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Abstract

Reconfigurable computing has become an important part
of research in software systems and computer
architecture. While prior research on reconfigurable
computing have addressed architectural and
compilation/programming aspects to some extent, there is
still not much consensus on what kind of operating system
(O9) support should be provided. In this paper, we focus
on OS process scheduler, and demonstrate how it can be
customized considering the needs of reconfigurable
hardware. Our process scheduler is configuration
sensitive, that is, it reuses the current FPGA configuration
as much as possible. Our extensive experimental results
show that the proposed scheduler is superior to classical
scheduling algorithms such First-Come-First-Serve
(FCFS) and Shortest Job First (SIF).

1. Introduction

Reconfigurable computing systems have shown the
ability to greatly accelerate program executioreréfy
providing a high-performance alternative to sofevanly
implementations and a programmable alternative to
ASICs. While prior research have addressed arc¢hitec
design and programming and compilation issues
[7,10,1,8,3, 9], there is still not much consensaswhat
kind of operating system (OS) support should beipex

for reconfigurable architectures. Prior OS relateork
[12] has evaluated different scheduling algorithomsan
FPGA based platform, and found that different sahiad
algorithms can generate different results. Brebf&r

U. Sezer
Electrical and Computer Engineering Dept.
University of Wisconsin-Madison, USA
sezer @ece.wisc.edu

case, we do not need to change any OS algorithan/dat
structure, and reconfigurable hardware is manageihéd
compiler and/or user application. While this istasly a
viable option in some cases, we believe that makieg
OS aware of the reconfigurable device could lealetber
overall system behavior. There are two major resagon
that:

a. First, if the OS is not aware of the reconfidplea
hardware, each application can reconfigure it aeriig
only its own needs, and this may lead to frequent
reconfigurations at runtime as the OS scheduler emov
from one application to another during the courge o
execution.

b. Second, the OS can pre-configure the hardware
considering the next process to be executed (barsede
scheduling information it has), and this can hedduce
the time spent in reconfiguration.

Based on these, this paper presents a customized OS
scheduling support for an FPGA-based execution
environment. Unlike previous work on OS scheduling
[12], the scheduling algorithm presented here is
configuration-sensitive; i.e., it tries to reuse the current
configuration as much as possible. Also, we dennatest
that pre-configuration can make a significant perfance
difference. In addition, we also present a code
restructuring strategy, using which we modify pexe
codes to make better reuse of the current FPGA
configuration.

Our experiments with this new scheduler and process
code restructuring strategy reveal that they capranwe
performance significantly. Our experimental resuitso
demonstrate that the proposed scheduler is supgior

discusses some basic issues that can impact theclassical scheduling algorithms such First-ComstFir

construction of an operating system for FPGAs with
dynamic reconfiguration capability. He proposest tha
applications be designed into relocatable coress$zil et
al [4,5], Gindy et al [6], and Wigley and Kearnel3]
discuss high-level OS support for reconfigurablgtems.
Obviously, a simple solution to the OS problemha t
context of reconfigurable computing is to let the
reconfigurable hardware be transparent to the @$his
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Serve (FCFS) and Shortest Job First (SJF). Based
these results, we recommend the OS designers for
embedded systems that employ reconfigurable faloric
customize their process scheduling algorithms.

This paper is structured as follows. The next secti
describes the reconfigurable environment we target.
Section 3 gives details of our approach to process
scheduling. Section 4 discusses potential perfocman



Figure 1. A 6x8 CLB array and regions used by
three processes.

benefits due to process code restructuring. Sechon
discusses preconfiguration, an optimization than@s
well with our scheduling strategy. Section 6 gives
simulation results. Finally, Section 7 provides our
conclusions.

