
Configuration-Sensitive Process Scheduling for FPGA-Based Computing
Platforms

G. Chen, M. Kandemir
Dept. of Computer Science & Engineering
The Pennsylvania State University, USA

{guilchen, kandemir}@cse.psu.edu

U. Sezer
Electrical and Computer Engineering Dept.

University of Wisconsin-Madison, USA
sezer@ece.wisc.edu

Abstract
Reconfigurable computing has become an important part
of research in software systems and computer
architecture. While prior research on reconfigurable
computing have addressed architectural and
compilation/programming aspects to some extent, there is
still not much consensus on what kind of operating system
(OS) support should be provided. In this paper, we focus
on OS process scheduler, and demonstrate how it can be
customized considering the needs of reconfigurable
hardware. Our process scheduler is configuration
sensitive, that is, it reuses the current FPGA configuration
as much as possible. Our extensive experimental results
show that the proposed scheduler is superior to classical
scheduling algorithms such First-Come-First-Serve
(FCFS) and Shortest Job First (SJF).

1. Introduction

Reconfigurable computing systems have shown the

ability to greatly accelerate program execution, thereby
providing a high-performance alternative to software-only
implementations and a programmable alternative to
ASICs. While prior research have addressed architecture
design and programming and compilation issues
[7,10,1,8,3, 9], there is still not much consensus on what
kind of operating system (OS) support should be provided
for reconfigurable architectures. Prior OS related work
[12] has evaluated different scheduling algorithms on an
FPGA based platform, and found that different scheduling
algorithms can generate different results. Brebner [2]
discusses some basic issues that can impact the
construction of an operating system for FPGAs with
dynamic reconfiguration capability. He proposes that
applications be designed into relocatable cores. Diessel et
al [4,5], Gindy et al [6], and Wigley and Kearney [13]
discuss high-level OS support for reconfigurable systems.

Obviously, a simple solution to the OS problem in the
context of reconfigurable computing is to let the
reconfigurable hardware be transparent to the OS. In this

case, we do not need to change any OS algorithm/data
structure, and reconfigurable hardware is managed by the
compiler and/or user application. While this is certainly a
viable option in some cases, we believe that making the
OS aware of the reconfigurable device could lead to better
overall system behavior. There are two major reasons for
that:

a. First, if the OS is not aware of the reconfigurable
hardware, each application can reconfigure it considering
only its own needs, and this may lead to frequent
reconfigurations at runtime as the OS scheduler moves
from one application to another during the course of
execution.

b. Second, the OS can pre-configure the hardware
considering the next process to be executed (based on the
scheduling information it has), and this can help reduce
the time spent in reconfiguration.

Based on these, this paper presents a customized OS
scheduling support for an FPGA-based execution
environment. Unlike previous work on OS scheduling
[12], the scheduling algorithm presented here is
configuration-sensitive; i.e., it tries to reuse the current
configuration as much as possible. Also, we demonstrate
that pre-configuration can make a significant performance
difference. In addition, we also present a code
restructuring strategy, using which we modify process
codes to make better reuse of the current FPGA
configuration.

Our experiments with this new scheduler and process
code restructuring strategy reveal that they can improve
performance significantly. Our experimental results also
demonstrate that the proposed scheduler is superior to
classical scheduling algorithms such First-Come-First-
Serve (FCFS) and Shortest Job First (SJF). Based on
these results, we recommend the OS designers for
embedded systems that employ reconfigurable fabric to
customize their process scheduling algorithms.

This paper is structured as follows. The next section
describes the reconfigurable environment we target.
Section 3 gives details of our approach to process
scheduling. Section 4 discusses potential performance

1530-1591/04 $20.00 (c) 2004 IEEE

benefits due to process code restructuring. Section 5
discusses preconfiguration, an optimization that blends
well with our scheduling strategy. Section 6 gives
simulation results. Finally, Section 7 provides our
conclusions.

