we have 12 faults
in z -sets of size one in this example. The total number of
faults for this circuit is 16. For train 4, we have three z -
sets of size one, 010, 100 and 001. The number of faults
included in these z -sets is 10 out of a total of 34 faults.

One may expect that in large circuits, most of the
logic would be shared among multiple outputs. As a
result, there would be very few faults with z -sets of size
one. In reality, benchmark circuits as well as industrial
circuits have very large percentages of the faults in logic
that only drives a single output. In Table 2 we show
information about the faults with z -sets of size one in the
combinational logic of ISCAS-89 and ITC-99 benchmark
circuits that have more than 1500 faults (more than 1M
fault pairs). We also show the same information for indus-
trial circuits (named a 1, a 2, . . . , a 8). After the circuit
name we show the total number of faults in the circuit and
the number of different z -sets that these faults define. We
then show the number of faults that have z -sets of size
one, and the percentage of such faults out of the total
number of faults.



Table 2: Faults in z -sets of size one
(a) Benchmark circuits

circuit flts zsets z=1 %z=1� �������������������������������������������������������������������������
s1423 1515 181 809 53.40
s5378 4603 662 1279 27.79
s9234 6927 567 4066 58.70
s13207 9815 1424 5778 58.87
s15850 11725 1477 6453 55.04
s35932 39094 4112 16516 42.25
s38417 31180 3505 14861 47.66� �������������������������������������������������������������������������
b14 9981 738 5595 56.06
b20 22579 1508 10486 46.44
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(b) Industrial circuits

circuit flts zsets z=1 %z=1�����������������������������������������������������������������������������
a1 37209 7568 20411 54.85
a2 46111 9701 31323 67.92
a3 13687 2084 7874 57.52
a4 30887 6403 19046 61.66
a5 293816 58659 214464 72.99
a6 236106 32564 109329 46.31
a7 144490 27148 84947 58.79
a8 171034 37511 121224 70.87
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Table 2 demonstrates that large percentages of the
faults in benchmark circuits and in industrial circuits drive
single outputs (or have z -sets of size one). We continue to
discuss the importance of this property for diagnosis after
introducing another property in the next section.

3. Z -detection and related properties
To introduce the second property, consider a fault f i with
z -set Z (f i ). Suppose that there is a test t for f i , which
propagates the effects of f i to all the outputs in Z (f i ). If
Z (f i ) is of size one, then every test that detects f i must
satisfy this property. In general, this property is important
for diagnosis even if | Z (f i ) | > 1 due to the following
reason.

Let f i and f j be two faults such that Z (f i ) ⊆/ Z (f j ).
Suppose that a test t detects f i by propagating the effects
of f i to all the outputs in Z (f i ). Since Z (f i ) ⊆/ Z (f j ),
even if t detects f j , it cannot propagate the effects of f j

to all the outputs in Z (f i ). Consequently, t distinguishes
f i from f j at least on one of the outputs in Z (f i )−Z (f j ).

To demonstrate this point, we consider two faults of
MCNC finite-state machine benchmark dk 27. The circuit
has four inputs and five outputs. We consider fault f 8
with Z (f 8) = 01100 and fault f 11 with Z (f 11) = 00101.
Under the test 0001, the fault free output vector is 00000.
For f 8 we obtain the output vector 01100. Regardless of
the output vector of f 11, this test is guaranteed to distin-
guish f 8 from f 11 since f 8 is propagated to output z 1,
which f 11 does not drive.

Due to this property, we are interested in the
number of faults with tests that propagate fault effects to
all the outputs in their z -sets. If a fault has more than one

test that detects it, we are interested in any one of these
tests propagating fault effects to all the outputs in the z -set
of the fault. We refer to the detection of a fault on all the
outputs in its z -set as z −detection . We will generalize
this property later.

To find the faults that are z -detected by a given test
set T , we simulate T , dropping a fault f from further
simulation only if it is z -detected by a test in T . As long
as the fault is not z -detected, we continue to simulate it
even if it is already detected.

We report on the numbers of z -detected faults in the
combinational logic of the same ISCAS-89 and ITC-99
benchmark circuits considered in Table 2 under three
types of test sets (when they are available): (1) com-
pacted conventional fault detection test sets; (2) com-
pacted 10-detection test sets; and (3) uncompacted con-
ventional fault detection test sets.

