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Abstract 
High-energy consumption presents a problem for sustainable clock 
frequency and deliverable performance. In particular, memory 
energy consumption of array-intensive applications can be 
overwhelming due to poor cache locality. One option for reducing 
memory energy is to adopt a banked memory architecture, where 
memory space is divided into banks and each bank can be powered 
down if it is not in active use. An important issue here is the bank 
access pattern, which determines opportunities for saving energy. In 
this paper, we present a compiler-based data layout transformation 
strategy for increasing the effectiveness of a banked memory 
architecture. The idea is to transform the array layouts in memory 
in such a way that two loop iterations executed one after another 
access the data in the same bank as much as possible; the remaining 
banks can be placed into a low-power mode. Our simulation-based 
experiments with nine array-intensive applications show significant 
savings in memory energy consumption. 
 
1. Introduction and motivation 
 

The PC industry has successfully completed several 
evolutionary memory transitions: from Fast Paged Mode memory 
to EDO, to PC66 SDRAM, to PC100 SDRAM. While memory 
banking has been a widely employed technique in the past for 
increasing performance, its use in saving energy is relatively new. 
One important advantage of a banked memory system from the 
energy consumption viewpoint is that the banks that are not used 
by the current computation should not be powered up, thereby 
reducing overall energy consumption.  

Our focus is on a banked memory architecture where each 
bank can be power-controlled independently. More specifically, 
each bank can be placed into low-power operating mode when it 
is not used by the current computation. In an RDRAM-like 
architecture, one may have multiple low-power modes (states) to 
choose from when a memory bank is detected to be idle. A major 
tradeoff between these different modes is between the energy 
saving (while in the low-power mode) and resynchronization cost 
(i.e., the time it takes to bring back a memory bank from the low-
power state to the fully-operational active state).  

Figure 1 shows typical low-power operating modes and 
transitions between them. The values associated with the nodes 
correspond to the per cycle energy consumption for the bank, 
whereas the values associated with the edges indicate the 
resynchronization costs. These values clearly illustrate the 
tradeoff between energy and performance.  Specifically, a more 
energy saving operating mode also incurs a higher 
resynchronization cost. 

It should be observed that the benefits from low-power 
operating modes can increase if, somehow, idleness of the bank 
could be increased. This is because in this case the 

resynchronization cost can be compensated by significant savings 
in energy. In comparison, a short idleness either will not allow us 
to place the bank into the most energy-saving mode (i.e., the one 
that consumes the smallest amount of energy per cycle), or will 
incur large performance penalty. Consequently, an important goal 
is to increase idleness of memory banks as much as possible. This 
can be achieved by smart data allocations to memory banks 
and/or re-ordering computations. In this study, we make a case 
for compiler-oriented data layout transformations for array data 
since it can increase the effectiveness of low-power modes 
available in the memory system. We also need to mention that in 
this work we assume that no virtual memory support exists in the 
system under consideration. Consequently, the compiler can 
directly work with physical addresses; that is, it can layout data in 
physical memory and place banks into low-power modes based 
on the information it collects during program analysis. Note that 
there exist many embedded systems that work without a virtual 
memory support [5]. Work is in progress to extend the techniques 
discussed in this paper to environments with virtual memory (by 
enlisting help from the operating system (OS)).  

Previous research shows that compiler-based (e.g., [2]), OS-
based (e.g., [8]), and pure hardware-based schemes (e.g., [2]) are 
possible to decide the most suitable low-power mode to use when 
a memory bank is detected to be idle. Since in this work we focus 
on array-intensive applications, we opted to use a compiler-based 
approach, where an optimizing compiler (taking into account 
loop access patterns and array-to-bank mappings – that is, the 
layout of data in banked memory) decides which operating mode 
to use. Note that (where applicable) such a compiler-based 
strategy has an important advantage over pure OS-based and 
hardware-based techniques. Specifically, the compiler-based 
strategy (unlike pure OS or pure hardware-based strategies) does 
not rely on history of data access patterns; that is, the compiler 
can predict (quite accurately for the array-intensive codes) future 
data access patterns (and also, future idle times), and select the 
most appropriate mode to switch to when idleness is predicted. In 
addition, the compiler can also predict when an idle bank will be 
requested in the future, and can pre-activate it in an attempt to 
eliminate re-synchronization latency. Details of the compiler-
based low-power mode detection strategy are beyond the scope of 
this paper. It should be noted, however, that the compiler-based 
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Fig 1. Operating modes and transitions between them. 
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strategy selects the most suitable operating modes for a given 
access pattern and memory layout. In this work, we modify data 
layouts in memory to allow the compiler place more banks into 
low-power mode and/or keep banks in low-power operating 
modes longer. In other words, our approach is geared towards 
increasing the effectiveness of compiler-directed low-power 
mode management.  While previous research employed data 
layout transformations for cache locality [11, 9], in this paper, we 
use them for energy optimization in banked memory 
architectures.  