2. Reconfigurable architecture and execution
environment

In this section, we present the main assumptions that

we make about our architecture. We model our
reconfigurable system as a rectangular array of
configurable logic blocks (say NxM) – called CLBs. We
also assume an on-chip interconnect that ties these blocks
together. Many commercial FPGAs fit in this description.
Each process to be scheduled in this architecture uses a
“rectangular portion” of this array. For example, Figure 1
illustrates a 6x8 array and three processes scheduled on it
(they occupy spaces of 2x3, 2x4, and 6x2 CLBs). For
clarity, we omit from the figure the interconnects between
CLBs and the input-output blocks (IOBs). In this
environment, when a new incoming process needs to be
scheduled, the OS needs to find a (rectangular) space for it
in the reconfigurable device (this is called space
allocation). This space can be one of the spaces that have
already been allocated to some other process that could
not run concurrently with this incoming process (this is
called configuration reuse in this paper). Or alternately, if
available, an unused space can be allocated to the
incoming process. This decision depends on two main
factors: (a) relative execution orders of different
processes, and (b) inherent configuration reuse capability
between processes. We will discuss these two issues in
detail in the next section. Our main objective is to
maximize configuration reuse, that is, we would like to
minimize the number of reconfigurations.

It is important to note here that this model assumes that
the configurable device is partially reconfigurable (i.e., it
can be selectively programmed without a complete
reconfiguration [3]) in both row and column directions.
This capability does not exist in some of current FPGAs
such as Xilinx’s Virtex [11]. However, as will be
demonstrated later, our approach is also applicable to the

cases where the FPGA is reconfigurable only in vertical
chip-spanning columns.

It should be mentioned that there can also be a host
processor in the system. However, we assume that the
portions (from each application/process) that will be
executed in the FPGA part have already been decided
prior to our scheduling. In the following discussion, when
there is no confusion, we use the terms FPGA and
reconfigurable/configurable system interchangeably. We
are targeting an embedded environment, where processes
(tasks) are extracted from a given embedded application.
Note that many embedded applications are coded in a
modular fashion as multiple co-operating processes.

3. Our approach to scheduling

We represent each process to be scheduled by a subtask

graph (henceforth referred to as STG). Each node of this
graph represents a process code portion (subtask) that will
be executed in a single quantum of time once it gets
scheduled. Note that depending on the computation being
performed by the node, each node may require a different
amount of FPGA space (i.e., when it is mapped to the
FPGA, it can demand a different size rectangular region
than the others). A directed edge (arrow) from a node vi ∈
STG to another node vj ∈ STG indicates a data or control
dependence from vi to vj; that is, vj cannot be executed
before vi (they can be pipelined in some cases; however,
we do not consider pipelining in this paper). Figure 2a
depicts a typical STG for a process. In this paper, the jth

node of process i is denoted as STGij.
Since one of the objectives of any FPGA-based system

is to maximize FPGA utilization, the OS scheduler should
be able to schedule nodes from the STGs of different
applications. It should be observed that while one may
have the option of executing each process in a strict order
(i.e., not starting executing the next one while the
previous one is still running), this may not be a very good
idea since dependences between the nodes of the STG in
question would prevent full utilization of the available
FPGA space. Therefore, our approach is oriented towards
maximizing FPGA space utilization by parallel execution
of multiple processes. Also, since our processes are

CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B

CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B

CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B

CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B

CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B

CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B CL BCL B

Figure 1. A 6x8 CLB array and regions used by
three processes.

vi
vj

(a) (b)
Figure 2. (a) An example STG (note that node vj depends
on node vi). (b) Two STGs and data dependences
between them (shown as dashed arrows).

extracted from the same application, there might be data
dependences between them. For example, Figure 2b
shows two STGs and two dependences between (drawn as
dashed arrows).

The crucial step in our configuration-aware scheduling
strategy is assigning an FPGA space for a process that is
about to start executing. Let us first make an important
definition:

Context: The context of an FPGA is a list whose each
entry indicates the status of an FPGA region. An FPGA
region can be defined as a quadruple (also referred to as a
context entry):
[{(s1,s2),(e1,e2)}, process-id, STG-node-id, config-desc],

where (s1,s2) and (e1,e2) indicate, respectively, the start
and end CLBs for the (rectangular) region in question.
Process-id denotes the process that is using that region,
and STG-node-id gives the current STG node that is
executing on that region. Finally, config-desc describes
the current configuration of the region (i.e., what
computation is being performed). Note that, even there is
no process running in a region, it can still have a valid
config-desc (describing the configuration that has been
used there the last time).