The results for conventional test sets are shown in
Table 3 (we comment on the results for 10-detection test
sets later but we do not present them for space considera-
tions). In each part of Table 3, after the circuit name we
show the number of faults, and the number of faults
detected by each one of the test sets considered. We then
show the number of z -detected faults (i.e., the number of
faults detected on all the outputs in their z -sets by at least
one test), and the percentage of z -detected faults out of all
the detected faults. Under columns ndet of Table 3 we
show the following measure of fault simulation effort for
finding z -detected faults.

Table 3: z -detections
(a) Compacted test sets for benchmark circuits

circuit flts det zdet %zdet ndet�����������������������������������������������������������������������������������������
s1423 1515 1501 888 59.16 1.16
s5378 4603 4563 2811 61.60 2.00
s9234 6927 6475 4288 66.22 2.29
s13207 9815 9664 6599 68.28 2.83
s15850 11725 11336 7802 68.82 1.71
s35932 39094 35110 18557 52.85 1.20
s38417 31180 31015 19798 63.83 1.96�����������������������������������������������������������������������������������������
b14 9981 8213 4284 52.16 1.15
b20 22579 19721 8354 42.36 1.37
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(b) Uncompacted test sets for benchmark circuits

circuit flts det zdet %zdet ndet�����������������������������������������������������������������������������������������
s1423 1515 1501 916 61.03 1.72
s5378 4603 4563 2780 60.92 4.70
s9234 6927 6475 4337 66.98 6.16
s13207 9815 9664 6546 67.74 5.32
s15850 11725 11336 7840 69.16 4.34
s35932 - - - - -
s38417 31180 31015 21493 69.30 7.06�����������������������������������������������������������������������������������������
b14 9981 8213 4287 52.20 1.19
b20 22579 19721 8365 42.42 1.59
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During the fault simulation process, we count for
every fault f the number of times it is detected by the test



set T until it is dropped, or until the fault simulation pro-
cess ends. We denote this number by n det(f ). For exam-
ple, suppose that a fault f is simulated under a test set
T = {t 0,t 1, . . . ,t 5}. Suppose that f is not detected by t 0,
f is detected by t 1, f is detected by t 2, f is not detected
by t 3, and f is z -detected by t 4. Since the last detection is
a z -detection it causes f to be dropped. In this case,
n det(f ) = 3 due to the detection of f by t 1, t 2 and t 4 before
it is dropped.

Considering all the z -detected faults, we show in
columns ndet of Table 3 the average value of n det(f ).
This number has the following interpretation. The fault
simulation process to determine z -detections is similar to
an n -detection fault simulation process, where a fault is
dropped only after it is detected n times. In our case, n
varies from one fault to the next, with an average value as
reported in columns ndet of Table 3.

It can be seen that fault simulation to determine z -
detections drops a fault after it is detected an average of
approximately two to three times for a conventional com-
pacted test set. Larger numbers are obtained for uncom-
pacted and for 10-detection test sets, since the faults are
detected larger numbers of times by these test sets.

More important, it can be seen from Table 3 that
there are large percentages of faults in benchmark circuits
that are z -detected. This is in spite of the fact that the test
sets we consider are not designed to result in z -detections.
Some of these z -detections are due to faults with z -sets of
size one, where every detection is a z -detection; however,
other faults are z -detected as well. Considering, for exam-
ple, s1423, Table 2 shows that 53.40% of the faults have
z -sets of size one. Considering only detectable faults, the
percentage of faults with z -sets of size one is similar,
53.30%. Table 3 shows that a larger percentage of the
faults, 59.16%, are z -detected under a compacted conven-
tional test set. When a compacted 10-detection test set is
used, the percentage of z -detections is even higher,
63.56% for s1423. Uncompacted test sets result in
numbers of z -detected faults that are very close to those
of the compacted test sets.

We used specific test sets to obtain the data in Table
3. Therefore, if a fault is not z -detected, we have no infor-
mation as to whether the fault can be z -detected by any
test, or it is z −undetectable . To collect information about
the percentages of z -detectable faults, we considered the
combinational logic of MCNC finite-state machine bench-
marks, that have small numbers of inputs, under exhaus-
tive test sets. We found percentages of z -detected faults
that are similar to the ones in Table 3. We conclude that
z -detection occurs accidentally for large percentages of
the z -detectable faults.

