I mpact of Data Transformations on Memory Bank L ocality

M. Kandemir
Department of Computer Science and Engineering
The Pennsylvania Sate University, USA
kandemir @cse.psu.edu

Abstract
High-energy consumption presents a problem for sustainable clock
frequency and deliverable performance. In particular, memory
energy consumption of array-intensive applications can be
overwhelming due to poor cache locality. One option for reducing
memory energy is to adopt a banked memory architecture, where
memory space is divided into banks and each bank can be powered
down if it is not in active use. An important issue here is the bank
access pattern, which determines opportunities for saving energy. In
this paper, we present a compiler-based data layout transformation
strategy for increasing the effectiveness of a banked memory
architecture. The idea is to transform the array layouts in memory
in such a way that two loop iterations executed one after another
access the data in the same bank as much as possible; the remaining
banks can be placed into a low-power mode. Our simulation-based
experiments with nine array-intensive applications show significant
savings in memory energy consumption.

1. Introduction and motivation

The PC
evolutionary memory transitions: from Fast PagedlMmemory

resynchronization cost can be compensated by &ignifsavings
in energy. In comparison, a short idleness eittigmet allow us
to place the bank into the most energy-saving nfpee the one
that consumes the smallest amount of energy pée)cyar will
incur large performance penalty. Consequentlyngwoitant goal
is to increase idleness of memory banks as muglossble. This
can be achieved by smart data allocations to merbanks
and/or re-ordering computations. In this study, make a case
for compiler-oriented data layout transformations &rray data
since it can increase the effectiveness of low-powmdes
available in the memory system. We also need tdtioretthat in
this work we assume that no virtual memory suppgists in the
system under consideration. Consequently, the dempian
directly work with physical addresses; that ixah layout data in
physical memory and place banks into low-power raodased
on the information it collects during program arsédy Note that
there exist many embedded systems that work withouttual
memory support [5]. Work is in progress to extemel techniques
discussed in this paper to environments with virmemory (by

industry has successfully completed severaknlisting help from the operating system (OS)).

Previous research shows that compiler-based (2}, OS-

to EDO, to PC66 SDRAM, to PC100 SDRAM. While memory based (e.g., [8]), and pure hardware-based sch@mgs[2]) are

banking has been a widely employed technique inpidet for
increasing performance, its use in saving energgléively new.
One important advantage of a banked memory system the
energy consumption viewpoint is that the banks #hatnot used
by the current computation should not be poweredthgreby
reducing overall energy consumption.

Our focus is on a banked memory architecture wisaeh
bank can be power-controlled independently. Morectigally,
each bank can be placed into low-power operatindenvehen it
is not used by the current computation. In an RDRWé
architecture, one may have multiple low-power mo@stes) to
choose from when a memory bank is detected tolbeAdmajor
tradeoff between these different modes is betwéen energy
saving (while in the low-power mode) and resynciaation cost
(i.e., the time it takes to bring back a memorylbom the low-
power state to the fully-operational active state).

Figure 1 shows typical low-power operating modes an

transitions between them. The values associateu té nodes
correspond to the per cycle energy consumptionttier bank,
whereas the values associated with the edges tadite
resynchronization costs. These values clearly tittis the
tradeoff between energy and performance. Speltyfica more
energy saving operating mode also incurs
resynchronization cost.

It should be observed that the benefits from low+po
operating modes can increase if, somehow, idleakfise bank

a higher

possible to decide the most suitable low-power nodese when
a memory bank is detected to be idle. Since inwiloik we focus
on array-intensive applications, we opted to userapiler-based
approach, where an optimizing compiler (taking imtccount
loop access patterns and array-to-bank mappindsat-ig, the
layout of data in banked memory) decides which aftireg mode
to use. Note that (where applicable) such a comp#ésed
strategy has an important advantage over pure G&dband
hardware-based techniques. Specifically, the campihsed
strategy (unlike pure OS or pure hardware-basedesfies) does
not rely on history of data access patterns; thathe compiler
can predict (quite accurately for the array-inteesiodes) future
data access patterns (and also, future idle tinees),select the
most appropriate mode to switch to when idlenegsddicted. In
addition, the compiler can also predict when ag lathink will be
requested in the future, and can pre-activate #rinattempt to
eliminate re-synchronization latency. Details o& thompiler-
based low-power mode detection strategy are betrmndcope of
this paper. It should be noted, however, that trapsler-based

2 cycles

Standby I
0.83n] / 30 cycles

9000 cycles

PowerDown
0.005nJ

could be increased. This is because in this case th Fig 1. Operating modes and transitions between them.

