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Abstract 
Reconfigurable computing has become an important part 
of research in software systems and computer 
architecture. While prior research on reconfigurable 
computing have addressed architectural and 
compilation/programming aspects to some extent, there is 
still not much consensus on what kind of operating system 
(OS) support should be provided. In this paper, we focus 
on OS process scheduler, and demonstrate how it can be 
customized considering the needs of reconfigurable 
hardware. Our process scheduler is configuration 
sensitive, that is, it reuses the current FPGA configuration 
as much as possible.  Our extensive experimental results 
show that the proposed scheduler is superior to classical 
scheduling algorithms such First-Come-First-Serve 
(FCFS) and Shortest Job First (SJF).    
 
 

1. Introduction  
 
Reconfigurable computing systems have shown the 

ability to greatly accelerate program execution, thereby 
providing a high-performance alternative to software-only 
implementations and a programmable alternative to 
ASICs. While prior research have addressed architecture 
design and programming and compilation issues 
[7,10,1,8,3, 9], there is still not much consensus on what 
kind of operating system (OS) support should be provided 
for reconfigurable architectures. Prior OS related work 
[12] has evaluated different scheduling algorithms on an 
FPGA based platform, and found that different scheduling 
algorithms can generate different results. Brebner [2] 
discusses some basic issues that can impact the 
construction of an operating system for FPGAs with 
dynamic reconfiguration capability. He proposes that 
applications be designed into relocatable cores. Diessel et 
al [4,5], Gindy et al [6], and Wigley and Kearney [13] 
discuss high-level OS support for reconfigurable systems. 

Obviously, a simple solution to the OS problem in the 
context of reconfigurable computing is to let the 
reconfigurable hardware be transparent to the OS. In this 

case, we do not need to change any OS algorithm/data 
structure, and reconfigurable hardware is managed by the 
compiler and/or user application. While this is certainly a 
viable option in some cases, we believe that making the 
OS aware of the reconfigurable device could lead to better 
overall system behavior. There are two major reasons for 
that:  

a. First, if the OS is not aware of the reconfigurable 
hardware, each application can reconfigure it considering 
only its own needs, and this may lead to frequent 
reconfigurations at runtime as the OS scheduler moves 
from one application to another during the course of 
execution.  

b. Second, the OS can pre-configure the hardware 
considering the next process to be executed (based on the 
scheduling information it has), and this can help reduce 
the time spent in reconfiguration.  

Based on these, this paper presents a customized OS 
scheduling support for an FPGA-based execution 
environment. Unlike previous work on OS scheduling 
[12], the scheduling algorithm presented here is 
configuration-sensitive; i.e., it tries to reuse the current 
configuration as much as possible. Also, we demonstrate 
that pre-configuration can make a significant performance 
difference. In addition, we also present a code 
restructuring strategy, using which we modify process 
codes to make better reuse of the current FPGA 
configuration.   

Our experiments with this new scheduler and process 
code restructuring strategy reveal that they can improve 
performance significantly. Our experimental results also 
demonstrate that the proposed scheduler is superior to 
classical scheduling algorithms such First-Come-First-
Serve (FCFS) and Shortest Job First (SJF).   Based on 
these results, we recommend the OS designers for 
embedded systems that employ reconfigurable fabric to 
customize their process scheduling algorithms.  

This paper is structured as follows. The next section 
describes the reconfigurable environment we target. 
Section 3 gives details of our approach to process 
scheduling. Section 4 discusses potential performance 
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benefits due to process code restructuring. Section 5 
discusses preconfiguration, an optimization that blends 
well with our scheduling strategy. Section 6 gives 
simulation results. Finally, Section 7 provides our 
conclusions.  

 
2. Reconfigurable architecture and execution 
environment  

 
In this section, we present the main assumptions that 

we make about our architecture. We model our 
reconfigurable system as a rectangular array of 
configurable logic blocks (say NxM) – called CLBs. We 
also assume an on-chip interconnect that ties these blocks 
together. Many commercial FPGAs fit in this description. 
Each process to be scheduled in this architecture uses a 
“rectangular portion” of this array. For example, Figure 1 
illustrates a 6x8 array and three processes scheduled on it 
(they occupy spaces of 2x3, 2x4, and 6x2 CLBs). For 
clarity, we omit from the figure the interconnects between 
CLBs and the input-output blocks (IOBs). In this 
environment, when a new incoming process needs to be 
scheduled, the OS needs to find a (rectangular) space for it 
in the reconfigurable device (this is called space 
allocation). This space can be one of the spaces that have 
already been allocated to some other process that could 
not run concurrently with this incoming process (this is 
called configuration reuse in this paper). Or alternately, if 
available, an unused space can be allocated to the 
incoming process. This decision depends on two main 
factors: (a) relative execution orders of different 
processes, and (b) inherent configuration reuse capability 
between processes. We will discuss these two issues in 
detail in the next section. Our main objective is to 
maximize configuration reuse, that is, we would like to 
minimize the number of reconfigurations.  