[3] studies OS-based DRAM power control policies. [7] 
evaluates the impact of classical loop optimizations on energy 
consumption of banked memories. [6] presents an iteration space 
reordering technique for banked memories.  In contrast, the work 
presented in this paper is oriented toward increasing the benefits 
of low-power modes by data distributions across memory banks. 
[4] shows how a sleep mode can be exploited for memory 
partitions. [15] and [14] discuss techniques for exploiting dual 
banks for ASIPs and DSPs, respectively. [12] addresses the topic 
of incorporating the application-specific customization of 
memory bank configuration into behavioral synthesis. In 
comparison, we study how compiler-directed data optimization 
can improve energy behavior of a multi-banked system.  

The rest of this paper is organized as follows. Section 2 
presents background on iteration space and data space 
representations for array-intensive applications. Section 3 
explains array-to-virtual bank mappings and Section 4 discusses 
virtual bank-to-physical bank mapping. Section 5 shows how 
data transformations can be useful in increasing the effectiveness 
of low-power operating modes. Section 6 introduces our 
experimental platform, and presents data that show the 
effectiveness of our strategy. Section 7 gives our concluding 
remarks. 

 
2. Preliminaries 

 
We can define iterations of a loop nest as a set, each element 

of which corresponds to an iteration vector. Each execution of 
loop body uses a vector from this set. Given this, an array access 
within a loop nest can be expressed as RI + r, where R is the 
access matrix, I is the iteration vector, and r is an offset vector 
[16, 10]. As an example, for an array reference such as A(i-1,j+2) 
that occurs within a loop nest where i is the outer loop and j is 
the inner, R is the identity matrix, I = (i   j)T, and r = (-1  2)T.  It 
is to be noted that each iteration vector I accesses an element via 
this array reference. An array element accessed by an iteration 
vector represents an index vector. In the example above, this 
vector is a = (i-1  j+1)T.  It can be observed that if the nest in 
question has n loops and the reference in question belongs to a k-
dimensional array, R is a k-by-n matrix, I is an n-entry vector, 
and r is a k-entry vector.  

Informally, a data transformation indicates a mapping of the 
index space. In mathematical terms, a data transformation can be 
represented using a pair (M,m), and it transforms an original 
index vector RI+r to MRI+Mr + m. If we restrict ourselves to 
dimension-preserving data transformations, M is a k-by-k matrix 
and m is a k-entry vector (for a k-dimensional array). For 
instance, assuming that  

                              M =             and  m =           , 

the index vector a = (i-1   j+1)T is mapped to (j+1   i-1)T.   

 
3. Array-to-virtual bank mapping 

 
In our framework, array elements are mapped to (physical) 

memory banks using a two-level mapping. In the first level, an 
index vector (of an array) is mapped to a virtual bank, and in the 
second level, each virtual bank is mapped to a physical bank. 
This two-level process is depicted in Figure 2. 

The compiler operates under the assumption of a virtual bank 
space (VBS), which can be multi-dimensional. Given an array 
index vector a, we find the virtual bank it is mapped using an 
affine mapping θa + ϕ. Therefore, two different elements (of the 
same array) represented by index vectors a and b map onto the 
same virtual bank if and only if: 

θa + ϕ = θb + ϕ  ⇒ θa = θb ⇒ θ(a-b) = 0. 
In other words, (a-b) should be in the kernel set of θ. In this 

paper, the pair (θ,ϕ) is called the bank mapping. Note that 
different criteria can be used in determining suitable bank 
mappings, and each array can have a different bank mapping than 
the other arrays in a given application. 