1530-1591/04 $20.00 (c) 2004 IEEE

strategy selects the most suitable operating mdéates given
access pattern and memory layout. In this wamkmodify data
layouts in memory to allow the compiler place more banks into
low-power mode and/or keep banks in low-power operating
modes longer. In other wordsour approach is geared towards
increasing the effectiveness of compiler-directed |ow-power

3. Array-to-virtual bank mapping

In our framework, array elements are mapped to SjohY)
memory banks using a two-level mapping. In thet fiesel, an
index vector (of an array) is mapped to a virtuahly and in the

mode management. While previous research employed data second level, each virtual bank is mapped to aiphly®ank.

layout transformations for cache locality [11, i@ this paper, we
use them for energy optimization
architectures.

[3] studies OS-based DRAM power control policie3] [
evaluates the impact of classical loop optimizati@am energy
consumption of banked memories. [6] presents aatitm space
reordering technique for banked memories. In @sttithe work
presented in this paper is oriented toward incnepie benefits
of low-power modes by data distributions across orgnbanks.
[4] shows how a sleep mode can be exploited for omgm
partitions. [15] and [14] discuss techniques fopleiting dual
banks for ASIPs and DSPs, respectively. [12] ad@®she topic
of incorporating the application-specific custontiza of
memory bank configuration into behavioral synthesls
comparison, we study how compiler-directed datantpation
can improve energy behavior of a multi-banked sgste

The rest of this paper is organized as follows.tiBec2
presents background on
representations for array-intensive applicationsecti®n 3
explains array-to-virtual bank mappings and Sectiotiscusses
virtual bank-to-physical bank mapping. Section Hves how
data transformations can be useful in increasiegeffectiveness
of low-power operating modes. Section 6 introducas
experimental platform, and presents data that shibw
effectiveness of our strategy. Section 7 gives caomcluding
remarks.

2. Preliminaries

We can define iterations of a loop nest as a set) element
of which corresponds to an iteration vector. Eagécation of
loop body uses a vector from this set. Given thisarray access
within a loop nest can be expressed as RI + r, avifeiis the
access matrix, | is the iteration vector, and arsoffset vector
[16, 10]. As an example, for an array referencdasA(i-1,j+2)
that occurs within a loop nest where i is the olmep and j is
the inner, R is the identity matrix, | = (i j)@&nd r = (-1 2)T. It
is to be noted that each iteration vector | acceeaseelement via
this array reference. An array element accessednbiteration
vector represents an index vector. In the examplve this
vector is a = (i-1 j+1)T. It can be observed ttighe nest in
question has n loops and the reference in quesgtongs to a k-
dimensional array, R is a k-by-n matrix, | is arentry vector,
and r is a k-entry vector.

Informally, a data transformation indicates a magpof the
index space. In mathematical terms, a data tramsfiion can be
represented using a pair (M,m), and it transformsogginal
index vector RI+r to MRI+Mr + m. If we restrict aelves to
dimension-preserving data transformations, M iskey4k matrix
and m is a k-entry vector (for a k-dimensional xraFor
instance, assuming that | 0

wEY (9

the index vector a = (i-1 j+1)s mapped to (j+1 i-1)

in banked memory

iteration space and dataespa

This two-level process is depicted in Figure 2.

The compiler operates under the assumption oftaalibank
space (VBS), which can be multi-dimensional. Gian array
index vector a, we find the virtual bank it is magdpusing an
affine mappingda +¢. Therefore, two different elements (of the
same array) represented by index vectors a andpbami the
same virtual bank if and only if:

ba+¢ =6b +¢p = Ba=6b= 6(a-b) =0.

