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Abstract

Driven by the economics of design and manufacturing
nanoscale integrated circuits, an emphasis is being placed
on developing new, regular logic fabrics that leverage the
regularity and programmability of FPGAs, yet deliver a
level of performance and density close to ASICs. One exam-
ple of such a fabric is a Via-Patterned Gate Array (VPGA)
[9], which employs ASIC style global routing on top of an
array of patternable logic blocks (PLBs). Previous work
[8], [6], [10] showed that by employing even limited het-
erogeneity for the VPGA logic blocks, namely combining a
3-LUT with two 3-input Nand gates, one can achieve perfor-
mance comparable to that provided by standard cells. Since
the area cost for such heterogenity is far less for a VPGA
than for SRAM programmed fabrics such as FPGAs, we can
explore new configurations of via-configurable logic blocks
that offer greater heterogenity and granularity to achieve
even higher performance. In this paper, we present a new,
more granular, via-patterned heterogeneous logic block ar-
chitecture and compare it to a less granular LUT-based
heterogeneous PLB. Our results show higher performance
and more effective packing of the logic functions due to in-
creased granularity.

1. Introduction

Traditionally, digital systems have been implemented ei-
ther as Application Specific Integrated Circuits (ASICs) or
using standard parts such as Field Programmable Gate Ar-
rays (FPGAs). ASICs consist of pre-designed logic cells
and up to seven layers or more of metal wiring. The high
degree of flexibility in placement and routing of the cells
necessitates unique, customized masks for all fabrication
layers. With shrinking feature sizes and increasing design
complexity, mask costs and design costs for re-spins are be-
coming prohibitively expensive. As a result, FPGAs are
becoming increasingly attractive. Unlike ASICs, FPGAs
amortize design costs across several applications and en-

hance manufacturability via greater layout regularity. How-
ever, FPGAs can be three times slower and require ten times
more die area than an equivalent standard cell design.

Driven by the economics of design and manufacturing
of deep sub-micron integrated circuits, an emphasis is being
placed on developing new regular fabrics that deliver a com-
bined cost and performance advantage. A Via-Patterned
Gate Array [9] is one example of such a fabric. Like an
FPGA, a VPGA consists of an array of PLBs. However,
there are two key differences: First, the customization of
the logic is done by the placement or removal of vias at the
potential via locations, as opposed to configuring SRAM
bits. Second, global routing is on top of, instead of adjacent
to the PLB array, resulting in a significant reduction in die
area.

The choice of PLB architecture for the logic array is cru-
cial. This problem has been well studied for FPGAs in [4]
and [3]. For VPGAs, previous work in [7] and [6] showed
that LUT-mapped designs are dominated by simple logic
functions like two and three input AND, NAND, OR, NOR,
and AOI (And-Or-Invert) functions, which are not imple-
mented efficiently by LUTs. Based on these results, [7]
and [8] explored four heterogeneous logic block architec-
tures with a combination of LUTs, MUXes, and logic gates,
and showed that such architectures offer significant perfor-
mance and density benefits over conventional homogeneous
LUT-based PLBs. In particular, [8] explored heterogeneous
logic blocks for the VPGA fabric and showed that a hetero-
geneous PLB with a combination of 3-LUTs and three input
Nand gates with programmable inversion (ND3WI gates),
offers the best performance and density for both logic and
datapath applications. Figure 1 illustrates the PLB pro-
posed in [8] for the VPGA fabric.

The key objective of the VPGA fabric is to leverage the
regularity benefits of FPGAs, while delivering a level of
performance close to ASICs. In [10], the authors showed
that the VPGA fabric with the PLB shown in Figure 1
is quite competitive in performance with standard cell de-
signs. To further improve performance and density, it is
necessary to employ logic blocks with higher granularity.
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Figure 1. LUT based PLB for VPGA Fabric

Increasing granularity implies greater heterogeneity, which
requires more configurability through the local interconnect
architecture. Since greater configurability only results in
an increase in potential via sites for via-patterned fabrics,
the cost of higher granularity is significantly lower for the
VPGA fabric, than for SRAM programmed FPGAs.