The OS scheduler has two important tasks:
a. Determining a suitable schedule for the processes to

be scheduled.
b. When a process need to start executing, determining

where (to which FPGA region(s)) its subtasks should be
assigned.

One simple strategy would be separating these two
tasks, and first coming up with a schedule and then
determining execution region(s) for each process as its
turn comes. However, a closer look reveals that these two
tasks are in fact highly related. More specifically, the
region(s) on which a process can be executed is an
important factor that helps us determine whether it should
be the next process to execute. Therefore, we propose a
configuration-sensitive execution strategy; i.e., at each
scheduling step, we select (among the executable process)
the one that fits well in one or more regions, without
needing reconfiguration (which is typically a costly
operation).

Therefore, in the first step of our approach, we
determine a suitability factor (SF), which indicates how
suitable a schedulable process for the current context. We
define an SFi (for process i) at a time instance as the
inverse of the cost of executing a subtask j of process i
(i.e., node STGij in the corresponding STG) in the current
context. This cost can vary depending on whether we need
to perform a (partial) reconfiguration or we can reuse a
configuration, which is already there in the FPGA device.

Suppose that we are considering STGij for potential
execution on the FPGA (assuming process i is
schedulable). Let config-descij be the configuration
required by STGij and {(s1,s2),(e1,e2)} ij be the region

requested. Then, we can compute the cost of scheduling
STGij – denoted cost(STGij) – in the current context as
follows:

Case 1. If there exists a context entry of the form
[{(s1,s2),(e1,e2)}, *, *, config-desc], such that {(s1,s2),
(e1,e2)} ij ≤ {(s1,s2),(e1,e2)} and config-descij = config-
desc, then the cost is assumed to be 0. This represents the
case where we have an already configured empty space
suitable for process i (Here, a ‘*’ in the second and third
slots of the context entry indicate that no active process
occupies the rectangular region in question. Also, we use
A ≤ B to indicate that region B is at least as large as
region A).

Case 2. Else, if there exists an entry of the form
[{(s1,s2),(e1,e2)}, *, *, *], such that {(s1,s2),(e1,e2)} ij ≤
{(s1,s2),(e1,e2)}, then the cost is the time (delay) spent in
configuring {(s1,s2),(e1,e2)} ij amount of FPGA space.
This reconfiguration cost is termed as costreconfig({(s1,s2),
(e1,e2)} ij) in this paper. Note that this corresponds to the
case where we have an empty (i.e., unconfigured) space in
the FPGA (Here, a ‘*’ in the last slot of the context entry
indicates no configuration for the region in question).

Case 3. Else, if there exists an entry of the form
[{(s1,s2),(e1,e2)} kl, k, kl, config-desckl], such that {(s1,s2),
(e1,e2)} ij ≤ {(s1,s2), (e1,e2)} kl and config-descij = config-
desckl, then process i waits until the lth node of process k is
finished. In this case, we have cost(STGij) =
costwait(STGkl), where costwait(STGkl) is the (remaining)
time for STGkl to finish.

Case 4. Else, if there exists an entry of the form
[{(s1,s2), (e1,e2)} kl, k, kl, config-desckl], such that {(s1,s2),
(e1,e2)} ij ≤ {(s1,s2), (e1,e2)} kl and config-descij ≠ config-
desckl, then process i waits until the lth node of process k is
finished. In this case, we have cost(STGij) =
costwait(STGkl) + costreconfig ({(s1,s2), (e1,e2)} ij), where
costwait(STGkl) is the (remaining) time for STGkl to finish.
Note that in this case the overall cost has both waiting
time and reconfiguration time components (as opposed to
the previous case where the cost has only a waiting delay
component). If a single STGkl does not provide suggested
FPGA space, we consider more such nodes until we have
enough space for STGij.

To sum up, the cost of scheduling STGij can be 0, or
only some reconfiguration latency, or only some waiting
latency, or sum of reconfiguration and waiting latencies.
Based on this cost model, it is clear that reusing some
existing FPGA configuration is very critical if one is to
obtain good performance. Our scheduling algorithm is a
variant of list scheduling, an algorithm frequently
employed by optimizing compilers. In this scheduling, the
next STG node to be scheduled (and to be assigned an
FPGA space) is the one that leads to minimum cost
(considering the four cases above) among all schedulable
nodes. In this way, at each step, this greedy heuristic
selects the next STG node to be scheduled.

