
Using Counter Example Guided Abstraction Refinement to
Find Complex Bugs

Per Bjesse, James Kukula
Synopsys Inc.

{bjesse,kukula}@synopsys.com

ABSTRACT
In this paper, we present a method for finding failure traces
for safety properties that are out of reach for traditional
approaches to counter example generation. We do this by
guiding Bounded Model Checking (BMC) with information
gathered from counter example guided abstraction refine-
ment. Unlike previously described approaches based on re-
constructing abstract counter examples on the concrete ma-
chines, we do not limit ourselves to search for failures of the
same length as the current abstract counterexample. We
also describe a combination of previously known methods
for choosing registers to include in the abstraction that we
have found works very well together with our technique for
finding failures. Our experimental results show that the re-
sulting method can find counter examples that are out of
range for both standard BMC and two previously published
approaches to abstraction-guided BMC.

1. INTRODUCTION
This paper presents a method for detecting very hard

to find safety property failures on large systems. Our aim
is to leverage information generated during counter exam-
ple guided abstraction refinement [10, 4] in Bounded Model
Checking (BMC) [1]. Our key idea is to generate stepping
stones from the abstract system—sets of states that we can
guarantee any counterexample to a property will need to
traverse in a particular order. When the capacity limits of
our search engine makes it too hard to find a path directly
from initial states to the failing states, we use the stepping
stones to divide the search into a number of shorter searches.
Unlike previous approaches, we can use a given abstraction
to find counterexamples that are many times longer than
the current failure length on the abstraction. We get this
feature at the price of not being able to guarantee minimal
failures.

The core idea for finding counterexamples that we present
can be used together with any of the abstraction refinement
schemes that have been presented in the literature. How-
ever, we have found that the particular abstractions that
are used to guide the search for counterexamples are very
important, and can mean the difference between whether a
given failure can be found or not. We therefore also present
a blend of different techniques for choosing how to extend
the current abstraction that we have found works quite well
with our method.

Our focus in this paper is on finding bugs that are out
of range of any of the battery of techniques that are cur-
rently at our disposal. However, as a side effect of the work
we present, we have arrived at a system for counterexample
guided abstraction refinement that is complete in the sense

that it can outperform exact approaches to property ver-
ification both for proving systems correct, and for finding
complex bugs.

We demonstrate the bug finding capabilities of our sys-
tem by presenting experimental results from using our tool
to find very complex failures of real properties on five indus-
trial circuits. We compare our approach to pure bounded
model checking, and to two previous approaches that use
abstraction data to guide the failure search [12, 8]. Our re-
sults show that our tool is significantly more robust than the
other methods, and that it can be used to find failures that
previously has been out of range for any methods known to
us.

2. RELATED WORK
The core search technology that we are using builds on the

work on bounded model checking [1]. BMC can be a very
efficient method for generating counterexamples, but its ca-
pacity is limited. As a consequence, a number of attempts to
guide BMC using abstractions of the system under analysis
have recently appeared in the literature.

In [2], Cabodi and coworkers present an idea for guiding
BMC using approximate BDD-frontiers. Here, the system
under analysis is the concrete system—the approximation
comes from simplifying BDDs during the image and preim-
age operations. The resulting frontiers are then used as
constraints for the BMC engine during the search. As a
result of the constrained search space, up to one order of
magnitude speedups are demonstrated on four ISCAS cir-
cuits with automatically generated properties. A significant
difference between our and Cabodi and coworkers’s method
is that our abstraction comes from cutting out a larger and
larger part of the design from its environment. In contrast,
Cabodi and coworkers dynamically approximate BDDs. We
(as do the authors of [12]) believe that structural abstrac-
tion provides a more predictable method for controlling the
tradeoff between size and expressivity of abstractions.

The DIVER framework introduced in [8] guides BMC us-
ing a similar approach to ours. As opposed to the work
of Cabodi and coworkers, the abstraction used is structural
pruning on the concrete system—images and preimages are
done exactly. Each BMC check searches for counterexamples
of the same length as the current abstract counterexample,
and restrict the search to only traverse states in the abstract
forward and backward shells.