2. Reconfigurable architecture and execution
environment

In this section, we present the main assumptioas th
we make about our architecture. We model our
reconfigurable system as a rectangular array of
configurable logic blocks (say NxM) — called CLBA&e
also assume an on-chip interconnect that ties thiesgs
together. Many commercial FPGAs fit in this destioip.
Each process to be scheduled in this architectses a
“rectangular portion” of this array. For examplégute 1
illustrates a 6x8 array and three processes sofaur it
(they occupy spaces of 2x3, 2x4, and 6x2 CLBs). For
clarity, we omit from the figure the interconnebttween
CLBs and the input-output blocks (IOBs). In this
environment, when a new incoming process needsto b
scheduled, the OS needs to find a (rectangulaesfoa it
in the reconfigurable device (this is called space
allocation). This space can be one of the spacshtve
already been allocated to some other process that c
not run concurrently with this incoming processiqtts
calledconfiguration reuse in this paper). Or alternately, if

(b)

Figure 2. (a) An example STG (note that node vj depends
on node vi). (b) Two STGs and data dependences
between them (shown as dashed arrows).

cases where the FPGA is reconfigurable only inicart
chip-spanning columns.

It should be mentioned that there can also be & hos
processor in the system. However, we assumethieat
portions (from each application/process) that wik
executed in the FPGA part have already been decided
prior to our scheduling. In the following discumsj when
there is no confusion, we use the terms FPGA and
reconfigurable/configurable system interchangeabie
are targeting an embedded environment, where geses
(tasks) are extracted from a given embedded apiglica
Note that many embedded applications are coded in a
modular fashion as multiple co-operating processes.

3. Our approach to scheduling

We represent each process to be scheduled byaskubt
graph (henceforth referred to as STG). Each nodbisf
graph represents a process code portion (subtaatill
be executed in a single quantum of time once it get
scheduled. Note that depending on the computatamgb
performed by the node, each node may require ardiit
amount of FPGA space (i.e., when it is mapped & th
FPGA, it can demand a different size rectangulgiore
than the others). A directed edge (arrow) from deng U
STG to another nodg ¥ STG indicates a data or control
dependence from; o v; that is, y cannot be executed
before v (they can be pipelined in some cases; however,

available, an unused space can be allocated to theWe do not consider pipelining in this paper). Feg2ta

incoming process. This decision depends on two main
factors: (a) relative execution orders of different
processes, and (b) inherent configuration reusakibty
between processes. We will discuss these two issues
detail in the next sectionOur main objective is to
maximize configuration reuse, that is, we would like to
minimize the number of reconfigurations.

It is important to note here that this model assuthat
the configurable device artially reconfigurable (i.e., it
can be selectively programmed without a complete
reconfiguration [3]) in both row and column direxts.
This capability does not exist in some of curreRGASs
such as Xilinx's Virtex [11]. However, as will be
demonstrated later, our approach is also applicabtbe

depicts a typical STG for a process. In this pafies, "
node of process i is denoted as $TG

Since one of the objectives of any FPGA-based syste
is to maximize FPGA utilization, the OS scheduleodd
be able to schedule nodes from the STGs of differen
applications. It should be observed that while omey
have the option of executing each process in et strder
(i.e., not starting executing the next one whiles th
previous one is still running), this may not beeaygood
idea since dependences between the nodes of tharSTG
guestion would prevent full utilization of the alzdile
FPGA space. Therefore, our approach is orientedrisv
maximizing FPGA space utilization by parallel extéoo
of multiple processes. Also, since our processes a



extracted from the same application, there mightiae

requested. Then, we can compute the cost of sdhgdul

dependences between them. For example, Figure 2bSTG; — denoted cost(STi& — in the current context as
shows two STGs and two dependences between (dawn afollows:

dashed arrows).

The crucial step in our configuration-aware schigdul
strategy is assigning an FPGA space for a protegsig
about to start executing. Let us first make an irgu
definition:

Context: The context of an FPGA is a list whose each
entry indicates the status of &FPGA region. An FPGA
region can be defined as a quadruple (also refeorad a
context entry):

[{(s1,%),(e,&)}, process-id, STG-node-id, config-desc],
where ($,) and (g,&) indicate, respectively, the start
and end CLBs for the (rectangular) region in questi
Process-id denotes the process that is using ¢ggorm,
and STG-node-id gives the current STG node that is
executing on that region. Finally, config-desc diss
the current configuration of the region (i.e., what
computation is being performed). Note that, evesretis
no process running in a region, it can still haveadd
config-desc (describing the configuration that teeen
used there the last time).