4. Code restructuring

While the configuration-sensitive scheduling approach

described above makes maximum configuration reuse
within the capacity of list scheduling, it is possible to
improve its behavior further by being a bit more careful
about how the application is coded. Specifically, the
application can be coded in such a way that the scheduler
has higher chances for finding a suitable space (with low
cost) in the FPGA device.

As an example, let us consider Figure 3. This figure
shows an STG for process i (in Figure 3a) and an STG for
process j (in Figure 3b). Assuming that process j is
dependent on process i (i.e., we cannot execute any node
of process j before finishing up all nodes of process i) and
the available FPGA space can hold only one node at a
time, we see that as we move from process i to process j,
we need to reconfigure the FPGA (from addition to
multiplication). In fact, executing process i followed by
process j requires a minimum of four reconfigurations.
However, if it is also possible to code process j as
depicted in Figure 3c, we can reduce the number of
reconfigurations to three. This small example illustrates
that if we consider the way in which processes are coded,
it may be possible to reduce the number of
reconfigurations.

5. Preconfiguration

As noted earlier one of the main bottlenecks that could

prevent us from obtaining good results is the
reconfiguration delay. A way of reducing its impact could
be using preconfiguration; i.e., (partially) reconfiguring
the FPGA before such a configuration is actually needed
(in an attempt to hide the time spent in reconfiguration).

Our current approach implements the following
preconfiguration strategy. If the first case in Section 3
(where we determine the cost of executing STGij) fails but
the second case succeeds (i.e., we have available empty
space in the FPGA that needs to be reconfigured), we start
reconfiguring FPGA before STGij is actually scheduled
for execution. An important issue here is the time at which
reconfiguration starts. Note that if we invoke
reconfiguration very early this can lead to poor utilization
of FPGA (since this means keeping a portion of the FPGA
ready for a subtask that will come much later). Similarly,
if reconfiguration is delayed too much, it may not be very
beneficial since we may still need to wait for it to
complete. In our current implementation, if STGij is
supposed to be executed at time step t, we start
reconfiguring the FPGA for it at time step t-1.
Consequently, we have cost(STGij) =
costreconfig({(s1,s2),(e1,e2)}) - ∆overlap, where ∆overlap is the
time that is saved due to preconfiguration. Similarly, in

the fourth case (in Section 3), the preconfiguration for the
STG node scheduled for time t starts at time t-1.

6. Evaluation

6.1. Setup

We compare our approach to two well-known process

scheduling techniques: FCFS (First-Come-First-Serve)
and SJF (Shortest-Job-First). In FCFS, each arriving
process is assigned a time stamp and processes are
scheduled according to their stamp values. In other words,
the next process to be executed is the one with the earliest
arrival time stamp. In comparison, in SJF scheduling, the
processes are sorted according to their (estimated)
execution times and the process with the shortest time is
the one to be executed next. In our implementation of
these scheduling algorithms, we worked on a subtask
granularity. We postpone the discussion of how our
technique can be made preemptive, and how (in that case)
it compares to classical preemptive algorithms such as
Shortest Remaining Processing Time (SRPT) and Earliest
Deadline First (EDF) to a future study.

We implemented our configuration-sensitive process
scheduler, FCFS, and SJF, and performed experiments
using a custom simulator. Our simulator takes a
description for the FPGA device and a process table. Each
entry in this table points to a STG and an arrival time
stamp. As output, the simulator gives the average
response time and the FPGA utilization. As in [12], the
response time of a process i (denoted ri) is given as ri = fi
– ai, where fi is the process’s finishing time, and ai is its
arrival time. Then, the average response time is the
response time divided by the number of processes in the
application. In our simulations, we assumed that
reconfiguring one column takes 200 microseconds, and
that the task arrival times are dictated by the application
access pattern.