 
4. Virtual bank-to-physical bank mapping  

 
A virtual bank-to-physical bank mapping (or a physical 

mapping for short) determines how virtual banks are mapped to 
the physical banks in the architecture. Let v be a virtual bank. 
The corresponding physical bank can be determined using a 
mapping such as: ξv + σ. Now, in order for two different array 
elements a and b to be mapped to the same physical bank, one 
should have: 

ξθa + ξϕ + σ = ξθb + ξϕ + σ ⇒ ξθa = ξθb ⇒ ξθ (a-b) = 0. 
There is a good reason to adopt such a two-level mapping 

(instead of using a more intuitive one-level mapping that maps 
arrays directly to the physical banks). In many cases, we want a 
compiler optimization to be easily portable to another platform 
without much difficulty. Because of this, it makes sense to work 
with VBS rather than PBS (physical bank space). In other words, 
we can write our compiler-based optimization strategy only once 
(using the VBS as the reference point), and when we want to port 
it to other architectures (with different physical bank structures), 
we only need to change the virtual bank-to-physical bank 
mapping. Note that, in general, the virtual bank-to-physical bank 
mapping can reduce the dimensionality and/or extents (dimension 
sizes) of the VBS. Informally, a mapping is specified by giving a 
decomposition style for each dimension of the virtual bank space 
along with the physical bank size in each dimension (of the 
physical bank space). For example, a mapping such as 

(b1,b2,b3) → (b1/p,*,*) 
indicates that a three-dimensional virtual bank space is 

mapped to a one-dimensional physical bank space. The * notation 
indicates that the corresponding virtual bank dimension is not 
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Fig 2. Two-level mapping of an array into memory banks. 



distributed across the physical banks. This means, for the 
mapping above, that the second and third dimensions are not 
distributed; instead, they are folded. The notation b1/p (where / 
denotes integer division) in the first dimension, on the other 
hand, reveals that this dimension (of the virtual bank space) is 
distributed across p physical banks. So, assuming p is 8, under 
such a mapping, the virtual bank (16,i,j) is mapped to physical 
bank 2 for all values i and j can take. In terms of matrices, such a 
mapping can be expressed as: ξ = (1/p  0  0) and σ = 0.  

It should be noted that this mapping function definition is 
quite general and encompasses very different types of virtual 
bank-to-physical bank mappings. For example, it can 
accommodate functions such as 

(b1,b2,b3) → (b1/p,b2/q,*) 
which indicates that a three-dimensional virtual bank space is 

mapped to a two-dimensional physical bank space that contains 
pxq banks (this might be useful, for example, for some SDRAMs 
where memory banks form actually a two-dimensional grid). It 
should also be noted that when multiple virtual banks are mapped 
to the same physical bank, the loop iterations that access those 
virtual banks are localized (that is, they exhibit bank locality as 
they now – after folding – access the same physical bank). 
Therefore, selection of a suitable mapping function can be 
important. A virtual bank-to-physical bank mapping tries to take 
advantage of spatial locality between neighboring banks. 
However, from the compiler’s perspective, it should be sufficient 
to work with the VBS instead of the PBS. This is because 
whenever we achieve access locality for a virtual bank, it is 
guaranteed that that locality will extend to the PBS as well since 
a virtual bank is mapped to only a single physical bank. 
Therefore, optimizing bank locality in the VBS is sufficient for 
our purposes. The rest of this paper discusses our approach to 
optimizing bank locality in the VBS. 

 
5. Role of data transformations in bank locality 

 
As discussed earlier, our focus in this paper is on studying the 

cases where a data transformation might be of use in exploiting 
bank locality for array-intensive applications. Let us start by 
defining formally what we mean by bank locality. 

Definition: If two iteration vectors, say I and J, are very close 
to each other (that is, I-J = a lexicographically small value, 
preferably (0  0  0 … 0  1)T), they are said to have temporal 
affinity. 