The most closely related method to ours is the counterex-
ample generation used in RFN [12]. Just as in our case, and
in the case of DIVER, this approach is based on abstraction
refinement using structural pruning. Given an abstract fail-
ure, ATPG-based BMC is used to attempt to transfer the
trace to a concrete failure by searching for a concrete state

1530-1591/04 $20.00 (c) 2004 IEEE

sequence of the same length that visits states corresponding
to the abstract states in order.

A key difference between the approaches used in the DIVER
and RFN frameworks and our proposed method is that the
previous methods only look for counterexamples that have
the same length as the current counterexample length on
the abstract system. In contrast, we can generate failures
that are many times longer using the same abstractions. We
will show that this makes our approach very competitive on
industrial circuits.

There are other techniques that attempts to find long fail-
ures for realistic systems. Many of these techniques are
based on augmenting simulation with formal searches, as
done in the KETCHUM and SIVA [9, 5] systems. As we will
discuss in Section 4, simulation plays a part in our approach,
but it is minor and could be omitted. In a spectrum from
completely formal to classically semi-formal our method and
these approaches thus represent points at different ends of
the spectrum. However, it is interesting to note that our
analysis can be cast as a particular automatic way of gener-
ating lighthouses in the sense of [5], which we attempt to link
using formal searches rather than augmented simulation.

3. ABSTRACTION REFINEMENT
We will now introduce the traditional framework for ab-

straction refinement based on counter example guidance.
We follow the presentation in [12].

Let us define a structural abstraction A of a given circuit
C as a circuit that can be derived from C by (1) removing a
number of registers, (2) substituting free inputs for the re-
moved register outputs, and (3) removing A’s unconnected
logic. The observation that structural abstraction refine-
ment makes use of is that if we can prove a safety property
for A, then it necessarily holds for C. The reason for this
is that since we have proved the safety property for A with
free inputs substituted for severed connections, the property
holds in any environment of A—including A’s environment
in C.

Structural counter example guided abstraction refinement
proceeds as follows:

1. Start with an structural abstraction A containing a
small number of registers.

2. Attempt to prove the safety property for A. If we
succeed, then the concrete system is correct, and we
are done.

3. If we fail, check whether the current counterexample
on the abstraction can be transferred to a counter
example on the real system. If we can transfer the
counter example to the concrete system, then we are
done.

4. Otherwise we analyze the failure behavior of the struc-
tural abstraction, and attempt to guess good registers
to add to the next abstraction. Goto 2.

In every iteration in the abstraction refinement algorithm,
a proof of the property is attempted on the current abstrac-
tion. Note that in this step of the process, we are free to
use any techniques that we want to prove the system cor-
rect. In this paper, we will be using BDD-based fixpoint
calculations.

If the attempted proof fails, then we check whether it is
possible to use the abstraction information to generate a fail-
ure on the concrete system. We present the new technique
that we use to construct the concrete counterexamples in
Section 4. Unlike previous approaches to generating failures
in abstraction refinement, this technique does not attempt
to transfer an abstract counterexample to the concrete ma-
chine. Instead it analyses the state space of the abstract
machine, and uses it to generate a concrete trace directly.

Once we know that the current abstraction is insufficient
both for proving the system correct and as an aid for gener-
ating a real counterexample, we compute an augmentation
of the model that we believe will be a good refinement. In
counterexample guided abstraction refinement, the idea is
to try use the information in the failure on the abstract sys-
tem to guide which registers in the design are added next.
The strength of the resulting method will largely depend on
the robustness of this heuristic. We present our choice for
an analysis in Section 5.

4. COUNTEREXAMPLE GENERATION
We will now describe our approach to abstraction guided

counterexample generation by (1) introducing the notion of
backshell lighthouses, by (2) presenting the repeat exten-
der algorithm that attempt to navigate from a given state
towards states that come closer to the goal, and by (3) pre-
senting our main algorithm for using a given abstraction to
find a concrete counterexample.

4.1 Backshell Lighthouses
Given a current abstraction that is insufficient to prove the

property at hand correct, we compute a number of backshell
lighthouses as follows.

We first compute the set of reachable states on the ab-
stract model, and then generate sufficiently many reverse
images (backshells) that every state that can reach a goal
state on the abstract system is in some backshell. We desig-
nate backshell number zero to be the set of goal states and
backshell number N to be the most distant reverse image.
Next, we intersect each backshell with the reachable states
of the abstraction to form backshell lighthouses B0 . . . BN .
The concrete states in backshell lighthouse Bi+1 are thus po-
tentially reachable states that can reach one or more states
in backshell lighthouse i in one abstract transition. These
shells will be our stepping stones.