It is important to note here that this model assumes that 
the configurable device is partially reconfigurable (i.e., it 
can be selectively programmed without a complete 
reconfiguration [3]) in both row and column directions. 
This capability does not exist in some of current FPGAs 
such as Xilinx’s Virtex [11]. However, as will be 
demonstrated later, our approach is also applicable to the 

cases where the FPGA is reconfigurable only in vertical 
chip-spanning columns.  

It should be mentioned that there can also be a host 
processor in the system.   However, we assume that the 
portions (from each application/process) that will be 
executed in the FPGA part have already been decided 
prior to our scheduling.  In the following discussion, when 
there is no confusion, we use the terms FPGA and 
reconfigurable/configurable system interchangeably. We 
are targeting an embedded environment, where processes 
(tasks) are extracted from a given embedded application.  
Note that many embedded applications are coded in a 
modular fashion as multiple co-operating processes.  

 

3. Our approach to scheduling  
 
We represent each process to be scheduled by a subtask 

graph (henceforth referred to as STG). Each node of this 
graph represents a process code portion (subtask) that will 
be executed in a single quantum of time once it gets 
scheduled. Note that depending on the computation being 
performed by the node, each node may require a different 
amount of FPGA space (i.e., when it is mapped to the 
FPGA, it can demand a different size rectangular region 
than the others). A directed edge (arrow) from a node vi ∈ 
STG to another node vj ∈ STG indicates a data or control 
dependence from vi to vj; that is, vj cannot be executed 
before vi (they can be pipelined in some cases; however, 
we do not consider pipelining in this paper). Figure 2a 
depicts a typical STG for a process. In this paper, the jth 

node of process i is denoted as STGij.   
Since one of the objectives of any FPGA-based system 

is to maximize FPGA utilization, the OS scheduler should 
be able to schedule nodes from the STGs of different 
applications. It should be observed that while one may 
have the option of executing each process in a strict order 
(i.e., not starting executing the next one while the 
previous one is still running), this may not be a very good 
idea since dependences between the nodes of the STG in 
question would prevent full utilization of the available 
FPGA space. Therefore, our approach is oriented towards 
maximizing FPGA space utilization by parallel execution 
of multiple processes.  Also, since our processes are 
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Figure 1. A 6x8 CLB array and regions used by 
three processes. 

vi
vj

(a) (b)  
Figure 2. (a) An example STG (note that node vj depends 
on node vi). (b) Two STGs and data dependences 
between them (shown as dashed arrows). 



extracted from the same application, there might be data 
dependences between them. For example, Figure 2b 
shows two STGs and two dependences between (drawn as 
dashed arrows).  

The crucial step in our configuration-aware scheduling 
strategy is assigning an FPGA space for a process that is 
about to start executing. Let us first make an important 
definition: 

Context:  The context of an FPGA is a list whose each 
entry indicates the status of an FPGA region. An FPGA 
region can be defined as a quadruple (also referred to as a 
context entry):  
[{(s1,s2),(e1,e2)}, process-id, STG-node-id, config-desc], 

where (s1,s2) and (e1,e2) indicate, respectively, the start 
and end CLBs for the (rectangular) region in question. 
Process-id denotes the process that is using that region, 
and STG-node-id gives the current STG node that is 
executing on that region. Finally, config-desc describes 
the current configuration of the region (i.e., what 
computation is being performed). Note that, even there is 
no process running in a region, it can still have a valid 
config-desc (describing the configuration that has been 
used there the last time).  

The OS scheduler has two important tasks: 
a. Determining a suitable schedule for the processes to 

be scheduled. 
b. When a process need to start executing, determining 

where (to which FPGA region(s)) its subtasks should be 
assigned. 

One simple strategy would be separating these two 
tasks, and first coming up with a schedule and then 
determining execution region(s) for each process as its 
turn comes. However, a closer look reveals that these two 
tasks are in fact highly related. More specifically, the 
region(s) on which a process can be executed is an 
important factor that helps us determine whether it should 
be the next process to execute. Therefore, we propose a 
configuration-sensitive execution strategy; i.e., at each 
scheduling step, we select (among the executable process) 
the one that fits well in one or more regions, without 
needing reconfiguration (which is typically a costly 
operation).   