In this paper, we propose a new, more granular, via-
patterned heterogeneous logic block architecture and com-
pare its performance and density to the LUT-based VPGA
PLB shown in Figure 1 and equivalent standard cell de-
signs. Most importantly, as part of our design exploration
process, we develop the set of simple logic circuit primi-
tives that can be used to construct a high performance via-
patternable CLB for almost any datapath or control logic
application.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the new, granular, heterogeneous PLB archi-
tecture. Section 3 outlines our experimental methodology
and presents results comparing the granular PLB to the LUT
based PLB. Section 4 concludes the paper.

2. New, Granular, Via-Patterned PLB for
VPGA Fabric

In [8], the authors explored various heterogeneous logic
block architectures for the VPGA fabric and selected the
PLB shown in Figure 1 with one 3-LUT and two ND3WI
gates. Although this PLB achieves good performance and
density for both logic and datapath applications, it has two
key drawbacks. First, all 3-input functions that cannot be
performed by the ND3WI gate must be implemented by the
LUT. However, as shown in [10], the VPGA LUT is sub-
stantially inferior to an equivalent standard cell in terms of
delay, power and area, when configured as a simple logic
function. Second, a full adder cannot be implemented by
a single PLB. To push the performance of the VPGA fab-
ric further, it is necessary to leverage the benefits of het-
erogeneity by employing more granular architectures that
overcome the performance penalty of the LUT, and enable
a full adder to be packed into a single PLB.

2.1 Analysis of 3-input Functions

From the Shannon co-factoring property, it is known that
any 3-input function can be written in terms of its cofac-
tors as follows: f(a,b,s) → s’*(g(a,b)) + s*(h(a,b)), where
s’ is the inverted select signal, and the cofactors are g(a,b)
and h(a,b). Based on this result, [7] showed that a 2-input
MUX driven by two ND2WI gates can implement at least
196 of the 256 3-input functions. The functions that cannot
be implemented by this structure, henceforth referred to as
an S3 gate, are those that have one or more XOR or XNOR
functions as cofactors. Figure 2 illustrates these classes of
functions.

Figure 2. Categories of S3 Infeasible Func-
tions

Of the five categories of functions shown in Figure 2,
the third and fourth simplify to a 2-input XOR and XNOR
gate, respectively. Both of these functions can be imple-
mented by a single 2:1 MUX. For the fifth category, we



observe that one of the cofactors is the complement of the
other. These functions, which correspond to a 3-input XOR
or XNOR, can be implemented by two 2:1 MUXes and an
inverter. This leaves the first two categories of functions in
which one of the cofactors is implementable by a ND2WI
gate, and the other is an XOR or XNOR function. Since
a 2:1 MUX can implement all 2-input functions, including
XOR and XNOR, we replace one of the ND2WI gates in the
S3 structure with a 2:1 MUX. By adding a programmable
inverter on the output of this MUX, we ensure that the mod-
ified S3 structure shown in Figure 3 can implement all 256
3-input functions.

Figure 3. Modified S3 Cell

2.2 Implementing a Full Adder

To implement a full adder, the PLB must be able to gen-
erate both the sum and carry functions. To implement the
sum function: Sum = (A

⊕
B

⊕
Cin), we only require

the two MUXes in the cell shown in Figure 3. The first
MUX implements the function (A

⊕
B), and the second

implements the exclusive-or of Cin and the output of the
first MUX. As a result, the Nand gate is still available for
the carry function.

To take advantage of this, we express the carry function
as: Cout = P*Cin + P’*G, where P = (A

⊕
B) is called

the propogate function, and G = A*B is called the generate
function. Since the first MUX already implements the carry
propogate function (A

⊕
B), only one more MUX with P

as the select signal is required to implement a full adder in a
single PLB. Adding this MUX to the cell in Figure 3 results
in the new, granular heterogeneous PLB shown in Figure 4.