In other words, (a-b) should be in the kernel $ef.dn this
paper, the pair§($) is called the bank mapping. Note that
different criteria can be used in determining <léabank
mappings, and each array can have a different trapping than
the other arrays in a given application.

4. Virtual bank-to-physical bank mapping

A virtual bank-to-physical bank mapping (or a plogsi
mapping for short) determines how virtual banks rmepped to
the physical banks in the architecture. Let v béral bank.
The corresponding physical bank can be determirgdgua
mapping such asv + a. Now, in order for two different array
elements a and b to be mapped to the same physicél one
should have:

Pa+&p +o0=E80Bb +& + 0= E&Pa =EBb= &0 (a-b) = 0.

There is a good reason to adopt such a two-levg@lping
(instead of using a more intuitive one-level mappthat maps
arrays directly to the physical banks). In manyesasve want a
compiler optimization to be easily portable to dmeutplatform
without much difficulty. Because of this, it makssnse to work
with VBS rather than PBS (physical bank spacepther words,
we can write our compiler-based optimization stgtenly once
(using the VBS as the reference point), and whemarg to port
it to other architectures (with different physitenk structures),
we only need to change the virtual bank-to-physibahk
mapping. Note that, in general, the virtual banpiysical bank
mapping can reduce the dimensionality and/or egt@imension
sizes) of the VBS. Informally, a mapping is spexifby giving a
decomposition style for each dimension of the wairtbank space
along with the physical bank size in each dimengiohthe
physical bank space). For example, a mapping ssich a

(b11b21b3) - (bl/pv*v*)

indicates that a three-dimensional virtual bank cepas
mapped to a one-dimensional physical bank spae?* fibtation
indicates that the corresponding virtual bank disiam is not

Array 12 Virtual Banks 3 Physical
: ==
n =
i sl
apping apping

Fig 2. Two-level mapping of an array into memory banks.

distributed across the physical banks. This medos, the
mapping above, that the second and third dimenséwasnot
distributed; instead, they are folded. The notatigip (where /
denotes integer division) in the first dimensiom the other
hand, reveals that this dimension (of the virtuahlb space) is
distributed across p physical banks. So, assumirg& under
such a mapping, the virtual bank (16,i,)) is mappedghysical
bank 2 for all values i and j can take. In termsnatrices, such a
mapping can be expressed&s: (1/p 0 0) andr = 0.

It should be noted that this mapping function da&bn is
quite general and encompasses very different tyfegirtual
bank-to-physical bank mappings. For example, it
accommodate functions such as

(b1,bp,b5) — (bu/p,br/a,¥)

which indicates that a three-dimensional virtuatlbapace is
mapped to a two-dimensional physical bank spacedbiatains
pxq banks (this might be useful, for example, fame SDRAMs
where memory banks form actually a two-dimensiagrad). It
should also be noted that when multiple virtualksaare mapped
to the same physical bank, the loop iterations #taess those
virtual banks are localized (that is, they exhiidink locality as
they now — after folding — access the same phydicaik).
Therefore, selection of a suitable mapping functicen be
important. A virtual bank-to-physical bank mappimigs to take
advantage of spatial locality between neighboringnks.
However, from the compiler's perspective, it shobtsufficient
to work with the VBS instead of the PBS. This iscdugse
whenever we achieve access locality for a virtuahky it is
guaranteed that that locality will extend to theSP&s well since
a virtual bank is mapped to only a single physibank.
Therefore, optimizing bank locality in the VBS isfficient for
our purposes. The rest of this paper discussesappiroach to
optimizing bank locality in the VBS.

5. Roleof datatransformationsin bank locality

As discussed earlier, our focus in this paper istadying the
cases where a data transformation might be of nsxploiting
bank locality for array-intensive applications. Le$ start by
defining formally what we mean by bank locality.

Definition: If two iteration vectors, say | and J, are veryselo
to each other (that is, I-J = a lexicographicalipai value,
preferably (0 0 0 ... 0 1), they are said to havemporal
affinity.