Given a state and a set of backshell lighthouses, we de-
fine the state depth to be the index of the lowest numbered
backshell it is in. If a state is in no backshell, we assign
it depth ∞. For the remainder of this presentation we will
assume that our system has a single initial state. We define
the start depth of a system with respect to an abstraction
as the depth of the initial state. Note that the start depth
will be finite regardless of whether the goal is reachable on
the concrete system or not since N is larger than the cur-
rent abstract failure length. Also note that all goal states
by construction have depth 0.

It is easy to see that the depth of a given state is an in-
dicator of its minimum distance to the goal states on the
concrete machine: If a state has depth k then the shortest
trace (if one exists) on the concrete machine that can reach
the goal has length lower bounded by k. However, it is im-
portant to realize that due to the over-approximative nature
of the backshells, the depth of a state may be an inaccurate

measure for how far it is from the goal states in reality—a
given state with depth d may be a deadend state in the sense
that (1) there may not be any sequences at all that lead to
states with lower depth, or (2) the necessary sequence length
may exceed our search capacity on the concrete machine. A
heuristic for searching for counterexamples guided by back-
shells must therefore take steps to not get locked into states
from which no progression can be made.

We designate states that get assigned finite depth to be
states with measurable depth. A nonmeasurable state is
thus a state that provably can not reach the goal states on
the concrete system.

The state depths in a given trace segment on the concrete
system can only vary in a very simple way: If state n has
measurable depth k+1, then if state n+1 is measurable, its
depth is lower bounded by k. In other words, a legal transi-
tion in the concrete system that starts in a measurable state
may either correspond to a one shell progression towards the
goal, or it may correspond to one or more steps backwards.
However, the transition can not correspond to a jump from
one shell to a shell closer to the goal states if they are not
in succession. This gives rise to the following theorem:

Theorem 1. Assume that state s has measurable depth
d > 0. If there exists a trace from s that can reach a failure
state, then this trace will have to visit a state at depth d− 1
before reaching the failure state. In fact, it will have to go
through a state at depth d − 1 before reaching any state of
depth d− 2 or lower.

Proof. Follows directly from the definition of measur-
able depth.

The lighthouses can thus be seen as stepping stones that
we will need to visit on the path to the goal in a particular
order if we can reach the goal at all. This insight into the
depths of successors of measurable states suggests a simple
heuristic for using the backshells to generate counterexample
traces: Assuming that we are currently in a state at depth
i, we know that any sequence reaching the goal state, must
eventually transition through shell i − 1, i − 2, . . . before
reaching the final goal at depth 0. It thus makes sense to
search for continuations of the trace that end up in these
shells in sequence. Note however, that the state progression
forwards towards lower numbered shells may be interrupted
at any time by a jump backwards by one or more steps.

4.2 Repeat Extender Algorithm
We will now put our insight into the order stepping stones

have to be visited to use. Assume that we have gener-
ated a trace to a state CurrState with measurable depth
CurrDepth > 0. The following is a simple approach to gen-
erating an extension of this path that may come closer to
the goal in the sense that it has a lower depth:

1. Len = 1, GoalDepth = CurrDepth− 1, CurrExt = []

2. Given a resource bound for the BMC engine, try to
find a length Len trace from CurrState to some state
at depth GoalDepth.

3. If such a trace exists, then this is the new CurrExt. If
GoalDepth = 0 we are done, otherwise increment Len

and decrement GoalDepth. Goto 2.

4. If no such trace exists, increment Len and goto 2.

5. If we ran out of resources, give up.

When this trace extension algorithm exits with a nonempty
trace, we have either hit the final goal shell, or we have a
found a path into an intermediate shell with a lower depth.

The question is now how to continue the search if the
trace extension algorithm finished with CurrExt containing
a path to a shell of depth > 0. In practice this will be he
vast majority of cases, compared to how often we find a path
directly to the goal, as we will need to work around a limited
search capacity for realistic examples. Our solution is to take
the first transition in the CurrExt sequence, delete the first
state in CurrExt, decrement Len, and update CurrState and
CurrDepth. We then call the trace extender again, which
hopefully now will be able to go deeper as we have taken a
transition that have moved us closer to the lowest numbered
shell we have encountered. We iterate this operation until
we either (1) hit the goal states, or (2) the trace extension
procedure returns an empty trace. We will refer to this as
the repeat extender algorithm.