This PLB consists of three 2:1 MUXes, one ND3WI
gate, and programmable buffers. One of the MUXes is
labelled XOA since it is primarily used as an XOR or a
ND2WI gate, and because it is sized differently from the
other two MUXes to minimize logic delay. Although not
shown in Figure 4, the PLB also includes a D Flip Flop,
and buffers that ensure that all primary inputs are available
in both polarities.

Figure 4. Granular PLB for the VPGA Fabric

2.3 Granularity Trade-offs

Although at first glance it appears that the PLB in Fig-
ure 4 is significantly different from the previously selected
PLB shown in Figure 1, the new PLB actually contains
similar logic elements. The key differences are that the new
PLB has only one ND3WI gate instead of two. Also, the 3-
LUT in the previous PLB is split into its component MUXes
which are re-arranged in a manner that enables the new PLB
to access intermediate outputs. Splitting the 3-LUT into
three MUXes as shown in Figure 5 increases granularity
and flexibility.

Figure 5. Re-arrangement of the three 2:1
MUXes in a 3-LUT

One of the key advantages of higher granularity is
that several 3-input functions can be implemented with
logic configurations that are faster and denser than a
3-input LUT. For the PLB shown in Figure 4, these logic
configurations are:

1. A single 2:1 MUX (MX)
2. A single ND3WI gate (ND3)



3. A 2:1 MUX driven by a single ND2WI gate (NDMX)
4. A 2:1 MUX driven by another 2:1 MUX (XOAMX)
5. A 2:1 MUX driven by a 2:1 MUX and a ND3WI gate
(XOANDMX)

From these logic configurations, and the PLB dia-
gram in Figure 4, we observe that the new VPGA cell
can simultaneously implement three MX functions and one
ND3 function, or one MX, one XOAMX, and one ND3
function. The PLB can also simultaneously implement a
NDMX and XOAMX function. Since the XOA element
also functions as a ND2WI element, two NDMX functions
can be packed into a single PLB. In this configuration, one
of the NDMX functions must be packed as an XOAMX
function. With this degree of flexibility in packing, and the
performance advantage of these logic structures compared
to a 3-input LUT, we expect the higher granularity of this
PLB to result in higher performance than the LUT-based
PLB shown in Figure 1.

Increasing granularity also incurs an area penalty due to
an increase in the number of configuration vias and total
layout area. However, due to the faster logic configura-
tions, we expect higher granularity to result in higher per-
formance. Since the cost of potential vias is significantly
less than SRAM programmable switches in an FPGA, this
trade-off is worth considering for the VPGA fabric.

3. Experimental Methodology and Results

In this section, we describe the methodology that we
use to implement designs using the proposed VPGA fabric.
This design flow takes an RTL level description of the de-
sign as input and produces a GDSII description of the layout
in the form of a regular array of PLBs with ASIC-style cus-
tom routing on the upper metal layers. We use commercial
ASIC tools wherever possible to leverage the state-of-the-
art in logic synthesis and physical design. We then use this
design flow to compare the die-area and performance of dif-
ferent gate-arrays implementations using the more granular
PLB shown in Figure 4 and the LUT-based PLB shown in
Figure 1 [8] [11].

3.1 Design Flow

For a given PLB architecture, Figure 6 outlines the flow
that we use to map an RTL-level description of a design onto
a regular array of PLBs. First we use a restricted library
of standard cells to obtain an ASIC-style detailed place-
ment of the design. This part of the flow uses commercial
CAD tools with the exception of a logic-compaction step.
Next we legalize this placement by ’packing’ the standard-
cells into an array of PLBs. Our legalization algorithm
works with a cost function that minimizes perturbation of

the ASIC-stye placement, and thus minimizes any loss of
performance or increase in area at this stage. Finally we
perform ASIC-style global and detailed routing on this reg-
ular array of PLBs. In the rest of this section, we describe
each stage of this flow in greater detail.