Therefore, in the first step of our approach, we 
determine a suitability factor (SF), which indicates how 
suitable a schedulable process for the current context. We 
define an SFi (for process i) at a time instance as the 
inverse of the cost of executing a subtask j of process i 
(i.e., node STGij in the corresponding STG) in the current 
context. This cost can vary depending on whether we need 
to perform a (partial) reconfiguration or we can reuse a 
configuration, which is already there in the FPGA device.   

Suppose that we are considering STGij for potential 
execution on the FPGA (assuming process i is 
schedulable). Let config-descij be the configuration 
required by STGij and {(s1,s2),(e1,e2)} ij be the region 

requested. Then, we can compute the cost of scheduling 
STGij – denoted cost(STGij) – in the current context as 
follows:  

Case 1. If there exists a context entry of the form 
[{(s1,s2),(e1,e2)}, *, *, config-desc], such that {(s1,s2), 
(e1,e2)} ij   ≤  {(s1,s2),(e1,e2)} and config-descij  = config-
desc, then the cost is assumed to be 0. This represents the 
case where we have an already configured empty space 
suitable for process i (Here, a ‘*’ in the second and third 
slots of the context entry indicate that no active process 
occupies the rectangular region in question. Also, we use 
A ≤ B to indicate that region B is at least as large as 
region A). 

Case 2. Else, if there exists an entry of the form 
[{(s1,s2),(e1,e2)}, *, *, *], such that {(s1,s2),(e1,e2)} ij   ≤  
{(s1,s2),(e1,e2)}, then the cost is the time (delay) spent in 
configuring {(s1,s2),(e1,e2)} ij   amount of FPGA space.  
This reconfiguration cost is termed as costreconfig({(s1,s2), 
(e1,e2)} ij) in this paper. Note that this corresponds to the 
case where we have an empty (i.e., unconfigured) space in 
the FPGA (Here, a ‘*’ in the last slot of the context entry 
indicates no configuration for the region in question). 

Case 3. Else, if there exists an entry of the form 
[{(s1,s2),(e1,e2)} kl, k, kl, config-desckl], such that {(s1,s2), 
(e1,e2)} ij   ≤  {(s1,s2), (e1,e2)} kl and config-descij  = config-
desckl, then process i waits until the lth node of process k is 
finished. In this case, we have cost(STGij) = 
costwait(STGkl), where costwait(STGkl) is the (remaining) 
time for STGkl to finish. 

Case 4. Else, if there exists an entry of the form 
[{(s1,s2), (e1,e2)} kl, k, kl, config-desckl], such that {(s1,s2), 
(e1,e2)} ij   ≤  {(s1,s2), (e1,e2)} kl and config-descij  ≠ config-
desckl, then process i waits until the lth node of process k is 
finished. In this case, we have cost(STGij) = 
costwait(STGkl) + costreconfig ({(s1,s2), (e1,e2)} ij), where 
costwait(STGkl) is the (remaining) time for STGkl to finish. 
Note that in this case the overall cost has both waiting 
time and reconfiguration time components (as opposed to 
the previous case where the cost has only a waiting delay 
component). If a single STGkl does not provide suggested 
FPGA space, we consider more such nodes until we have 
enough space for STGij. 

To sum up, the cost of scheduling STGij can be 0, or 
only some reconfiguration latency, or only some waiting 
latency, or sum of reconfiguration and waiting latencies. 
Based on this cost model, it is clear that reusing some 
existing FPGA configuration is very critical if one is to 
obtain good performance.  Our scheduling algorithm is a 
variant of list scheduling, an algorithm frequently 
employed by optimizing compilers. In this scheduling, the 
next STG node to be scheduled (and to be assigned an 
FPGA space) is the one that leads to minimum cost 
(considering the four cases above) among all schedulable 
nodes. In this way, at each step, this greedy heuristic 
selects the next STG node to be scheduled.  

 



4. Code restructuring  
 
While the configuration-sensitive scheduling approach 

described above makes maximum configuration reuse 
within the capacity of list scheduling, it is possible to 
improve its behavior further by being a bit more careful 
about how the application is coded. Specifically, the 
application can be coded in such a way that the scheduler 
has higher chances for finding a suitable space (with low 
cost) in the FPGA device.  