Definition: If two iteration vectors with temporal affinity 
access the array elements in the same virtual bank, they are said 
to exhibit bank locality. 

Now, let us determine the condition for bank locality.  
Let I+ = I + (0  0  0 … 0  1)T, where + denotes vector addition. 

In order to have bank locality, the array elements accessed by I 
and I+ (via the same array reference in the code) should be on the 
same virtual bank. In mathematical terms, we need to have: 

θ(RI + r) + ϕ = θ(RI+ + r) + ϕ ⇒ θRI = θRI+⇒  θh = 0, 
where h is the last column of R. This type of bank locality can 

be termed as intra-reference bank locality, i.e., the bank locality 
that originates from a single array reference in the application 
code.  

It is important to note here that for a given θ matrix, the vector 
h may or may not be in its kernel set. Therefore, it is not 
guaranteed that we can achieve intra-reference bank locality. 

Now, let us assume that we use a data transformation represented 
by (M,m) in the array in question. In this case, rewriting the 
condition for intra-reference bank locality, one might have: 

θ(MRI + Mr + m) + ϕ = θ(MRI+ + Mr + m) + ϕ 
⇒ θMRI = θMRI+ ⇒ θMh = 0. 

It is to be observed that, now, we have a flexibility of 
selecting a suitable M such that h is in the kernel set of θM. 
Therefore, we can conclude that data transformations can be 
useful for achieving intra-reference bank locality. 

Example: Let us assume an array reference A(i+j+1,j-1) 
within a loop nest with two loops: i (outer) and j (inner). It is 
easy to see that: 

                              R =           and     r =  

Assuming that θ = (1   0), we can see that 

θh  =  (1   0)         = 1  ≠ 0. 

Therefore, we can conclude that it is not possible to exploit 
intra-reference bank locality under this distribution (bank 
mapping). However, if we use a data transformation matrix M, 
from 

              θMh = (1   0)           M= (1   0)                       = 0, 

we can find that m11 + m12 = 0. A solution to this last 
equation is m11 = 1 and m12 = -1, which can subsequently be 
completed to a full data transformation matrix 

M =            . 

In other words, it is possible to find an M matrix to satisfy 
intra-reference bank locality. This small example illustrates how 
useful a data transformation can be in optimizing bank locality.  

We next focus on inter-reference bank locality. Let RI + r and 
R’I + r’ be two different references to the same array. In order to 
have inter-reference bank locality, we should have: 

θ(RI + r) + ϕ = θ(R’I + r’) + ϕ ⇒ θ(R-R’)I = θ(r’-r). 
Let us consider two cases: 
Case I. R = R’. This represents a very common case in array-

intensive embedded image/video applications. In this case, the 
relation above reduces to θ(r’-r) = 0. Consequently, if r’-r is not 
in the kernel set of θ, we cannot have inter-reference bank 
locality. On the other hand, if we employ a data transformation 
represented by (M,m), we have 

θ(MRI + Mr + m) + ϕ = θ(MR’I + Mr’ + m) + ϕ 
⇒ θM(R-R’)I = θM(r’-r). 

Since, we have R = R’, this last equation reduces to θM(r’-
r)=0. Now, it may be possible to select a suitable M such that r’-r 
is in the kernel set of θM. That is, data transformation increases 
the chances for inter-reference bank locality. To illustrate how 
this works in practice, we consider the following example. 

Example: Let us assume two array references, A(i+j+1,j-1) 
and A(i, j), within a loop nest with two loops: i (outer) and j 
(inner). Assuming, as before, that we use θ = (1   0) as our bank 
mapping, we can find that 

                     θ(r’-r) = (1   0) {        -       } = (1   0)         = 1. 

Since θ(r’-r) ≠ 0, it is not possible to satisfy inter-reference 
bank locality. On the other hand, if we are allowed to use a data 
transformation matrix M, from 

                      θM(r’-r) = (1  0)                        = 0, 

we have m11 - m12 = 0. A possible solution is m11=1 and m12 

=1, which can subsequently be completed to a full data 
transformation matrix 
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M =  

So, it is possible to obtain inter-reference bank locality using 
this data transformation. This example clearly illustrates that data 
transformations can be very useful in exploiting inter-reference 
bank locality. 