The restricted library of standard-cells used in this flow
consists of the component cells of the given PLB architec-
ture - for example MUX, XOA, ND3WI, 3-LUT buffers and
inverters. The library is further restricted in the sense that
each component cell has a fixed size which is chosen to give
a good power-delay tradeoff. This corresponds to the size of
that component cell in the PLB. The timing information for
this library is generated by characterizing these cells using a
commercial tool called CellRater from Silicon Metrics [1].
We use Design Compiler from Synopsys to do logic opti-
mization and technology-mapping to this restricted library.

Technology-mapping is followed by a compaction algo-
rithm that reduces the area of the netlist by better utiliz-
ing the given PLB architecture. Our algorithm first finds
clusters of logic or ’supernodes’ corresponding to functions
with 3 or less than 3 inputs. This is done using a maxflow-
mincut algorithm similar to Flowmap [5]. It then matches
these computed supernodes to the appropriate combination
of PLB components. This allows more logic to be collapsed
into PLBs. For both the PLB architectures that we consid-
ered, this compaction step resulted in a significant reduction
in total gate area of about 15% on the average. We then use
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Figure 6. Design Flow

a commercial tool called Dolphin from Monterey Design



Systems [2] to perform physical synthesis and placement.
The result of this stage is a detailed ASIC-style placement
that has been optimized for performance, area and routabil-
ity based on physical information. The resulting netlist in-
cludes logic changes and buffer insertion to meet timing
constraints and area specifications.

After obtaining this ASIC-style detailed placement, our
next step is to ’legalize’ this by packing the component cells
into a regular array of PLBs. Our packing algorithm does
this by recursive quadrisection. At each quadrisection level,
the component cells are relocated to other regions of the
chip depending on the availability of the corresponding re-
source. For example, if there are more 3-LUTs in a region
of the chip compared to the resources available in the PLBs
in that region, some 3-LUTs will be moved to the nearest
region of the chip that has unused 3-LUTs available. The
cost function used in this algorithm takes into consideration
the criticality of the cells being moved and also tries to min-
imize perturbation of the ASIC-style placement.

In order to further minimize the loss in performance due
to the motion of the component cells, we use the packing al-
gorithm in an iterative loop with the physical synthesis tool
Dolphin. In each iteration, the packing algorithm restricts
the locations of some of the components to regions of the
chip that have unused resources available. Physical synthe-
sis is repeated with these restrictions to give new locations
for the remaining components, and also redo buffer inser-
tion or logic restructuring where necessary to meet perfor-
mance and area constraints. This iteration loop is repeated
until all the components have been alloted legal locations in
the PLB array. It ensures that the performance degradation
due to legalizing the ASIC-style placement is minimal.

After legalization, we use Dolphin to perform ASIC-
style custom global and detailed routing on the regular array
of PLBs. We measure the final performance of the design
by running static timing analysis in Dolphin with data from
post-layout extraction.

3.2 Experimental Results

We used the flow described in Section 3.1 to implement
different designs onto an gate-array of regular PLBs. In
this section we compare the area and performance of
gate-arrays using the granular heterogeneous architecture
shown in Figure 4 and the heterogenous LUT-based
architecture shown in Figure 1. We present comparisons
for four different designs. The designs ALU, FPU, and
Network switch are dominated by datapath, while the
design Firewire is a small controller that is dominated by
control logic. Our results show that the proposed granular
PLB offers both a performance and density improvement.

Table 1 and Table 2 show the comparison of the final

die-area and timing respectively, for each of the following
design flows:

Flow a is obtained if we skip the Packing step for the de-
sign flow described in Section 3.1. Essentially, it is
the standard cell ASIC flow using a library which com-
prises of cells that make up each PLB.

Flow b is the design flow described in Section 3.1.This
produces a regular PLB array with ASIC-style custom
routing.