The OS scheduler has two important tasks:

a. Determining a suitable schedule for the processe
be scheduled.

b. When a process need to start executing, detarmgnin
where (to which FPGA region(s)) its subtasks shdéd
assigned.

One simple strategy would be separating these two
tasks, and first coming up with a schedule and then
determining execution region(s) for each processtsas
turn comes. However, a closer look reveals thatethe/o
tasks are in fact highly related. More specificaltiie

Case 1. If there exists a context entry of the form
{(s1,o).(er,&)}, * * config-desc], such that {(s%),
(ene)}i = {(su=).(ene)} and config-desg = config-
desc, then the cost is assumed to be 0. This eusethe
case where we have an already configured emptyespac
suitable for process i (Here,"d in the second and third
slots of the context entry indicate that no acfivecess
occupies the rectangular region in question. Alge,use
A < B to indicate that region B is at least as large a
region A).

Case 2. Else, if there exists an entry of the form
[{(svs).(ene)}, * * *1, such that {(s,s),(ene)}; <
{(s1,9),(e1,&)}, then the cost is the time (delay) spent in
configuring {(s.%).(e..&)}j amount of FPGA space.
This reconfiguration cost is termed as oskd{(S1.S),
(en,&)}j) in this paper. Note that this corresponds to the
case where we have an empty (i.e., unconfigurealespn
the FPGA (Here, & in the last slot of the context entry
indicates no configuration for the region in ques}i

Case 3. Else, if there exists an entry of the form
{(su%).(ene)}u, k, ki, config-desg], such that {(ss),
(en&)}i < {(s1,%), (en&)}w and config-desc = config-
desg, then process i waits until th® mode of process k is
finished. In this case, we have cost(§¥G=
COSti(STGy), where coski(STGy) is the (remaining)
time for ST, to finish.

Case 4. Else, if there exists an entry of the form
[{(s1.%). (en&)}u, Kk, Kl, config-desg], such that {(s ),
(ene)}i < {(s1%), (en&)}w and config-desc # config-
desg, then process i waits until th hode of process k is
finished. In this case, we have cost(§J¥G=

region(s) on which a process can be executed is anCOStvan(STGku) + COSfeconiy ({(S1.5), (eL.&)};), where

important factor that helps us determine whethshd@uld

be the next process to execute. Therefore, we peopo
configuration-sensitive execution strategy; i.et, each

scheduling step, we select (among the executabkeps)

the one that fits well in one or more regions, with

needing reconfiguration (which is typically a cgstl
operation).

Therefore, in the first step of our approach, we
determine asuitability factor (SF), which indicates how
suitable a schedulable process for the currentegoniVe
define an SF(for process i) at a time instance as the
inverse of thecost of executing a subtask j of process i
(i.e., node STginthe corresponding STG) in the current
context. This cost can vary depending on whethenses
to perform a (partial) reconfiguration or we camse a
configuration, which is already there in the FPGAvide.

Suppose that we are considering §TiGr potential
execution on the FPGA (assuming process i
schedulable). Let config-dgscbe the configuration
required by STG and {(s,s).(e1.&)}; be the region

is

COShait(STGy) is the (remaining) time for STXo finish.
Note that in this case the overall cost has botftivega
time and reconfiguration time components (as oppdose
the previous case where the cost has only a waititay
component). If a single ST,Gdoes not provide suggested
FPGA space, we consider more such nodes until we ha
enough space for ST,G

To sum up, the cost of scheduling §T&n be 0, or
only some reconfiguration latency, or only sometingi
latency, or sum of reconfiguration and waiting teties.
Based on this cost model, it is clear that reusioge
existing FPGA configuration is very critical if orig to
obtain good performance. Our scheduling algorithra
variant of list scheduling, an algorithm frequently
employed by optimizing compilers. In this schedglithe
next STG node to be scheduled (and to be assigned a
FPGA space) is the one that leads to minimum cost
(considering the four cases above) among all sdabltu
nodes. In this way, at each step, this greedy &igiri
selects the next STG node to be scheduled.