Case II. R ≠ R’. In this case, if we do not use any data 
transformation, we have θ(R-R’)I = θ(r’-r), as determined above. 
So, there is no way that this equality can be satisfied since the 
right side is constant while the left side can take different values 
for different iteration vectors I. However, if we use a data 
transformation (M,m), we need to satisfy θM(R-R’)I = θM(r’-r). 
This can be achieved by satisfying the following two equalities: 

� θM(R-R’) = 0, and 
� θM(r’-r) = 0. 

That is, even in this case, it might be possible to find an M 
matrix to satisfy these two constraints at the same time, and thus 
obtain inter-reference bank locality.  

So far, we have only considered bank locality problem from 
the perspective of a single array (that is, intra-array bank locality 
whether it is intra-reference or inter-reference). It is also possible 
to exploit inter-array bank locality. Let as assume that RI + r and 
R’I + r’ are references to two different arrays. For inter-array 
bank locality, one should have: 

θ1(RI + r) + ϕ1 = θ2(R’I + r’) + ϕ2 
⇒ (θ1R-θ2R’)I = θ2r’ - θ1r +ϕ2 - ϕ1. 

In this formulation, (θ1, ϕ1) and (θ2, ϕ2) represent array-to-
virtual bank mappings for the two arrays under consideration. If 
θ1R-θ2R’ = 0, then the above equation gets reduced to: 

θ2r’ - θ1r +ϕ2 - ϕ1 = 0. 
However, in the general case θ1R-θ2R’ ≠ 0, and as a result, it 

is not possible to satisfy this equation.  
On the other hand, if we assume data transformations (M1,m1) 

and (M2,m2) for these two arrays, we need to satisfy: 
θ1(M1RI + M1r + m1) + ϕ1 = θ2(M2R’I + M2r’ + m2) + ϕ2 

⇒ (θ1M1R-θ2M2R’)I = θ2M2r’ - θ1M1r + θ2m2 - θ1m1 + ϕ2 - ϕ1. 
This last equality can be satisfied if one can satisfy the 

following two equations: 
� θ1M1R-θ2M2R’ = 0, and 
� θ2M2r’ - θ1M1r + θ2m2  - θ1m1  + ϕ2 - ϕ1 

In fact, if, using the first equality, we can find M1 and M2 

matrices, and we can substitute them in the second equality and 
solve it for m1 and m2. 

 
6. Experiments 
 

6.1 Setup 
 

All energy numbers presented in this paper have been 
obtained using a custom memory energy simulator. This 
simulator takes as input a C program and a banked memory 
description (i.e., the number and sizes of memory banks as well 
as available low-power operating modes with their energy saving 
factors and re-synchronization costs). As output, it gives the 
energy consumption in memory banks along with a detailed bank 
inter-access time profiles. By giving original and optimized 
programs to this simulator as input, we measure the impact of our 
data transformation strategy on memory system energy. 

The data transformation framework presented in this paper has 
been fully implemented using the SUIF infrastructure from 

Stanford University [1]. SUIF has independently developed 
compilation passes that work together by using a common 
intermediate format (IF) to represent programs. A typical 
compilation framework based on SUIF includes the following 
components: front end, data dependence analysis, and several 
optimization modules. Our framework is implemented as a 
separate optimization module within SUIF. We also use a 
powerful back-end compiler (when converting the C code to 
executable) that performs instruction scheduling and graph 
coloring-based global register allocation. Unless stated otherwise, 
8x8MB (that is, 8 memory banks, each has a capacity of 8MB) is 
our default bank configuration. Note that if a bank is not accessed 
during the execution of an application, it is never activated for 
both the original and the optimized code versions. In other 
words, even our base case takes advantage of low-power 
operating modes, and the approach proposed in this paper tries to 
improve over it. That is, all the energy benefits reported in this 
work are coming from our data layout optimization strategy. 
Also, we use a default array-to-bank mapping in most of our 
experiments. In this default mapping, each array is laid out in 
memory in a row-major fashion, and the next array (in the 
program declaration part) is stored starting from the location next 
to the one where the previous array ends (that is, the arrays are 
stored in memory one after another). However, we also report 
some results with smarter array mappings (distributions).  While 
in this work we use the energy consumption and 
resynchronization values shown in Figure 1, our framework is 
general enough in that it can work with different set of low-
power modes as well. The energy values shown in Figure 1 have 
been obtained from the measured current values associated with 
memory banks documented in memory data sheets (for 3.3V, 2.5 
nsec cycle time, 8MB memory) [13]. The re-synchronization 
latencies have also been obtained from the same data sheets. 
Based on the trends gleaned from the data sheets, the energy 
values are increased by 30% when bank size is doubled. Unless 
stated otherwise, our architecture does not have a data cache 
(since we want to isolate the energy benefits in the banked 
memory system). However, later in this section we also report 
experimental data with different data cache sizes. In fact, our 
results indicate that the proposed strategy is successful with both 
cacheless and cache-based systems. 