The gate count for each design is given in units of
equivalent 2-input Nand gates. With the proposed granular
PLB, the die-area of the three datapath dominated designs
is reduced by 32% on average. For the design FPU, it
is reduced by as much as 40%. This improvement is
despite the area of the proposed granular PLB being 20%
larger than the LUT-based PLB. The primary reason for
the smaller die-area with the granular PLB architecture
is that majority of the functions that are mapped to a
3-LUT in the LUT-based PLB are mapped to a NDMX
or XOAMX configuration in the proposed granular PLB.
These configurations occupy a smaller part of the PLB than
the LUT, which leaves more resources available in that
PLB for packing in additional logic leading to a superior
packing efficiency. The packing efficiency can be measured
by looking at the die-area for Flow b when compared
with the die-area for Flow a. This overhead is due to the
additional packing step in Flow b. On an average, there is
48.37% less die-area overhead for designs that employ the
granular PLB architecture. It is upto 88.6% for the design
Network Switch.

In addition, with the granular PLB architecture, certain
functions can be implemented in multiple ways in a PLB.
This flexibility also results in greater packing efficiency. For
example, a 2-input Nand function on a non-critical path can
be mapped into a MUX without affecting performance if
the ND3WI gate in the PLB is already used up, allowing an
extra function to packed in the PLB.

For the design Firewire , however, we see that the pro-
posed granular PLB architecture results in a larger die-area.
This is due to the fact that the design is dominated by se-
quential rather than combinational logic. As a result most
of the combinational logic in the PLB array is not utilized.
Since the proposed granular PLB has 26.6% more combi-
national logic area than the LUT-based PLB, this results in
the area overhead. This overhead can be avoided by using
a PLB with a greater ratio of Flip Flops to combinational
logic elements. These results also suggest the optimal PLB
architecture depends on the application domain under con-
sideration. Table 2 compares the performance after post-
layout extraction with the two PLB architectures using each



of the flows described above. The cycle time for all the de-
signs is .5 ns. We compare the average slack over the top
10 critical paths in the design. Our results show that the
average improvement in the slack is about 18%. For the
design FPU, it is as much 40%. Also, there is about 68%
less performance degradation from Flow a to Flow b for
designs employing the granular PLB. The improvement in
the performance is largely due to the fact that the 3-input
functions performed by the LUT in the LUT-based PLB are
performed by faster NDMX or XOAMX combinations in
the granular PLB. Another factor contributing to the perfor-
mance improvement is the superior packing efficiency with
the granular PLB.

Die-Area (µm2)
Granular PLB LUT PLB

flow a flow b flow a flow b
ALU 6944 15147 7800 18225

Firewire 54720 68920 40944 56250
FPU 534375 662400 562500 1103625

Network 1822500 1960000 2088025 3294225
switch

Table 1. Area comparison

Path Slack 1-10 (ns)
No. of Granular PLB LUT PLB
gates flow a flow b flow a flow b

ALU 651 -0.301 -0.301 -0.302 -0.308
Firewire 4247 -1.03 -1.04 -1.454 -1.766

FPU 24k -7.051 -7.089 -7.807 -9.474
Network 80k -2.778 -2.982 -2.671 -3.095
Switch

Table 2. Timing comparison

4. Conclusion

In this paper, we demonstrated that more granular het-
erogeneous PLBs offer further performance and density im-
provement over previously considered LUT-based hetero-
geneous PLBs, making the VPGA fabric even more com-
petitive with standard cell designs in terms of performance.
Furthermore, our results suggest that the logic block archi-
tecture should consist of some combination of Nand gates
with programmable inversion, XOR gates, and MUXes.
Finally, our results show that the optimal combination of
these logic elements, and the optimal ratio of combinational
to sequential logic elements varies with the application-
domain. Accordingly, we propose to explore these issues
in an application-domain specific manner in future work.

Future work will also focus on exploring regular routing ar-
chitectures for the VPGA fabric.
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