. V1 (mult
4. Code restructuring Qi

While the configuration-sensitive scheduling appioa Va (add) V3 (ad)
described above makes maximum configuration reuse Vy (mult) (a) Vs (ada)
within the capacity of list scheduling, it is pd#si to
improve its behavior further by being a bit moreetal
about how the application is coded. Specificallge t v
application can be coded in such a way that theddir Vs (add)(b)6 @de) Ve (add)(é/f (mut)
has h_igher chances fqr finding a suitable spacth (lwiv Figure 3. (a) STG for process i. (b) Two alternate
cost) in the FPGA device. . _ o STGs for process j.

As an example, let us consider Figure 3. This &gur _ ) ]
dependent on process i (i.e., we cannot executenadg
of process j before finishing up all nodes of psxh and 6. Evaluation
the available FPGA space can hold only one noda at

time, we see that as we move from process i togs®g 6.1. Setup
we need to reconfigure the FPGA (from addition to
multiplication). In fact, executing process i folled by We compare our approach to two well-known process

process j requires a minimum of four reconfigunasgio scheduling techniques: FCFS (First-Come-First-Serve
However, if it is also possible to code processsj a and SJF (Shortest-Job-First). In FCFS, each agivin
depicted in Figure 3c, we can reduce the number of process is assigned a time stamp and processes are

reconfigurations to three. This small example iHlates scheduled according to their stamp values. In otlweds,
that if we consider the way in which processescaed, the next process to be executed is the one witlkedhiéest
it may be possible to reduce the number of arrival time stamp. In comparison, in SJF schedplihe
reconfigurations. processes are sorted according to their (estimated)
execution times and the process with the shories is
5. Preconfiguration the one to be executed next. In our implementatibn
these scheduling algorithms, we worked on a subtask
As noted earlier one of the main bottlenecks tioad granularity. We postpone the discussion of how our
prevent us from obtaining good results is the technique can be made preemptive, and how (incte)
reconfiguration delay. A way of reducing its impaould it compares to classical preemptive algorithms sash

be usingpreconfiguration; i.e., (partially) reconfiguring ~ Shortest Remaining Processing Time (SRPT) andesarli
the FPGA before such a configuration is actuallgdesi Deadline First (EDF) to a future study.

(in an attempt to hide the time spent in reconfigon). We implemented our configuration-sensitive process
Our current approach implements the following Scheduler, FCFS, and SJF, and performed experiments

preconfiguration strategy. If the first case in ®et 3 using a custom simulator. Our simulator takes a

(where we determine the cost of executing §Tf@ils but description for the FPGA device and a process tdtdeh

the second case succeeds (i.e., we have availaipeye  entry in this table points to a STG and an arritaile
space in the FPGA that needs to be reconfigureelstart ~ Stamp. As output, the simulator gives thwerage
reconfiguring FPGA before ST,Gis actually scheduled  response time and theFPGA utilization. As in [12], the

for execution. An important issue here is the tahahich response time of a process i (denotgdsrgiven as;r= f
reconfiguration starts. Note that if we invoke - @ Where fis the process’s finishing time, andisits
reconfiguration very early this can lead to podlization arrival time. Then, the average response time & th
of FPGA (since this means keeping a portion offFREA response time divided by the number of processeken
ready for a subtask that will come much later). iBirty, application. In our simulations, we assumed that
if reconfiguration is delayed too much, it may betvery reconfiguring one column takes 200 microseconds, an
beneficial since we may still need to wait for @ t that the task arrival times are dictated by thelieation
complete. In our current implementation, if ST& access pattern.

supposed to be executed at time step t, we start ToO testthe effectiveness of our scheduling stygteg
reconfiguring the FPGA for it at time step t-1. performed experiments with array-based versiontvof

Consequently, we have cost(SG = large, real-life embedded applicatioresicr and usonic.
COSteconid{(51,:%),(€1,8)}) - Doverlap WHere Agyeriap is the encr |_mplements an algorithm for d_|g|tal signature for
time that is saved due to preconfiguration. Sirtylain security. It has two modules, each with eleven esees.