To test the effectiveness of our scheduling strategy, we
performed experiments with array-based versions of two
large, real-life embedded applications: encr and usonic.
encr implements an algorithm for digital signature for
security. It has two modules, each with eleven processes.
The first module generates a cryptographically-secure

v1 (mult)

v2 (add)

(a)
v3 (add)v5 (add)

(c)
v6 (add) v4 (mult)

v4 (mult)

(b)
v5 (add) v6 (add)

Figure 3. (a) STG for process i. (b) Two alternate
STGs for process j.

digital signature for each outgoing packet in a networked
architecture, User requests and packet send operations
have been implemented as processes. The second module
checks the digital signature attached to an incoming
message. The main data structure used is an array of lists.
The application code contains 355 C lines. Our second
application, usonic, is a feature-based object estimation
algorithm. It stores a set of encoded objects, and given an
image and a request, it extracts the potential objects of
interest and compares them to the objects stored in the
database (which is also updated during the process). It is
written in C, consists of twelve processes, and contains
830 lines. For each benchmark code, we performed
experiments with five different input sizes (I1 through I5,
where I1 is the smallest input size, and I5 is the largest).

6.2. Results

The plots in Figure 4 give the average response time

(in msec) for FCFS, SJF, and our scheduling strategy
(denoted CS) with different input sizes. In obtaining these
curves, we have not employed preconfiguration or process
code restructuring. We see that when the input size is very
small (I1), the overheads dominate, and there is not much
difference between different scheduling algorithms. In
other words, the configuration reuse is not very critical.
However, with the larger inputs, we observe that the
configuration-sensitive (CS) scheduling outperforms the
other two algorithms.

Impact of process code restructuring. The curves
marked as “Restructured” in Figure 5 illustrate the impact
of code restructuring in these two applications. We see
that while both the applications benefit from code
restructuring, usonic shows larger savings, mainly
because there are fewer dependences between the nodes in
the STG of this benchmark, and thus, we have more
flexibility in re-ordering the processes.

Impact of preconfiguration. The curves marked as
“Preconfigured” in Figure 5 illustrate the benefits coming
from preconfiguration. It can be observed that, as
compared to process code restructuring, this optimization
is much more successful. This is because while process
code restructuring is not always possible (due to data and
control dependences between STG nodes),
preconfiguration can be effective most of the time, since
the scheduler has advance information as to which process
will be executed next.

To better understand the trends illustrated in Figure 5,
we also collected statistics that give us the breakdown of
the four cases listed in Section 3. Recall that in Case 1, we
incur a cost of 0; in Case 2 a cost of reconfiguration; in
Case 3 a cost of waiting; and in Case 4 costs of both
waiting and reconfiguration. The breakdowns given in
Figure 6 clearly show that Case 1 and Case 3 dominate
execution behavior, Case 1 taking the biggest share. In
other words, our approach makes good use of
configuration reuse. The reason that Case 2 does not occur

0
5

10
15
20

I1 I2 I3 I4 I5
Input

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
se

c)

FCFS SJF CS

0

20

40

60

I1 I2 I3 I4 I5
Input

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
se

c)

FCFS SJF CS

Figure 4. Average response times for three
different process scheduling strategies. I1
represents the smallest input size, whereas I5
corresponds to the largest input size. Top: encr;
Bottom: usonic.

0

10

20

30

40

50

I1 I2 I3 I4 I5
Input

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
se

c)

CS encr
CS encr [Restructured]
CS encr [Preconfigured]
CS usonic
CS usonic [Restructured]
CS osonic [Preconfigured]

 Figure 5. Impact of process code restructuring
and preconfiguration on average response times of
our scheduling strategy

0%
20%
40%
60%
80%

100%

CS encr

CS encr [R
estru

ctured]

CS encr [P
reconfigured]

CS usonic

CS usonic [R
estru

ctured]

CS osonic [P
reconfigured]P

er
ce

nt
ag

e
B

re
ak

do
w

n Case 1 Case 2 Case 3 Case 4

Figure 6. Percentage breakdown of different cases.

very frequently is the fact that it can only occur during the
initial phase of execution when not all of the FPGA space
has been fully utilized yet.