7 6 5 4 3

Figure 1: Repeat extension example.

As an example of how the repeat extension algorithm
works, consider Figure 1, where we are attempting to find a
path forwards from the initial state in shell 7. The first in-
vocation of the trace extension algorithm runs out of steam
after having found a length 5 extension that leads to shell 4.
The repeat extender then moves to the state in shell 6, and
attempts to reach shell 3 again using a length 5 extension.
This results in the discovery of a new extension that visits
a different state in shell 4 before arriving in shell 3.

4.3 Counterexample Generation Algorithm
We now have the building blocks necessary for a coun-

terexample generation algorithm.
The simplest possible way to make use of the repeat exten-

der algorithm is to generate the stepping stone lighthouses
corresponding to our current abstraction, and then call the
repeat extender with an empty trace starting from the ini-
tial state at the starting depth. If we can not reach the goal,
then we give up and attempt to refine our abstraction.

However, as we will be mixing proof attempts on the ab-
stract machine with searches for counterexamples, we want
to balance the level of effort we put into each. When the
size of the abstraction grows larger, we will be spending
significant time on proof attempts. It would therefore be
beneficial to be able to extend the search using some notion
of restarting when the repeat extender has advanced when
it terminates, but can not make further progress.

One possibility for a restart heuristic would be to return
to the initial state and force the search engine to return a
different first trace extension path than the one we explored
the first time. We choose the simpler solution of taking a
number of random steps from the current state in order to
move in an arbitrary direction and then restart the trace
extension process from this new state. If the random steps

lands us in a state that does not have measurable depth, then
we abort this iteration’s counterexample search altogether.
We repeat this process until we reach a resource threshold or
abort. Our current heuristic for the number of random steps
is to take as many steps as the length of the last CurrExt

that was consumed by the repeat extender.
Note that as all our trace construction is done on the

concrete system, every failure trace that our algorithm gen-
erates to the goal states will be a true counterexample.

5. ROBUST REFINEMENT GENERATION
There is a plethora of methods for analyzing counterex-

amples from the abstract system and extracting candidates
for registers to add in the next refinement iteration. We will
now present a blend of three different techniques that has
been instrumental in arriving at our current counterexample
search capacity.

We first present the three individual techniques that we
are making use of, and after this we present our combination
method. The three individual methods have all appeared
previously in the literature. Our combination method is
novel.

5.1 Multiple Counterexample Analysis
Assume the shortest counterexample on a given abstract

model has length l, and that we are using BDD fixpoint
computations to find it. Let Si for 0 ≤ i < l denote the
set of states that can occur at time i in some length l ab-
stract counterexample. It is observed in [6] that it is straight
forward to modify the standard algorithms for generating
counterexamples to return BDDs characterizing S0 . . . Sl−1.
Given these BDDs, the idea in [6] is to analyze each Si to
figure out whether an excluded register input is

• Essential, in the sense that the input has the same
value in every state in Si.

• Irrelevant, in the sense that if there exists a state in
Si where the input has value v, then Si also contains
the state that differs only in that the input has the
opposite value.

• Regular, in the sense that the input is not irrelevant,
but it is not essential.

The multiple counterexample (MCE) analysis thus studies
the impact of individual registers not only in a particular
counterexample of length l, but in every such counterexam-
ple.

Given the resulting classifications of the excluded regis-
ters at time i, we assign higher scores to essential variables
and lower score for irrelevant variables. The overall MCE
score for an excluded register is the sum of time instance
scores. The intuition is that if a variable is essential one or
more times, then it is likely that the addition of this register
to the abstraction will remove many counterexamples. Con-
versely, if it almost always is irrelevant then it is unlikely
that the addition of this register will affect the current set
of counterexamples.

5.2 Conflict Analysis
Conflict analysis [12] was one of the first described ap-

proaches for using a counterexample to rank register candi-
dates for possible abstraction inclusion.