 
6.2 Results 

 
To evaluate our strategy quantitatively, we performed 

experiments with nine array-intensive benchmarks. Important 
characteristics of these codes are listed in Table 1. The third 
column gives the execution cycles, while the fourth column 
shows the memory energy consumption without our optimization. 

Table 1. Benchmark codes used in this study. 
Benchmark 
Name 

Dataset 
Size (KB) 

Execution 
Cycles (M) 

Energy 
Consumption (mJ) 

oreg 728.60 482.22 244.08 
adi 555.94 396.07 180.84 
full-search 624.00 474.33 209.38 
hier 624.00 412.69 191.47 
mxm 1,280.00 681.53 424.49 
compress 876.14 619.90 320.99 
tomcatv 767.80 560.16 274.37 
jacobi 1,018.00 677.77 387.65 
red-black SOR 1,018.00 790.05 479.44 
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As mentioned earlier, even this baseline version makes full use of 
low-power operating modes available in the architecture. 

The first bar for each benchmark in Figure 3 (called Base) 
gives the energy consumption due to our strategy, normalized 
with respect to the default array distribution without any program 
transformation (the last column in Table 1). We see that our data 
optimization brings 29.6% improvement on the average. We also 
note that relative energy savings depends on the benchmark used. 
For example, the savings with some benchmarks such as hier are 
not as good as those with the others, mainly due to fact that the 
compiler was not able to select good data transformations for the 
arrays in these codes. The main reason for this is that the 
references to the same array create conflicts that prevent the 
compiler from using the ideal data transformation matrix (M) for 
the array in question. Still, even with such benchmarks, our 
approach achieves energy savings around 15%. In comparison, in 
benchmarks such as compress, there are few references per array; 
hence fewer chances for conflict in selecting the most appropriate 
data transformation.  

While our energy savings are significant, one might argue that 
data distribution (across the memory banks) also plays a key role 
in shaping energy consumption behavior. So, we also measured 
the energy savings with respect to a distribution-optimized code. 
The specific data distribution algorithm (that is, the algorithm 
that decides which arrays should be mapped to which banks) is 
from [2]. The second bar for each benchmark in the figure 
(named Base+Distr) shows the normalized energy consumption 
of our strategy. The average energy reduction is around 21.2%, 
indicating that our approach is still very successful in optimizing 
memory energy behavior. The third bar for each code (named 
Base+Loop) gives the normalized energy consumption of our 
strategy with respect to a version that uses the default array 
distribution and data locality oriented loop transformation. The 
rationale behind this version is that locality oriented loop 
transformations in general improve spatial access patterns, and 
this can also improve bank locality. The specific loop 
transformation strategy that is used here is from [10]. We see that 
the average energy savings brought by our approach with respect 
to this version is around 19.1%. What this result says is that the 
data transformation strategy complements the loop 
transformation based optimization. Finally, the last bar in the 
figure (referred to as Base+Distr+Loop) shows the normalized 
energy consumption of our scheme with respect to a strategy that 
uses both optimized data distribution and loop transformation. 
Even against this highly-optimized version we achieve 14.7% 
energy savings on the average when considering all codes in our 
benchmark suite. Overall, these results clearly show that our data 
transformation based approach is very effective in increasing the 
effectiveness of low-power operating modes.  