Definition: If two iteration vectors with temporal affinity
access the array elements in the same virtual bhak,are said
to exhibitbank locality.

Now, let us determine the condition for bank lawyali

Letl"=1+(0 0 0...0 T) where + denotes vector addition.

In order to have bank locality, the array elemeatsessed by |
and I (via the same array reference in the code) shioeildn the
same virtual bank. In mathematical terms, we nedthte:
BRI+ 1) +d =O(RI" + 1) +¢ = BRI =6RI'= Bh =0,

where h is the last column of R. This type of b&odality can
be termed amtra-reference bank locality, i.e., the bank locality
that originates from a single array reference ie #ipplication
code.

It is important to note here that for a giv@matrix, the vector
h may or may not be in its kernel set. Therefoteisinot
guaranteed that we can achieve intra-reference bacity.

caneasy to see that:

Now, let us assume that we use a data transformegjaresented
by (M,m) in the array in question. In this casewniing the
condition for intra-reference bank locality, onegfti have:
B(MRI + Mr + m) +¢ =8(MRI* + Mr + m) +¢
= 6MRI = BMRI" = 6Mh = 0.

It is to be observed that, now, we have a flexiilof
selecting a suitable M such that h is in the kesetl of 6M.
Therefore, we can conclude that data transformstican be
useful for achieving intra-reference bank locality.

Example: Let us assume an array reference A(i+j+1,j-1)
within a loop nest with two loops: i (outer) andifner). It is

171 1
Rg and =|_;
Assuming tha® = (1 0), we can see that

6h = (1 0 12 - %0,

Therefore, we can conclude that it is not possiblexploit
intra-reference bank locality under this distribati (bank
mapping). However, if we use a data transformatiwtrix M,

from mi1 lej 1

1
6Mh=(1 0 1 M=(1 001 mo2 (J:O,

we can find that m11 + m12 = 0. A solution to thést
equation is m11 = 1 and m12 = -1, which can submsatiy be
completed to a full data transformation matrix

M = 1 -1
10

In other words, it is possible to find an M mattix satisfy
intra-reference bank locality. This small examplesirates how
useful a data transformation can be in optimiziagkblocality.

We next focus ointer-reference bank locality. Let RI + r and
R’l + r' be two different references to the sameagr In order to
have inter-reference bank locality, we should have:

ORI +r1)+d =B(R’l +r') + ¢ = B(R-R")I = 6(r'-r).

Let us consider two cases:

Casel. R = R'. This represents a very common case iryarra
intensive embedded image/video applications. Is tiEse, the
relation above reduces @fr'-r) = 0. Consequently, if r'-r is not
in the kernel set 0B, we cannot have inter-reference bank
locality. On the other hand, if we employ a datngformation
represented by (M,m), we have

O(MRI + Mr+ m) +¢ =6(MR’l + Mr' + m) + ¢
= BM(R-R")I = BM(r'-r).

Since, we have R = R’, this last equation reduce@M(r'-
r)=0. Now, it may be possible to select a suitdilsuch that r'-r
is in the kernel set M. That is, data transformation increases
the chances for inter-reference bank locality. Masirate how
this works in practice, we consider the followingmple.

Example: Let us assume two array references, A(i+j+1,j-1)
and A(, j), within a loop nest with two loops: oyter) and j
(inner). Assuming, as before, that we @ise (1 0) as our bank
mapping, we can find that 1 0 1

8r-n=(L 0) {_J (Oj }=(@ ({)J =1,

Since6(r'-r) # 0, it is not possible to satisfy inter-reference
bank locality. On the other hand, if we are allovtedise a data
transformation matrix M, from

m1 msz 1

eM(r'-r) = (1 0) (nﬂl w2l 1) = 0,
we have m11 - m12 = 0. A possible solution is m1ard m12

=1, which can subsequently be completed to a fdtad
transformation matrix

11
M=1, 0
So, it is possible to obtain inter-reference basdality using
this data transformation. This example clearlysilfates that data
transformations can be very useful in exploitinteirreference

bank locality.