Given a counterexample on the abstract machine that is
spurious in the sense that it is not transferable to a con-
crete counterexample, the conflict analysis separates out the
stimuli on real inputs in the concrete system from the stim-
uli on inputs corresponding to excluded registers. As the
counterexample is spurious, it is likely that the value assign-
ments appearing on the one or more inputs corresponding
to excluded registers are inconsistent with what the regis-
ters would contain in the same situation. Excluded registers
with a lot of conflicts are thus good candidates for inclusion
in the abstraction as they probably will remove the coun-
terexample at hand.

The conflict analysis in [12] calculates conflicts using three
valued simulation. The concrete machine is first initialized
with the initial state. The concrete machine is then repeat-
edly driven one step with an input vector that is all X except
for whatever values were extracted for the real inputs at this
time instance. The resulting state is compared with what
is specified by the counterexample input values correspond-
ing to excluded registers. If the values differ, then this is
regarded as a conflict for that register at the current time
instance, and the state contents is updated with the value
from the counterexample. This process is repeated until the
whole counterexample has been processed. The overall score
for a variable is equal to the number of conflicts the variable
had during the whole simulation run.

5.3 SAT-based Register Scoring
When a standard DPLL-based SAT-solver detects that a

formula is unsatisfiable, it is possible to reconstruct an ex-
plicit proof of this fact if we have taken care to save some
data during the execution [13, 7]. The idea in SAT-based
register scoring [3] is to analyze appropriate proof objects
and use this data to guide the refinement process. In the
original presentation of SAT-based register scoring, the fol-
lowing idea is put forth for finding a upper bound on the
subset of excluded registers that can remove a spurious ab-
stract counterexample.

Let us define two traces from different machines as agree-
ing, if they have the same length, and the state values for
all registers that are present in both machines always have
the same value. Now, as our current abstract counterexam-
ple is spurious, there exists a shortest prefix of this trace
for which there exists no agreeing concrete trace. If we con-
struct a formula characterizing all concrete traces agreeing
with the shortest prefix, we have thus constructed a formula
without models. If the last time instance of a register does
not appear in the proof of unsatisfiability for the charac-
terizing formula, then the addition of this register will not
affect the fact that the same prefix will be nontransferrable.
The set of excluded registers whose last time instance ap-
pear in the proof are thus an upper approximation of the set
of registers that we need to consider to add to the abstract
model in order to remove the spurious counterexample.

5.4 Our Refinement Strategy
Our refinement strategy is a combination of the methods

in Sections 5.1, 5.2, and 5.3. In the case of SAT-based scor-
ing, we are applying our own variation of the original idea.

Our refinement strategy first compute the conflict score
and MCE scores for all registers. Essential, regular, and
irrelevant registers are assigned score 100, 1, and 0 respec-
tively. We then form an overall register ranking by a lexi-

cographical ordering that uses a higher priority for the con-
flict score. Following [12], we next greedily attempt to find
a minimal subset of registers that removes all counterexam-
ples of the current length. We do this by adding registers
one by one starting with the highest ranked register, until
all counterexamples of this length disappear on the abstract
machine. We then attempt to remove the added registers
in reverse order, leaving registers in if counterexamples of
the current length reappears. We only consider registers for
adding that either have a nonzero conflict score or a nonzero
MCE score. If we end up with a subset of registers that re-
moves all counterexamples of the current length, then we
are done.

If we can not find a subset of registers that removes all
counterexamples, then we use a version of the SAT scoring
technique in Section 5.3. However, rather than analyzing
why a particular prefix of a counterexample can not be trans-
ferred, we study why we can not progress from the lowest
numbered shell we have visited.

Our idea for SAT-based scoring builds on the observation
that if we look at the set of concrete states with the lowest
depth encountered during our search, then these states are
miscategorized by the current abstraction in the sense that
placing them at this depth is optimistic—even very long
sequences can not reach from these states into a shell closer
to the goal.

We know that as we can not progress from the encountered
states in the lowest numbered visited backshell, a formula
expressing that one or more of these states can transition
into the next shell will be unsatisfiable. If we use an instru-
mented SAT-solver to solve this formula, we can thus extract
a subset of excluded registers that actually appear in proof
of this fact. If we do not add these registers to our abstrac-
tion, then the concrete states we could not get out of in the
last shell will still be categorized in the same shell. Once
we have computed the subset of excluded registers that may
affect whether the deadend states will be placed in the low-
est numbered visited shell again, we choose the two highest
ranked registers according to the lexicographical score.