It is possible to generalize the concept of z -
detection as follows. We say that a fault f is z -detected

by a test t that propagates the effects of f to all the out-
puts in its z -set. Suppose that instead of t , we have tests
t 1,t 2, . . . ,tm , such that ti propagates the effects of f to a
set of outputs Z (f ,ti ). Suppose in addition that
∪i =1

m Z (f ,ti ) = Z (f ). We say that f is ∪z −detected by
the test set in this case. The notion of ∪z -detection can
replace the notion of z -detection in diagnosis as follows.

Let f i and f j be two faults such that Z (f i ) ⊆/ Z (f j ).
Suppose that f is ∪z -detected by the test set T . Since
Z (f i ) ⊆/ Z (f j ), we have at least one test t ∈ T that
detects f i on an output which is not in Z (f j ). This test
cannot detect f j on the same output. Consequently, t dis-
tinguishes f i from f j on an output in Z (f i )−Z (f j ).

Fault simulation to collect information about ∪z -
detected faults keeps track of the z -set for every fault f .
Every time f is detected, we mark the outputs in its z -set
on which f is detected. A fault can be dropped once all
the outputs in its z -set are marked. In this case, the fault is
∪z -detected.

We show information on the numbers of ∪z -
detected faults in benchmark circuits in Table 4. We only
consider compact conventional test sets in this case.

Table 4: ∪z -detections

circuit flts det zdet %zdet ndet�����������������������������������������������������������������������������������������
s1423 1515 1501 939 62.56 1.30
s5378 4603 4563 3180 69.69 3.09
s9234 6927 6475 4786 73.92 3.39
s13207 9815 9664 6984 72.27 4.85
s15850 11725 11336 8567 75.57 2.76
s35932 39094 35110 25348 72.20 1.51
s38417 31180 31015 22140 71.38 2.42�����������������������������������������������������������������������������������������
b14 9981 8213 4715 57.41 2.40
b20 22579 19721 9914 50.27 3.29
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Table 4 demonstrates that the numbers of ∪z -
detected faults in benchmark circuits are larger than the
numbers of z -detected faults. This will translate into
increases in the numbers of fault pairs that are guaranteed
to be distinguished by a fault detection test set.

4. Using z -sets and z -detections
In this section we show how the properties related to z -
sets and z -detections can be used to identify fault pairs
that are guaranteed to be distinguished by a given fault
detection test set. Such pairs do not need to be considered
during diagnostic fault simulation or test generation once
a fault detection test set is available. We describe efficient
procedures for counting (or enumerating) the fault pairs
that remain. We demonstrate that relatively small percen-
tages of fault pairs remain after z -sets and z -detections
are taken into account. The remaining fault pairs can be
considered under implicit methods [1]-[10], or explicitly.

We first use only z -sets, which can be derived
based on structural information. We then use z -detections,
which require additional fault simulation. In all the cases,



we consider only pairs of detectable faults.
When considering only z -sets, we distinguish

between pairs of z -sets Zi and Zj that have at least one
output in common, and pairs of z -sets that are disjoint
(Zi ∩ Zj = φ). If Zi ∩ Zj = φ, then for every pair of faults
f i ∈ F (Zi ) and f j ∈ F (Zj ), a test that detects any one of
the faults will distinguish them. For example, we consider
faults f 17 ∈ F (110) and f 33 ∈ F (001) of train 4. If a
test t detects f 17, then either z 0 or z 1 assume faulty values
in the presence of f 17. Since f 33 cannot affect these out-
puts, the faults are distinguished by the test. Similarly, if
a test t detects f 33, then z 2 assumes a faulty value in the
presence of f 33. Since f 17 cannot affect z 2, the faults are
distinguished by the test.

Thus, when Zi ∩ Zj = φ, fault pairs f i ∈ F (Zi ) and
f j ∈ F (Zj ) are guaranteed to be distinguished by a fault
detection test set. In contrast, if Zi ∩ Zj ≠ φ, the faults may
be detected on the same outputs, and it is necessary to
consider the faults further. As a special case, if
Zi ∩ Zj = φ and | Zi | = | Zj | = 1, the fault pairs over
F (Zi ) and F (Zj ) are guaranteed to be distinguished by
tests that detect them. We discussed this special case ear-
lier and demonstrated that large numbers of faults have
z -sets of size one in benchmark circuits as well as indus-
trial circuits.