It should be emphasized that the energy benefits shown in 
Figure 3 have been obtained by trying to satisfy both intra-
reference constraints and inter-reference constraints. To illustrate 
individual contributions coming from these different types of 
localities, we show in Figure 4 how the energy benefits are 
broken down (the results are normalized with respect to the 
Base+Distr+Loop version). One can observe from the trends 
shown in this graph that most of the energy savings are coming 
from optimizing intra-reference bank locality. The main reason 
for this behavior is that satisfying intra-reference locality brings 
more benefits since this captures access behavior across loop 
iterations. This is in contrast to inter-reference locality whose 
impact is limited by the number of references to the same array in 
the loop body. Nevertheless, we still observe that the contribution 
of satisfying inter-reference constraints to overall memory energy 
savings is around 20.8% on the average, which indicates that it is 
important to take care of them as well.   

An important parameter that influences the magnitude of 
energy savings is the number of memory banks. This is because a 
larger number of banks give a finer-granular control to the 
compiler to place memory regions into low-power operating 
modes. In order to quantify the impact of our approach with 
different bank configurations, we performed another set of 
experiments. More specifically, keeping the total memory size 
fixed at 64MB, we conducted experiments with 2, 4, 8, 16, and 
32 banks. The results are given in Figure 5 (again as values 
normalized with respect to the Base+Distr+Loop version). We 
can observe from these results that working with larger number 
of banks (i.e., with smaller bank sizes) in general increases the 
energy benefits coming from the proposed data layout 
optimization strategy. This is because, as indicated above, smaller 
bank sizes give our strategy more opportunities for energy-
managing even smaller portions of main memory. Such a finer-
grain management, in turn, increases the energy benefits. 
However, we also note that in some applications, increasing the 
number of banks beyond a specific number does not increase 
savings. This occurs because of the data access pattern of such 
applications. Specifically, the access pattern of those applications 
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Fig 5. Normalized memory energy consumption with varying 

number of banks. 
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Fig 4. Breakdown of energy savings. 
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Fig 3. Normalized energy consumption with respect to 

different versions. 



spans more banks when the number of banks is increased beyond 
a specific value.  

In our experiments so far we have focused on a memory 
architecture without data cache. Including a cache in the 
hierarchy can filter some requests, thereby increasing the idleness 
of memory banks. However, since even unoptimized codes 
benefit such filtering, we can expect some reduction in energy 
savings. The result shown in Figure 6 corroborates this 
expectation. Still, even with a 16KB data cache, we obtain an 
average energy saving of roughly 7% over the Base+Distr+Loop 
version (which itself is highly optimized). Thus, our data 
optimization is beneficial even with data caches. It should also be 
emphasized that the Base+Distr+Loop version is already a highly 
optimized version, and it is really difficult to further improve its 
energy behavior.  

While the experimental data presented so far clearly 
demonstrate the energy benefits of our strategy, to be fair, one 
needs to consider performance impact as well. Therefore, in 
Figure 7, we give the percentage increase in original execution 
cycles (i.e., the cycles when no power control is present) when 
the proposed data transformation is used. Overall, one can see 
that the increase in execution cycles varies from 0.79% to 2.21% 
depending on the benchmark used, averaging in 1.35%. The 
reason that we do not incur much performance penalty is that the 
compiler pre-activates a memory bank before it is actually 
needed. Note that this is possible in our application domain since 
(considering the array-to-bank mappings) the compiler can 
accurately predict the next access to a given bank. This bank pre-
activation strategy in turn limits the potential degradation in 
performance. 

 
7. Concluding remarks 

 
Energy consumption is becoming a first-order design 

parameter as processor-based systems continue to become more 
and more complex. Off-chip memory energy consumption in 

particular can be a limiting factor in many system designs. In this 
work, we focus on executing array-intensive benchmarks in 
banked memory architectures, and propose a compiler-directed 
strategy that modifies data layouts in memory to place more 
memory banks into low-power mode and/or keep memory banks 
in low-power operating modes longer. The experimental data 
obtained using nine array-intensive benchmarks and a simulation 
environment show the potential of our approach in saving 
memory energy. 