As an example, let us consider Figure 3. This figure 
shows an STG for process i (in Figure 3a) and an STG for 
process j (in Figure 3b).  Assuming that process j is 
dependent on process i (i.e., we cannot execute any node 
of process j before finishing up all nodes of process i) and 
the available FPGA space can hold only one node at a 
time, we see that as we move from process i to process j, 
we need to reconfigure the FPGA (from addition to 
multiplication). In fact, executing process i followed by 
process j requires a minimum of four reconfigurations. 
However, if it is also possible to code process j as 
depicted in Figure 3c, we can reduce the number of 
reconfigurations to three. This small example illustrates 
that if we consider the way in which processes are coded, 
it may be possible to reduce the number of 
reconfigurations.  

 
5. Preconfiguration 

 
As noted earlier one of the main bottlenecks that could 

prevent us from obtaining good results is the 
reconfiguration delay. A way of reducing its impact could 
be using preconfiguration; i.e., (partially) reconfiguring 
the FPGA before such a configuration is actually needed 
(in an attempt to hide the time spent in reconfiguration). 

Our current approach implements the following 
preconfiguration strategy. If the first case in Section 3 
(where we determine the cost of executing STGij) fails but 
the second case succeeds (i.e., we have available empty 
space in the FPGA that needs to be reconfigured), we start 
reconfiguring FPGA before STGij is actually scheduled 
for execution. An important issue here is the time at which 
reconfiguration starts. Note that if we invoke 
reconfiguration very early this can lead to poor utilization 
of FPGA (since this means keeping a portion of the FPGA 
ready for a subtask that will come much later). Similarly, 
if reconfiguration is delayed too much, it may not be very 
beneficial since we may still need to wait for it to 
complete. In our current implementation, if STGij is 
supposed to be executed at time step t, we start 
reconfiguring the FPGA for it at time step t-1. 
Consequently, we have cost(STGij) = 
costreconfig({(s1,s2),(e1,e2)}) - ∆overlap, where ∆overlap is the 
time that is saved due to preconfiguration. Similarly, in 

the fourth case (in Section 3), the preconfiguration for the 
STG node scheduled for time t starts at time t-1.  

 
6. Evaluation 

 
6.1. Setup  

 
We compare our approach to two well-known process 

scheduling techniques: FCFS (First-Come-First-Serve) 
and SJF (Shortest-Job-First). In FCFS, each arriving 
process is assigned a time stamp and processes are 
scheduled according to their stamp values. In other words, 
the next process to be executed is the one with the earliest 
arrival time stamp. In comparison, in SJF scheduling, the 
processes are sorted according to their (estimated) 
execution times and the process with the shortest time is 
the one to be executed next. In our implementation of 
these scheduling algorithms, we worked on a subtask 
granularity. We postpone the discussion of how our 
technique can be made preemptive, and how (in that case) 
it compares to classical preemptive algorithms such as 
Shortest Remaining Processing Time (SRPT) and Earliest 
Deadline First (EDF) to a future study.  

We implemented our configuration-sensitive process 
scheduler, FCFS, and SJF, and performed experiments 
using a custom simulator. Our simulator takes a 
description for the FPGA device and a process table. Each 
entry in this table points to a STG and an arrival time 
stamp. As output, the simulator gives the average 
response time and the FPGA utilization. As in [12], the 
response time of a process i (denoted ri) is given as ri = fi 
– ai, where fi is the process’s finishing time, and ai is its 
arrival time. Then, the average response time is the 
response time divided by the number of processes in the 
application. In our simulations, we assumed that 
reconfiguring one column takes 200 microseconds, and 
that the task arrival times are dictated by the application 
access pattern. 

To test the effectiveness of our scheduling strategy, we 
performed experiments with array-based versions of two 
large, real-life embedded applications: encr and usonic. 
encr implements an algorithm for digital signature for 
security. It has two modules, each with eleven processes. 
The first module generates a cryptographically-secure 
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Figure 3. (a) STG for process i. (b) Two alternate 
STGs for process j.  



digital signature for each outgoing packet in a networked 
architecture, User requests and packet send operations 
have been implemented as processes. The second module 
checks the digital signature attached to an incoming 
message. The main data structure used is an array of lists. 
The application code contains 355 C lines. Our second 
application, usonic, is a feature-based object estimation 
algorithm. It stores a set of encoded objects, and given an 
image and a request, it extracts the potential objects of 
interest and compares them to the objects stored in the 
database (which is also updated during the process). It is 
written in C, consists of twelve processes, and contains 
830 lines. For each benchmark code, we performed 
experiments with five different input sizes (I1 through I5, 
where I1 is the smallest input size, and I5 is the largest). 