Based on the discussion above, we use the follow-
ing procedure to count the number of fault pairs that
remain to be considered after z -sets are taken into account
(i.e., the number of fault pairs that are not guaranteed to
be distinguished by a fault detection test set). We denote
this number by NP 1. A similar procedure can be used to
enumerate the fault pairs if needed.
(1) Set NP 1 = 0.
(2) For every pair of z -sets Zi and Zj (including the

case where Zi = Zj ), if Zi ∩ Zj ≠ φ:
If i = j , set NP 1 = NP 1+ | F (Zi ) | .[ | F (Zi ) | −1]/2.
Else, set NP 1 = NP 1+ | F (Zi ) | . | F (Zj ) | .

Considering train 4 with the data shown in Table 1,
for i = j = 0, Z 0 contributes 9(9-1)/2 = 36 fault pairs to
NP 1; for i = 0 and j = 1, Z 0 and Z 1 contribute 9.15 = 135
fault pairs to NP 1; and so on. The total number of fault
pairs obtained is NP 1 = 503, compared to a total of 561
fault pairs.

To use z -detections, we consider a given test set T .
Based on T we partition the set of faults F (Zi ) associated
with z -set Zi into two subsets. The subset A (Zi ) ⊆ F (Zi )
contains the faults that are z -detected by T . The subset
B (Zi ) ⊆ F (Zi ) contains the faults that are not z -detected
by T (however, they are detected by T ). Considering two
z -sets Zi and Zj , we have the following cases.
Case 1: Zi = Zj . In this case, the faults in A (Zi ) are
guaranteed to be distinguished from the faults in B (Zi ) by
the tests that z -detect the faults in A (Zi ). For example,

consider faults f a ∈ A (Zi ) and f b ∈ B (Zi ) under the
test t that z -detects f a . Since f b is not z -detected, there
is an output z ∈ Zi such that f a is detected on this output
but f b is not. Thus, t distinguishes f a from f b . This
leaves all the fault pairs over A (Zi ) and all the fault pairs
over B (Zi ) that need to be considered.
Case 2: Zi ⊂/ Zj but Zj ⊂ Zi . In this case, the faults in
A (Zi ) are guaranteed to be distinguished from the faults in
F (Zj ) by the tests that z -detect the faults in A (Zi ). This
leaves the fault pairs where f i ∈ B (Zi ) and f j ∈ F (Zj )
to be considered.
Case 3: Zi ⊂ Zj but Zj ⊂/ Zi . In this case, the faults in
A (Zj ) are guaranteed to be distinguished from the faults in
F (Zi ) by the tests that detect the faults in A (Zj ). This
leaves the fault pairs where f i ∈ F (Zi ) and f j ∈ B (Zj )
to be considered.
Case 4: Zi ⊂/ Zj and Zj ⊂/ Zi but Zi ∩ Zj ≠ φ. In this case,
the faults in A (Zi ) are guaranteed to be distinguished from
the faults in F (Zj ) by the tests that detect the faults in
A (Zi ). In addition, the faults in A (Zj ) are guaranteed to be
distinguished from the faults in F (Zi ) by the tests that
detect the faults in A (Zj ). This leaves the fault pairs
where f i ∈ B (Zi ) and f j ∈ B (Zj ) to be considered.
Case 5: Zi ∩ Zj = φ. In this case, the faults in F (Zi ) are
guaranteed to be distinguished from the faults in F (Zj ) by
the tests that detect either one of the faults.

Based on the discussion above, we use the follow-
ing procedure to count the number of fault pairs that
remain to be considered after z -sets and z -detections are
taken into account. We denote this number by NP 2. A
similar procedure can be used to enumerate the fault pairs.
(1) Set NP 2 = 0.
(2) For every pair of z -sets Zi and Zj (including the

case where Zi = Zj ):
(a) If Zi = Zj , set

NP 2 = NP 2 + | A (Zi ) | .[ | A (Zi ) | −1]/2 +
| B (Zi ) | .[ | B (Zi ) | −1]/2.

(b) If Zi ⊂/ Zj but Zj ⊂ Zi , set
NP 2 = NP 2+ | B (Zi ) | . | F (Zj ) | .

(c) If Zi ⊂ Zj but Zj ⊂/ Zi , set
NP 2 = NP 2+ | F (Zi ) | . | B (Zj ) | .