Case Il. R # R'. In this case, if we do not use any data

transformation, we hav@(R-R’)l = 6(r'-r), as determined above.
So, there is no way that this equality can be fiadissince the
right side is constant while the left side can tdiéerent values
for different iteration vectors |. However, if wesel a data
transformation (M,m), we need to sati$iyl(R-R’)I = 6M(r'-r).
This can be achieved by satisfying the following tequalities:

® OM(R-R) =0, and

® OM(r-r) =0.

That is, even in this case, it might be possibldirtd an M
matrix to satisfy these two constraints at the séime, and thus
obtain inter-reference bank locality.

So far, we have only considered bank locality peablfrom
the perspective of a single array (thaim;a-array bank locality
whether it is intra-reference or inter-referendejs also possible
to exploitinter-array bank locality. Let as assume that Rl + r and
R’l + r' are references to two different arrays.r Roter-array
bank locality, one should have:

Bi(RI+71) +d1 =6(R'l + 1) + ¢,
= (elR'ezR’)l = 921” - elr +¢2 - ¢1.

In this formulation, @,, ¢;) and @,, ¢,) represent array-to-
virtual bank mappings for the two arrays under @erstion. If
0,R-6,R’ = 0, then the above equation gets reduced to:

ezr’ - elr +¢2 - ¢1: 0.

However, in the general caBeR-0,R’ # 0, and as a result, it
is not possible to satisfy this equation.

On the other hand, if we assume data transformeuiivi,m,)
and (M,,m,) for these two arrays, we need to satisfy:

B1(MaRI + Myr + my) + §1= 0(MR'l + Mol + my) + ¢

This last equality can be satisfied if one can s$atihe

following two equations:
[] elMlR-ezMzR’ = O, and
® O,Myr' - BMyr +6,m, - 6:my + ¢ - ¢y

In fact, if, using the first equality, we can find, and M,
matrices, and we can substitute them in the seegudlity and
solve it for m andm,.

6. Experiments

6.1 Setup

Table 1. Benchmark codes used in this study.
Benchmark Dataset Execution Energy
Size (KB) Cycles (M) Consumption (mJ)

oreg 728.60 482.22 244.08
adi 555.94 396.07 180.84
full-search 624.00 474.33 209.38
hier 624.00 412.69 191.47
mxm 1,280.00 681.53 424.49
compress 876.14 619.90 320.99
tomcatv 767.80 560.16 274.37
jacobi 1,018.00 677.77 387.65
red-black SOR 1,018.00 790.05 479.44

Stanford University [1]. SUIF has independently eleped
compilation passes that work together by using agon
intermediate format (IF) to represent programs. Ypidal
compilation framework based on SUIF includes thiofdng
components: front end, data dependence analysik,saveral
optimization modules. Our framework is implemented a
separate optimization module within SUIF. We alsse ua
powerful back-end compiler (when converting the @le to
executable) that performs instruction schedulingl agraph
coloring-based global register allocation. Unlgssesl otherwise,
8x8MB (that is, 8 memory banks, each has a capa€i®MB) is
our default bank configuration. Note that if a bamkot accessed
during the execution of an application, it is neaetivated for
both the original and the optimized code versioims.other
words, even our base case takes advantage of lewrpo
operating modes, and the approach proposed ipd#pier tries to
improve over it. That isall the energy benefits reported in this
work are coming from our data layout optimization strategy.
Also, we use a default array-to-bank mapping in tmafsour
experiments. In this default mapping, each arrajaig out in
memory in a row-major fashion, and the next array the
program declaration part) is stored starting frbwn lbcation next
to the one where the previous array ends (thahé&arrays are
stored in memory one after another). However, vg® aeport
some results with smarter array mappings (distioims). While
in this work we wuse the energy consumption
resynchronization values shown in Figure 1, ouméwork is
general enough in that it can work with differemt ®f low-
power modes as well. The energy values shown iar€ig have
been obtained from the measured current valuesiasso with
memory banks documented in memory data sheet8.@, 2.5
nsec cycle time, 8MB memory) [13]. The re-synchratibn
latencies have also been obtained from the sane shatets.
Based on the trends gleaned from the data shéwtsenergy
values are increased by 30% when bank size is ddubinless
stated otherwise, our architecture does not hawata cache

and

All energy numbers presented in this paper haven bee (Since we want to isolate the energy benefits i@ banked

obtained using a custom memory energy simulatoris Th
simulator takes as input a C program and a bankethary
description (i.e., the number and sizes of memanykb as well
as available low-power operating modes with thegrgy saving
factors and re-synchronization costs). As outputgives the
energy consumption in memory banks along with aitégt bank
inter-access time profiles. By giving original amgbtimized
programs to this simulator as input, we measurentipact of our
data transformation strategy on memory system gnerg