Note that the first pass of our overall strategy is focused
on increasing the length of counterexamples greedily. The
reason for this is that we believe that longer counterexam-
ples will imply that the backshells spread out the states
more in terms of depth, which will mean that the depth of a
state will be a better predictor. When we can not increase
the counterexample length, we use the SAT-based scoring
to bring registers into the abstraction that will not make
the abstract counterexamples longer, but that we think will
remove the cause of the failed counterexample construction
in the current iteration. In our experience, this later pass
is often very important for progressing rapidly towards a
failure.

6. EXPERIMENTAL RESULTS
We have implemented the failure generation algorithm in

an abstraction refinement framework that we call NCS. We
will now study the performance of NCS on real design bugs
in five very challenging industrial systems, and compare it
to a three alternative approaches to formal property falsifi-
cation.

In Table 1, we present data on the size of the five falsifiable
circuits that we have applied NCS to. The systems range in
size from several hundred registers up to close to five thou-

sand registers. The circuits are industrial circuits that have
been generated by synthesis from Verilog descriptions, and
then augmented with environment constraints. They all are
out of range for BDD-based exact model checking. Note
that the size of the circuits is a true measure of search com-
plexity as all formal searches are performed on the concrete
system. In the cases where we are aware of the minimum
lengths of failures, we also present this. For problems three,
four and five, no failures have been found previously.

Problem Registers Minimum failure
cycles

1 434 109
2 4895 30
3 839 -
4 4494 -
5 634 -

Table 1: System metrics

In Table 2, we present results on using NCS to find fail-
ures of partial correctness statements for the five systems.
We compare NCS to (1) using a BMC engine on the whole
system directly without any guidance at all, (2) using the in-
tersection of forward and backward shells from the abstract
system as constraints to the BMC engine in the manner of
the DIVER framework [8], and (3) guiding the BMC engine
by the current abstract failure in the manner of RFN [12].
In the table, we present the runtimes for (2) and (3) under
the headings BMC Shell and BMC Trace, respectively. The
core search engine used by all techniques is an ATPG-based
BMC engine developed internally at Synopsys.

Problem NCS BMC BMC Shell BMC Trace
(s) (s) (s) (s)

1 62 763 18 769 >20h >20h

2 3 918 12 204 >20h >20h

3 22 190 >20h >20h 53 501
4 10 299 >20h >20h >20h

5 130 886 > 5 days > 5 days > 5 days

Table 2: Runtimes for finding failures

Note that there are many ways to implement the pro-
posal in the RFN paper for using counterexamples from the
abstract system to guide the search for real counterexam-
ples. We have taken the following approach, which we be-
lieve achieves a reasonable balance between speeding up the
search, and being too constrictive: Whenever an abstract
counterexample has been generated on the current abstrac-
tion, we check whether there exists a trace of the same length
on the concrete machine where the inputs and real state vari-
ables that exists in both models are assigned the values from
the abstract counterexample. We do not constrain the value
of internal points in the circuit.

As can be seen in Table 2, NCS is the only method that
can find the failures on all five systems. NCS outperforms
all of the other methods on all examples, with the exception
of problem one. The reason that NCS is slower than pure
BMC on the first problem is that NCS needs many BMC
invocations to construct a single trace. As a result, we may
incur a performance penalty compared to a single run of
BMC when examples are within capacity limits. However, as

demonstrated by problem two, there are examples within the
range of BMC where the decomposition into many simpler
searches outperforms a single BMC run.

Shell-guided BMC is not able to solve any of the prob-
lems. It seems that for the problems at hand, the possible
search pruning provided by adding the constraints has a
hard time offsetting the cost of increased size of problem
specifications. Nevertheless, that we see no positive effects
at all are somewhat surprising in the light of the experi-
ences from [2] where pruning based on BDD information
provides significant speedups. One possible reason for why
we do not see the same effects may be that we are using an
ATPG-based search engine that order variables differently
than a SAT engine would. It is possible that this gives rise
to fewer erroneous decisions that needs to be pruned. The
standard SAT variable ordering heuristics known are known
to be suboptimal for BMC [11], so one theory may be that
BDD-based pruning may be more useful in this context.