 
8. References 
 
[1] S. P. Amarasinghe, J. M. Anderson, C. S. Wilson, S.-W. Liao, B. R. 

Murphy, R. S. French, M. S. Lam, and M. W. Hall. Multiprocessors 
from a Software Perspective. IEEE Micro, June 1996, pages 52-61. 

[2] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, 
and M. J. Irwin.  DRAM Energy Management Using Software and 
Hardware Directed Power Mode Control.  In Proc. the 7th Int’l 
Symposium on High Performance Computer Architecture, 2001.  

[3] X. Fan, C. S. Ellis, and A. R. Lebeck. Modeling of DRAM Power 
Control Policies Using Deterministic and Stochastic Petri Nets, In 
Proc. Workshop on Power-Aware Computer Systems, Springer-
Verlag, February, 2002. 

[4] A. Farrahi, G. Tellez, and M. Sarrafzadeh. Exploiting Sleep Mode for 
Memory Partitions and Other Applications, VLSI Design, Vol. 7, 
No. 3, pp. 271-287. 

[5] W-M. W. Hwu. Embedded microprocessor comparison. 
http://www.crhc.uiuc.edu/IMPACT/ece412/public_html/Notes/412_l
ec1/ppframe.htm.  

[6] M. Kandemir, U. Sezer, and V. Delaluz. Improving Memory Energy 
Using Access Pattern Classification. In Proc. the International 
Conference on Computer Aided Design, San Jose, CA, November 4-
8, 2001.  

[7] M. Kandemir, I. Kolcu, and I. Kadayif. Influence of Loop 
Optimizations on Energy Consumption of Multi-Bank Memory 
Systems.  In Proc. International Conference on Compiler 
Construction, Grenoble, France, April 6-14, 2002.  

[8] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power-Aware Page 
Allocation. In Proc. the 9th International Conference on 
Architectural Support for Programming Languages and Operating 
Systems, November 2000. 

[9] S. -T. Leung and J. Zahorjan. Optimizing Data Locality by Array 
Restructuring. Technical Report TR 95-09-01, Dept. of Computer 
Science and Engineering, University of Washington, September 
1995. 

[10] W. Li. Compiling for NUMA Parallel Machines. Ph.D. Thesis, 
Computer Science Department, Cornell University, Ithaca, NY, 
1993.  

[11] M. O'Boyle and P. Knijnenburg.  Integrating Loop and Data 
Transformations for Global Optimization.  In Proc. International 
Conference on Parallel Architectures and Compilation Techniques, 
October 1998, Paris, France. 

[12] P. R. Panda. Memory Bank Customization and Assignment in 
Behavioral Synthesis. In Proc. ICCAD, 1999. 

[13] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., May 1999.  
[14] M. A. R. Saghir, P. Chow and C. G. Lee, Exploiting dual data-

memory banks in digital signal processors. In Proc. International 
conference on Architectural Support for Programming Languages 
and Operating Systems, Cambridge, MA, 1996, pp. 234–243. 

[15] A. Sudarsanam, S. Malik. Simultaneous Reference Allocation in 
Code Generation for Dual Data Memory Bank ASIPs. ACM 
Transactions on Design Automation of Electronic Systems 5, 2000, 
pp. 242–264. 

[16] M. Wolf and M. Lam. A Data Locality Optimizing Algorithm. In 
Proc. ACM Conference on Programming Language Design and 
Implementation, pp. 30-44, June 1991.  

[17] M. Wolfe. High Performance Compilers for Parallel Computing, 
Addison-Wesley Publishing Company, 1996.  

70
75
80
85
90
95

100
105

32
KB

16
KB

8K
B

4K
B

2K
B

1K
B NoNo

rm
a

liz
e

d
 M

e
m

or
y 

E
n

er
gy

oreg
adi
full- search
hier
mxm
compress
tomcatv
jacobi
red- black- SOR

 
Fig 6. Normalized memory energy consumption with 

varying data cache sizes. 
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Fig 7. Percentage increase in execution cycles due to our 

data transformation strategy. 
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