The data transformation framework presented inghjser has
been fully implemented using the SUIF infrastrueturom

memory system). However, later in this section \go aeport
experimental data with different data cache sitesfact, our
results indicate that the proposed strategy isesasfal with both
cacheless and cache-based systems.

6.2 Results

To evaluate our strategy quantitatively, we perfedm
experiments with nine array-intensive benchmarksepdrtant
characteristics of these codes are listed in Tabl&he third
column gives the execution cycles, while the foucthlumn
shows the memory energy consumption without ouinopation.

>
g 80 HBase
2 3 60 O Base+Distr
- = 40 W Base +Loop
o 2 20
N5 0 [Base+Distr+Loop
oo D = = 8 > =
£ 8L 28E0F8 g
5 5 = 5 O Q O
5 2FEBgg?®
s 2
o

Fig 3. Normalized energy consumption with respect to
different versions.

As mentioned earlier, even this baseline versiokenidull use of
low-power operating modes available in the architex

The first bar for each benchmark in Figure 3 (chlBase)
gives the energy consumption due to our strategymalized
with respect to the default array distribution eitth any program
transformation (the last column in Table 1). We test our data
optimization brings 29.6% improvement on the averafye also
note that relative energy savings depends on thehoeark used.
For example, the savings with some benchmarks asdtier are
not as good as those with the others, mainly duadbthat the
compiler was not able to select good data transitiams for the
arrays in these codes. The main reason for thishas the
references to the same array create conflicts phavent the
compiler from using the ideal data transformaticatnim (M) for
the array in question. Still, even with such benatks, our
approach achieves energy savings around 15%. Ipagson, in
benchmarks such as compress, there are few refer@ec array;
hence fewer chances for conflict in selecting tlestappropriate
data transformation.

While our energy savings are significant, one miigue that
data distribution (across the memory banks) alagspé key role
in shaping energy consumption behavior. So, we misasured
the energy savings with respect to a distributiptimized code.
The specific data distribution algorithm (that ike algorithm
that decides which arrays should be mapped to whistks) is
from [2]. The second bar for each benchmark in figere
(named Base+Distr) shows the normalized energyuwopson
of our strategy. The average energy reduction asirad 21.2%,
indicating that our approach is still very succeksf optimizing
memory energy behavior. The third bar for each c@uened
Base+Loop) gives the normalized energy consumptibrour
strategy with respect to a version that uses tHauttearray
distribution and data locality oriented loop tramwsfiation. The
rationale behind this version is that locality oted loop
transformations in general improve spatial accestems, and
this can also improve bank locality. The specifioop
transformation strategy that is used here is frb@j.[We see that
the average energy savings brought by our appreébhrespect
to this version is around 19.1%. What this resaltssis that the
data transformation strategy
transformation based optimization. Finally, thet laar in the
figure (referred to as Base+Distr+Loop) shows tleemalized
energy consumption of our scheme with respectdtvadegy that
uses both optimized data distribution and loop sf@mation.
Even against this highly-optimized version we ae@id4.7%
energy savings on the average when consideringpdls in our
benchmark suite. Overall, these results clearlystiat our data
transformation based approach is very effectiven@neasing the
effectiveness of low-power operating modes.

complements the loo

§100”/o
3: 28:2‘; M Inter-Reference
8 40% O Intra-Reference
M 20%
é‘@ 0%
g W5 Ly E 2 ED
[9) o ¢
F ST EEgEZEE
€ o
5 8
(8]

Fig 4. Breakdown of energy savings.