The first module generates a cryptographically-szcu
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Figure 4. Average response times for three
different process scheduling strategies. 11
represents the smallest input size, whereas 15
corresponds to the largest input size. Top: encr;
Bottom: usonic.
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Figure 5. Impact of process code restructuring
and preconfiguration on average response times of
our scheduling strategy

digital signature for each outgoing packet in amoeked
architecture, User requests and packet send opesati
have been implemented as processes. The secondemodu
checks the digital signature attached to an incgmin
message. The main data structure used is an drfsyso
The application code contains 355 C lines. Our séco
application,usonic, is a feature-based object estimation
algorithm. It stores a set of encoded objects,ginen an
image and a request, it extracts the potential atbjef
interest and compares them to the objects storettien
database (which is also updated during the procHss)
written in C, consists of twelve processes, andtans
830 lines. For each benchmark code, we performed
experiments with five different input sizes (I1dbgh 15,
where 11 is the smallest input size, and 15 isléingest).

6.2. Results

The plots in Figure 4 give the average response tim
(in msec) for FCFS, SJF, and our scheduling styateg
(denoted CS) with different input sizes. In obtagthese
curves, we have not employed preconfiguration ocess
code restructuring. We see that when the inputisizery
small (I11), the overheads dominate, and there ismah
difference between different scheduling algorithrirs.
other words, the configuration reuse is not verioal.
However, with the larger inputs, we observe tha th
configuration-sensitive (CS) scheduling outperforthe
other two algorithms.

Impact of process code restructuring. The curves
marked as “Restructured” in Figure 5 illustrate itm@act
of code restructuring in these two applications. ¥ée
that while both the applications benefit from code
restructuring, usonic shows larger savings, mainly
because there are fewer dependences between tég inod
the STG of this benchmark, and thus, we have more
flexibility in re-ordering the processes.

Impact of preconfiguration. The curves marked as
“Preconfigured” in Figure 5 illustrate the benefitsming
from preconfiguration. It can be observed that,
compared to process code restructuring, this opéitian
is much more successful. This is because while gaoc
code restructuring is not always possible (dueaia énd
control dependences between STG nodes),
preconfiguration can be effective most of the tirsiece
the scheduler has advance information as to whicbess
will be executed next.

To better understand the trends illustrated in Ffeda
we also collected statistics that give us the hteak of
the four cases listed in Section 3. Recall thatase 1, we
incur a cost of 0; in Case 2 a cost of reconfigaratin
Case 3 a cost of waiting; and in Case 4 costs dfi bo
waiting and reconfiguration. The breakdowns given i
Figure 6 clearly show that Case 1 and Case 3 ddenina
execution behavior, Case 1 taking the biggest sHare
other words, our approach makes good use of
configuration reuse. The reason that Case 2 ddezcear
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Figure 6. Percentage breakdown of different cases.
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Figure 7. Space utilization over time. 1D = one- presented a new OS scheduling algorithm for FPGA-
d:menSIOI’tla| placement; 2D = two-dimensional based computation environments. A unique charatieri
placement.

of this algorithm is that it maximizes configuraticeuse,

very frequently is the fact that it can only ocduring the thereby reducing the latency incurred during

initial phase of execution when not all of the FP§#ace reconfiguration. In addition, the two optimizationge

has been fully utilized yet. have proposed, process code restructuring
Another important parameter to study is FPGA space preconfiguration, help further improve performarwmeer

utilization. The graph in Figure 7 shows the space the classical process scheduling strategies.

utilization (over the course of execution) for thso
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