  

6.2. Results 
 
The plots in Figure 4 give the average response time 

(in msec) for FCFS, SJF, and our scheduling strategy 
(denoted CS) with different input sizes. In obtaining these 
curves, we have not employed preconfiguration or process 
code restructuring. We see that when the input size is very 
small (I1), the overheads dominate, and there is not much 
difference between different scheduling algorithms. In 
other words, the configuration reuse is not very critical. 
However, with the larger inputs, we observe that the 
configuration-sensitive (CS) scheduling outperforms the 
other two algorithms.  

Impact of process code restructuring.  The curves 
marked as “Restructured” in Figure 5 illustrate the impact 
of code restructuring in these two applications. We see 
that while both the applications benefit from code 
restructuring, usonic shows larger savings, mainly 
because there are fewer dependences between the nodes in 
the STG of this benchmark, and thus, we have more 
flexibility in re-ordering the processes.  

Impact of preconfiguration. The curves marked as 
“Preconfigured” in Figure 5 illustrate the benefits coming 
from preconfiguration. It can be observed that, as 
compared to process code restructuring, this optimization 
is much more successful. This is because while process 
code restructuring is not always possible (due to data and 
control dependences between STG nodes), 
preconfiguration can be effective most of the time, since 
the scheduler has advance information as to which process 
will be executed next. 

To better understand the trends illustrated in Figure 5, 
we also collected statistics that give us the breakdown of 
the four cases listed in Section 3. Recall that in Case 1, we 
incur a cost of 0; in Case 2 a cost of reconfiguration; in 
Case 3 a cost of waiting; and in Case 4 costs of both 
waiting and reconfiguration. The breakdowns given in 
Figure 6 clearly show that Case 1 and Case 3 dominate 
execution behavior, Case 1 taking the biggest share. In 
other words, our approach makes good use of 
configuration reuse. The reason that Case 2 does not occur 
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Figure 4. Average response times for three 
different process scheduling strategies. I1 
represents the smallest input size, whereas I5 
corresponds to the largest input size. Top: encr; 
Bottom: usonic. 
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very frequently is the fact that it can only occur during the 
initial phase of execution when not all of the FPGA space 
has been fully utilized yet.  

Another important parameter to study is FPGA space 
utilization. The graph in Figure 7 shows the space 
utilization (over the course of execution) for the two 
benchmarks when no preconfiguration or process code 
restructuring is used (when they are used, the curves look 
better) – marked “2D”. We observe from these results that 
the space utilization is quite good, which explains the 
response time behavior of these applications. It is to be 
noted that there are two primary reasons, because of 
which we may not be able to achieve 100% space 
utilization all the time. First, at the beginning of 
execution, some FPGA space is not used (until enough 
STG nodes are scheduled); this is what we observe at the 
leftmost portion of the curves. Second, since we work 
with rectangular space allocations, this can lead to 
fragmentation; that is what we observe beyond the initial 
portion of the execution. In comparison, the curves 
marked “1D” give the same results with 1D allocation. 
That is, each STG node is allocated the entire height of 
the CLB array, and, as many contiguous columns as are 
needed to layout the circuit. We observe that while the 
results with this 1D allocation are not as good as those 
with the 2D allocation, the former is still able to generate 
good results. Specifically, Figure 8 presents a comparison 
of 1D and 2D allocation policies under our configuration-
sensitive process scheduling. Comparing this figure with 
Figure 4, one can see that 1D results are actually 
competitive with those of SJF and FCFS (even when these 
two are used in conjunction with 2D placement). 

 
7. Conclusions  

 
The main benefits of FPGA-based computing are the 

ability to execute larger hardware designs with fewer 
gates and to realize the flexibility of a software-based 
solution while retaining the execution speed of a more 
hardware-centric approach. In this paper, we have 

presented a new OS scheduling algorithm for FPGA-
based computation environments. A unique characteristic 
of this algorithm is that it maximizes configuration reuse, 
thereby reducing the latency incurred during 
reconfiguration. In addition, the two optimizations we 
have proposed, process code restructuring and 
preconfiguration, help further improve performance over 
the classical process scheduling strategies.  
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Figure 8. Comparison of 1D and 2D placements. 

0

20

40

60

80

100

120

Epochs

S
pa

ce
 U

til
iz

at
io

n 
(%

)
CS encr (2D) CS encr (1D)

CS usonic (2D) CS usonic (1D)

 
Figure 7. Space utilization over time. 1D = one-
dimensional placement; 2D = two-dimensional 
placement.  
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