(d) Zi ⊂/ Zj and Zj ⊂/ Zi but Zi ∩ Zj ≠ φ, set
NP 2 = NP 2+ | B (Zi ) | . | B (Zj ) | .

Considering train 4 with the data shown in Table 1,
the last column of Table 1 shows the number of z -
detected faults for every z -set. For i = j = 0, Z 0 contri-
butes 3(3-1)/2+6(6-1)/2 = 18 fault pairs to NP 2; for i = 0
and j = 1, Z 0 and Z 1 contribute (9-3)15 = 90 fault pairs to
NP 2; and so on. The total number of fault pairs obtained
is NP 2 = 308, compared to a total of 561 fault pairs for this
circuit, and compared to NP 1 = 503 obtained earlier.



We applied the procedures above to count the
numbers of fault pairs that remain to be considered after
using z -sets, and after using z -detections. The results are
reported in Table 5 for the same circuits and test sets con-
sidered in Tables 2 and 3. After the circuit name we show
the total number of fault pairs defined over the detectable
circuit faults. Under column zsets we show the value of
NP 1 computed using only z -sets, and under column
%zsets we show the percentage of NP 1 out of the total
number of fault pairs. Under column zdet we show the
value of NP 2 computed using both z -sets and z -detections,
and under column %zdet we show the percentage of NP 2
out of the total number of fault pairs. For industrial cir-
cuits we only report the results related to NP 1, which is
based on z -sets.

Table 5: Indistinguished fault pairs
(a) Compacted test sets for benchmark circuits

circuit total zsets %zsets zdet %zdet�����������������������������������������������������������������������������������������������������������������
s1423 1125750 369266 32.80 364347 32.36
s5378 10408203 1147716 11.03 779089 7.49
s9234 20959575 3000343 14.31 2662558 12.70
s13207 46691616 3446376 7.38 3195550 6.84
s15850 64246780 6437785 10.02 6095945 9.49
s35932 616338495 2996733 0.49 2519720 0.41
s38417 480949605 9709275 2.02 9098292 1.89�����������������������������������������������������������������������������������������������������������������
b14 33722578 11490378 34.07 11329572 33.60
b20 194449060 49865503 25.64 49575658 25.50
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(b) Uncompacted test sets for benchmark circuits
circuit total zdet %zdet� �������������������������������������������������������������������������
s1423 1125750 360898 32.06
s5378 10408203 787849 7.57
s9234 20959575 2700232 12.88
s13207 46691616 3154719 6.76
s15850 64246780 6127417 9.54
s35932 - - -
s38417 480949605 8909970 1.85� �������������������������������������������������������������������������
b14 33722578 11328839 33.59
b20 194449060 49573887 25.49
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(c) Industrial circuits
circuit total zsets %zsets�����������������������������������������������������������������������������
a1 46200078 5751480 12.45
a2 65671530 2842470 4.33
a3 15210370 2596090 17.07
a4 135984786 2441340 1.80
a5 19556980878 36326700 0.19
a6 4111023150 48578100 1.18
a7 8620173253 19116100 0.22
a8 10763892726 11070100 0.10
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From Table 5, only small percentages of the fault
pairs are not guaranteed to be distinguished by fault detec-
tion test sets. For example, for s38417, only 1.89% of the
fault pairs are left to be distinguished when a compacted
fault detection test set is available. Even smaller percen-
tages are obtained for industrial circuits, even though only
z -set information is used.

5. Concluding remarks
We defined the concept of a z -set, which is the set of out-
puts driven by a line or a fault site in a combinational cir-
cuit (or the combinational logic of a scan circuit). We
defined the concept of z -detection, where a fault is
detected on all the outputs in its z -set by at least one test.
Based on these concepts we defined circuit characteristics,
which ensure that a fault pair will be distinguished by a
fault detection test set. For example, if two faults have
disjoint z -sets, they are guaranteed to be distinguished by
a test set that detects them. In addition, if the z -set of a z -
detected fault is not contained in the z -set of another fault,
then the two faults are guaranteed to be distinguished by a
fault detection test set. We demonstrated that benchmark
circuits as well as industrial circuits have these charac-
teristics to a larger extent than may be expected. As a
result, the percentages of fault pairs that are not dis-
tinguished by a given fault detection test set in benchmark
circuits were shown to be small. These fault pairs can be
computed efficiently by using z -sets and z -detections.
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