It should be emphasized that the energy benefitsvishin
Figure 3 have been obtained by trying to satisfyhbimtra-
reference constraints and inter-reference conssralio illustrate
individual contributions coming from these diffetetypes of
localities, we show in Figure 4 how the energy litheare
broken down (the results are normalized with respgecthe
Base+Distr+Loop version). One can observe from tileeds
shown in this graph that most of the energy savargscoming
from optimizing intra-reference bank locality. Theain reason
for this behavior is that satisfying intra-refereriocality brings
more benefits since this captures access behavimss loop
iterations. This is in contrast to inter-refererioeality whose
impact is limited by the number of references ®$ame array in
the loop body. Nevertheless, we still observe thatcontribution
of satisfying inter-reference constraints to overs@mory energy
savings is around 20.8% on the average, which atekicthat it is
important to take care of them as well.

An important parameter that influences the mageituad
energy savings is the number of memory banks. iSHiecause a
larger number of banks give a finer-granular cdnt® the
compiler to place memory regions into low-power ragpieg
modes. In order to quantify the impact of our appfo with
different bank configurations, we performed anottsst of
experiments. More specifically, keeping the totanmory size
fixed at 64MB, we conducted experiments with 28416, and
32 banks. The results are given in Figure 5 (aganvalues
normalized with respect to the Base+Distr+Loop ieers We
can observe from these results that working witgda number
of banks (i.e., with smaller bank sizes) in genénateases the

energy benefits coming from the proposed data kayou

optimization strategy. This is because, as inditatove, smaller
bank sizes give our strategy more opportunities gaergy-

managing even smaller portions of main memory. Sudimer-

grain management, in turn, increases the energyefiten
However, we also note that in some applicationsreiasing the
number of banks beyond a specific number does moease
savings. This occurs because of the data accessmat such
applications. Specifically, the access patterrhobe applications

3
@ 100
& 80 | W 2x32\B
> LN I M e i, O 4x26M8
£ I
€ 40
2 NI IMT T RN os2xons
N o = = 1] > =
T © 5.8 & © § 8.
E 5 “zgc E 5§ 8%
5 =R g E s2g

o

Fig 5. Normalized memory energy consumption with varying
number of banks.

—o—oreg
—l— adi
full- search
hier
—¥— mxm
—@— compress
+—tomcatv
jacobi
red- black- SCR

Normalized Memor:

Fig 6. Normalized memory energy consumption with
varying data cache sizes.

£ 25
u>j§1.5- 1
c 9 11
g%\o L) L) L) L) L) L) L) L)
© 0 i o = » 5 = |
§E2tE E O § By
£ =9 EE‘E.“;“T:
5 8
o

Fig 7. Percentage increase in execution cycles due to our
data transformation strategy.

spans more banks when the number of banks is sexldaeyond
a specific value.

In our experiments so far we have focused on a memo
architecture without data cache. Including a cachethe
hierarchy can filter some requests, thereby inangabe idleness
of memory banks. However, since even unoptimizedeso
benefit such filtering, we can expect some reduciio energy
savings. The result shown in Figure 6 corroborates
expectation. Still, even with a 16KB data cache, ole¢ain an
average energy saving of roughly 7% over the BagsHboop
version (which itself is highly optimized). Thus,uro data
optimization is beneficial even with data cachéshbuld also be
emphasized that the Base+Distr+Loop version isadire highly
optimized version, and it is really difficult torfher improve its
energy behavior.

While the experimental data presented so far glearl
demonstrate the energy benefits of our strategyetdair, one
needs to consider performance impact as well. Toerein
Figure 7, we give the percentage increase in algéxecution
cycles (i.e., the cycles when no power control risspnt) when
the proposed data transformation is used. Ovevak, can see
that the increase in execution cycles varies fron®% to 2.21%
depending on the benchmark used, averaging in 1.38%
reason that we do not incur much performance peisthat the
compiler pre-activates a memory bank before it dsually
needed. Note that this is possible in our appbeatiomain since
(considering the array-to-bank mappings) the coanpitan
accurately predict the next access to a given bEnik. bank pre-
activation strategy in turn limits the potentialgdedation in
performance.