Another important parameter to study is FPGA space
utilization. The graph in Figure 7 shows the space
utilization (over the course of execution) for the two
benchmarks when no preconfiguration or process code
restructuring is used (when they are used, the curves look
better) – marked “2D”. We observe from these results that
the space utilization is quite good, which explains the
response time behavior of these applications. It is to be
noted that there are two primary reasons, because of
which we may not be able to achieve 100% space
utilization all the time. First, at the beginning of
execution, some FPGA space is not used (until enough
STG nodes are scheduled); this is what we observe at the
leftmost portion of the curves. Second, since we work
with rectangular space allocations, this can lead to
fragmentation; that is what we observe beyond the initial
portion of the execution. In comparison, the curves
marked “1D” give the same results with 1D allocation.
That is, each STG node is allocated the entire height of
the CLB array, and, as many contiguous columns as are
needed to layout the circuit. We observe that while the
results with this 1D allocation are not as good as those
with the 2D allocation, the former is still able to generate
good results. Specifically, Figure 8 presents a comparison
of 1D and 2D allocation policies under our configuration-
sensitive process scheduling. Comparing this figure with
Figure 4, one can see that 1D results are actually
competitive with those of SJF and FCFS (even when these
two are used in conjunction with 2D placement).

7. Conclusions

The main benefits of FPGA-based computing are the

ability to execute larger hardware designs with fewer
gates and to realize the flexibility of a software-based
solution while retaining the execution speed of a more
hardware-centric approach. In this paper, we have

presented a new OS scheduling algorithm for FPGA-
based computation environments. A unique characteristic
of this algorithm is that it maximizes configuration reuse,
thereby reducing the latency incurred during
reconfiguration. In addition, the two optimizations we
have proposed, process code restructuring and
preconfiguration, help further improve performance over
the classical process scheduling strategies.

8. References

[1] M. Barr. A reconfigurable computing primer. In Multimedia

Systems Design, September 1998, pp. 44-47.
[2] G. Brebner. A virtual hardware operating system for the Xilinx

XC6200. In the 6th International Workshop on Field
Programmable Logic and Applications, Springer LNCS 1142,
1996, pp. 327-336.

[3] K. Compton and S. Hauck. Reconfigurable computing: a survey
of systems and software. ACM Computing Surveys, Vol. 34,
No. 2. pp. 171-210. June 2002.

[4] O. Diessel, D. Kearney, and G. Wigley. A web-based multi-user
operating system for reconfigurable computing. In
IPPS/SPDP’99, San Juan, Puerto Rico, 1999.

[5] O. Diessel, and H. El Gindy. Runtime compaction of FPGA
designs. In 7th International Workshop on Field-Programmable
Logic and Applications, Berlin, Germany, 1997.

[6] H. El Gindy, M. Middendorf, H. Schmeck, and B. Schmidt.
Task rearrangement on partially reconfigurable FPGAs with
restricted buffer. In the 10th International Workshop on Field
Programmable Logic and Applications, Springer LNCS 1896,
2000, pp. 379-388.

[7] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe,
and R. Taylor PipeRench: A Reconfigurable Architecture and
Compiler. In IEEE Computer, Vol.33, No. 4, April 2000.

[8] B. Gunther. SPACE2 as a reconfigurable stream processor. In
4th Australian Conference on Parallel and Real_time Systems,
Singapore, 1998.

[9] S. Hauck. Configuration prefetch for single context
reconfigurable coprocessors. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 65-74,
1998.

[10] Z. Li, K. Compton, and S. Hauck. Configuration cache
management techniques for FPGAs. In IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 22-36, 2000.

[11] Virtex-II Family. http://www.xilinx.com
/xlnx/xil_prodcat_landingpage.jsp?title=Platform+FPGAs

[12] H. Walder and M. Platzner. Online scheduling for block-
partitioned reconfigurable devices. In Design, Automation and
Test in Europe, March 3-7, 2003.

[13] G. Wigley and D. Kearney. The development of an operating
system for reconfigurable computing. In IEEE Symposium on
FPGAs for Custom Computing Machines, Napa Valley, 2001.

0

10

20

30

40

50

I1 I2 I3 I4 I5
Input

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
se

c)

CS encr (2D) CS usonic (2D)
CS encr (1D) C usonic (1D)

Figure 8. Comparison of 1D and 2D placements.

0

20

40

60

80

100

120

Epochs

S
pa

ce
 U

til
iz

at
io

n
(%

)
CS encr (2D) CS encr (1D)

CS usonic (2D) CS usonic (1D)

Figure 7. Space utilization over time. 1D = one-
dimensional placement; 2D = two-dimensional
placement.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