Trace-guided BMC can solve problem three, but it sub-
stantially slower than NCS. Both engines finds length 1005
traces, but trace-guided BMC needs a larger abstraction (20
registers compared to 15 registers for NCS). Part of the rea-
son for the slowness of trace guided BMC is that the concrete
searches fail to reconstruct length 1005 counterexamples sev-
eral times, and even though each of the failed BMC checks
are constricted they are still expensive. It is possible that a
better heuristic for how to constrain the trace further would
give better results. However, this would come at the price
of forcing a closer correspondence between the models so it
is not obvious that it would be a good idea.

In Table 3, we present some NCS statistics for the five
problems, such as the size of the structural abstraction that
is needed to find a counter example, and the length of the
failure that is found. The failure that NCS generates for
problem one illustrates our tradeoff between capacity and
counterexample length—the generated trace is five hundred
times longer than the shortest trace. The reason for this is
that our current implementation tries hard to use as small
abstractions as possible, and that our restarts do not throw
away trace prefixes. If we had given up on this trace and
built a slightly larger abstraction, we would have gener-
ated better lighthouses that would have decreased the failure
length to a few hundred cycles.

Problem NCS size NCS cycles
abstraction #

1 53 50 708
2 28 866
3 15 1 005
4 19 378
5 65 2 726

Table 3: Data for NCS failures

7. CONCLUSIONS
In this paper, we have shown how counterexample guided

abstraction refinement can be augmented to be able to search
for long counterexamples. Our key idea is to use the BDDs
representing the shells generated backwards on the abstract
machine as intermediate targets that we traverse forwards
and possibly also backwards on the way to the goal.

As our results indicate, the resulting method can extend

the range of failures that can be found substantially, and can
outperform both stand-alone BMC and related methods for
using abstraction information to guide formal searches.

As future work, we are interested in investigating how the
methods for improving semi-formal verification and simula-
tion can be used to augment our method further. We are
also interested in evaluating to what extent we can generate
shorter failure traces by throwing away the current trace
and restarting searches from the initial state, rather than
just taking a number of random steps when we restart the
repeat trace extender. One additional benefit from this is
that our current restart facility has the feature that it can
not get us out of a terminal strongly connected component
that does not contain the goal. However, this has not been
much of an issue for us so far, possibly because the searches
that veer off into the wrong direction are aborted once our
search resource constraint has been exhausted. The correct
path may thus be found in later iterations with different
abstractions.

8. REFERENCES
[1] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and

Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. In DAC ’99, 1999.

[2] G. Cabodi, S. Nocco, and S. Quer. Improving
SAT-based bounded model checking by means of
BDD-based approximate traversals. In DATE, 2003.

[3] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith,
and D. Wang. Automated abstraction refinement for
model checking large state spaces using SAT based
conflict analysis. In FMCAD ’02, 2002.

[4] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In
CAV ’00, 2000.

[5] M. Ganai, P. Yalagandula, A. Aziz, A. Kuehlmann,
and V. Singhal. SIVA: a system for coverage-directed
state space search. In Journal of Electronic Testing:
Theory and Applications, February 2001.

[6] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer,
and M. Vardi. Multiple-counterexample guided
iterative abstraction refinement. In TACAS ’03, 2003.

[7] E. Goldberg and Y. Novikov. Verification of proofs of
unsatisfiability for CNF formulas. In DATE, 2003.

[8] A. Gupta, C. Wang, M. Ganai, Z. Yang, and P. Ashar.
Abstraction and BDDs complement SAT-based BMC
in DiVer. In CAV ’03, 2003.

[9] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano,
V. Bertacco, J. Taylor, and J. Long. Smart simulation
using collaborative formal and simulation engines. In
ICCAD, 2000.

[10] R. Kurshan. Computer Aided Verification of
Coordinating Processes. Princeton University Press,
1994.

[11] O. Strichman. Tuning SAT checkers for bounded
model-checking. In CAV ’00, 2000.

[12] D. Wang, P.-H. Ho, J. Long, J. Kukula, Y. Zhu,
T. Ma, and R. Damiano. Formal property verification
by abstraction refinement with formal, simulation, and
hybrid engines. In DAC ’01, 2001.

[13] L. Zhang and S. Malik. Validating SAT solvers using
an independent resolution-based checker: Practical
implementations and other applications. In DATE,
2003.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