7. Concluding remarks

Energy consumption is becoming a first-order
parameter as processor-based systems continuedonbemnore
and more complex. Off-chip memory energy consunmptiio

design

particular can be a limiting factor in many systéesigns. In this
work, we focus on executing array-intensive benakman
banked memory architectures, and propose a contgiilected
strategy that modifies data layouts in memory tacel more
memory banks into low-power mode and/or keep merbanks
in low-power operating modes longer. The experi@keiata
obtained using nine array-intensive benchmarksaasiinulation
environment show the potential of our approach avirg
memory energy.

8. References

[1] S. P. Amarasinghe, J. M. Anderson, C. S. Wilson)y/SLiao, B. R.
Murphy, R. S. French, M. S. Lam, and M. W. Hall. Iirocessors
from a Software Perspective. IEEE Micro, June 192@es 52-61.

[2] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasramaniam,

and M. J. Irwin. DRAM Energy Management Using @aite and

Hardware Directed Power Mode Control. In Proc. Zfdnt!

Symposium on High Performance Computer ArchitectR@®1.

X. Fan, C. S. Ellis, and A. R. Lebeck. ModelingD®RAM Power

Control Policies Using Deterministic and StochaBttri Nets, In

Proc. Workshop on Power-Aware Computer Systemsn&gr

Verlag, February, 2002.

[4] A. Farrahi, G. Tellez, and M. Sarrafzadeh. ExphgjtSleep Mode for
Memory Partitions and Other Applications, VLSI OgsiVol. 7,
No. 3, pp. 271-287.

[5] W-M. W. Hwu. Embedded microprocessor comparison.

http://mww.crhc.uiuc.edu/IMPACT/ece412/public_hthbtes/412_1

ecl/ppframe.htm.

M. Kandemir, U. Sezer, and V. Delaluz. Improvingriviey Energy

Using Access Pattern Classification. In Proc. titerhational

Conference on Computer Aided Design, San JoseN©#ember 4-

8, 2001.

M. Kandemir, I. Kolcu, and I. Kadayif. Influence bbop

Optimizations on Energy Consumption of Multi-Banleiory

Systems. In Proc. International Conference on Glemp

Construction, Grenoble, France, April 6-14, 2002.

[8] A.R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Boware Page
Allocation. In Proc. the 9th International Confereron
Architectural Support for Programming Languages @pérating
Systems, November 2000.

[9] S. -T. Leung and J. Zahorjan. Optimizing Data Litgdly Array
Restructuring. Technical Report TR 95-09-01, DepComputer
Science and Engineering, University of Washing&eptember
1995.

[10]W. Li. Compiling for NUMA Parallel Machines. Ph.Dhesis,
Computer Science Department, Cornell Universityada, NY,
1993.

[11]M. O'Boyle and P. Knijnenburg. Integrating Loopldbata
Transformations for Global Optimization. In Pragternational
Conference on Parallel Architectures and Compitaliechniques,
October 1998, Paris, France.

[12]P. R. Panda. Memory Bank Customization and Assigriine
Behavioral Synthesis. In Proc. ICCAD, 1999.

[13]128/144-MBit Direct RDRAM Data Sheet, Rambus Indgy 1999.

[14]M. A. R. Saghir, P. Chow and C. G. Lee, Exploitthgal data-
memory banks in digital signal processors. In Phaternational
conference on Architectural Support for Programniiagguages
and Operating Systems, Cambridge, MA, 1996, pp-233.

[15]A. Sudarsanam, S. Malik. Simultaneous ReferenaacAtion in
Code Generation for Dual Data Memory Bank ASIPSMAC
Transactions on Design Automation of Electronict&ys 5, 2000,
pp. 242-264.

[16]M. Wolf and M. Lam. A Data Locality Optimizing Algithm. In
Proc. ACM Conference on Programming Language Desigh
Implementation, pp. 30-44, June 1991.

[17]M. Wolfe. High Performance Compilers for Parallerputing,
Addison-Wesley Publishing Company, 1996.

(3]

(6]

(71

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

