
Impact of Data Transformations on Memory Bank Locality

M. Kandemir
Department of Computer Science and Engineering

The Pennsylvania State University, USA
kandemir@cse.psu.edu

Abstract
High-energy consumption presents a problem for sustainable clock
frequency and deliverable performance. In particular, memory
energy consumption of array-intensive applications can be
overwhelming due to poor cache locality. One option for reducing
memory energy is to adopt a banked memory architecture, where
memory space is divided into banks and each bank can be powered
down if it is not in active use. An important issue here is the bank
access pattern, which determines opportunities for saving energy. In
this paper, we present a compiler-based data layout transformation
strategy for increasing the effectiveness of a banked memory
architecture. The idea is to transform the array layouts in memory
in such a way that two loop iterations executed one after another
access the data in the same bank as much as possible; the remaining
banks can be placed into a low-power mode. Our simulation-based
experiments with nine array-intensive applications show significant
savings in memory energy consumption.

1. Introduction and motivation

The PC industry has successfully completed several
evolutionary memory transitions: from Fast Paged Mode memory
to EDO, to PC66 SDRAM, to PC100 SDRAM. While memory
banking has been a widely employed technique in the past for
increasing performance, its use in saving energy is relatively new.
One important advantage of a banked memory system from the
energy consumption viewpoint is that the banks that are not used
by the current computation should not be powered up, thereby
reducing overall energy consumption.

Our focus is on a banked memory architecture where each
bank can be power-controlled independently. More specifically,
each bank can be placed into low-power operating mode when it
is not used by the current computation. In an RDRAM-like
architecture, one may have multiple low-power modes (states) to
choose from when a memory bank is detected to be idle. A major
tradeoff between these different modes is between the energy
saving (while in the low-power mode) and resynchronization cost
(i.e., the time it takes to bring back a memory bank from the low-
power state to the fully-operational active state).

Figure 1 shows typical low-power operating modes and
transitions between them. The values associated with the nodes
correspond to the per cycle energy consumption for the bank,
whereas the values associated with the edges indicate the
resynchronization costs. These values clearly illustrate the
tradeoff between energy and performance. Specifically, a more
energy saving operating mode also incurs a higher
resynchronization cost.

It should be observed that the benefits from low-power
operating modes can increase if, somehow, idleness of the bank
could be increased. This is because in this case the

resynchronization cost can be compensated by significant savings
in energy. In comparison, a short idleness either will not allow us
to place the bank into the most energy-saving mode (i.e., the one
that consumes the smallest amount of energy per cycle), or will
incur large performance penalty. Consequently, an important goal
is to increase idleness of memory banks as much as possible. This
can be achieved by smart data allocations to memory banks
and/or re-ordering computations. In this study, we make a case
for compiler-oriented data layout transformations for array data
since it can increase the effectiveness of low-power modes
available in the memory system. We also need to mention that in
this work we assume that no virtual memory support exists in the
system under consideration. Consequently, the compiler can
directly work with physical addresses; that is, it can layout data in
physical memory and place banks into low-power modes based
on the information it collects during program analysis. Note that
there exist many embedded systems that work without a virtual
memory support [5]. Work is in progress to extend the techniques
discussed in this paper to environments with virtual memory (by
enlisting help from the operating system (OS)).

Previous research shows that compiler-based (e.g., [2]), OS-
based (e.g., [8]), and pure hardware-based schemes (e.g., [2]) are
possible to decide the most suitable low-power mode to use when
a memory bank is detected to be idle. Since in this work we focus
on array-intensive applications, we opted to use a compiler-based
approach, where an optimizing compiler (taking into account
loop access patterns and array-to-bank mappings – that is, the
layout of data in banked memory) decides which operating mode
to use. Note that (where applicable) such a compiler-based
strategy has an important advantage over pure OS-based and
hardware-based techniques. Specifically, the compiler-based
strategy (unlike pure OS or pure hardware-based strategies) does
not rely on history of data access patterns; that is, the compiler
can predict (quite accurately for the array-intensive codes) future
data access patterns (and also, future idle times), and select the
most appropriate mode to switch to when idleness is predicted. In
addition, the compiler can also predict when an idle bank will be
requested in the future, and can pre-activate it in an attempt to
eliminate re-synchronization latency. Details of the compiler-
based low-power mode detection strategy are beyond the scope of
this paper. It should be noted, however, that the compiler-based

Standby

0.83nJ

Nap

0.32nJ

PowerDown

0.005nJ

2 cycles

30 cycles

 9000 cycles

3.57nJ

Active

Fig 1. Operating modes and transitions between them.

1530-1591/04 $20.00 (c) 2004 IEEE

strategy selects the most suitable operating modes for a given
access pattern and memory layout. In this work, we modify data
layouts in memory to allow the compiler place more banks into
low-power mode and/or keep banks in low-power operating
modes longer. In other words, our approach is geared towards
increasing the effectiveness of compiler-directed low-power
mode management. While previous research employed data
layout transformations for cache locality [11, 9], in this paper, we
use them for energy optimization in banked memory
architectures.

[3] studies OS-based DRAM power control policies. [7]
evaluates the impact of classical loop optimizations on energy
consumption of banked memories. [6] presents an iteration space
reordering technique for banked memories. In contrast, the work
presented in this paper is oriented toward increasing the benefits
of low-power modes by data distributions across memory banks.
[4] shows how a sleep mode can be exploited for memory
partitions. [15] and [14] discuss techniques for exploiting dual
banks for ASIPs and DSPs, respectively. [12] addresses the topic
of incorporating the application-specific customization of
memory bank configuration into behavioral synthesis. In
comparison, we study how compiler-directed data optimization
can improve energy behavior of a multi-banked system.

The rest of this paper is organized as follows. Section 2
presents background on iteration space and data space
representations for array-intensive applications. Section 3
explains array-to-virtual bank mappings and Section 4 discusses
virtual bank-to-physical bank mapping. Section 5 shows how
data transformations can be useful in increasing the effectiveness
of low-power operating modes. Section 6 introduces our
experimental platform, and presents data that show the
effectiveness of our strategy. Section 7 gives our concluding
remarks.

2. Preliminaries

We can define iterations of a loop nest as a set, each element

of which corresponds to an iteration vector. Each execution of
loop body uses a vector from this set. Given this, an array access
within a loop nest can be expressed as RI + r, where R is the
access matrix, I is the iteration vector, and r is an offset vector
[16, 10]. As an example, for an array reference such as A(i-1,j+2)
that occurs within a loop nest where i is the outer loop and j is
the inner, R is the identity matrix, I = (i j)T, and r = (-1 2)T. It
is to be noted that each iteration vector I accesses an element via
this array reference. An array element accessed by an iteration
vector represents an index vector. In the example above, this
vector is a = (i-1 j+1)T. It can be observed that if the nest in
question has n loops and the reference in question belongs to a k-
dimensional array, R is a k-by-n matrix, I is an n-entry vector,
and r is a k-entry vector.

Informally, a data transformation indicates a mapping of the
index space. In mathematical terms, a data transformation can be
represented using a pair (M,m), and it transforms an original
index vector RI+r to MRI+Mr + m. If we restrict ourselves to
dimension-preserving data transformations, M is a k-by-k matrix
and m is a k-entry vector (for a k-dimensional array). For
instance, assuming that

 M = and m = ,

the index vector a = (i-1 j+1)T is mapped to (j+1 i-1)T.

3. Array-to-virtual bank mapping

In our framework, array elements are mapped to (physical)

memory banks using a two-level mapping. In the first level, an
index vector (of an array) is mapped to a virtual bank, and in the
second level, each virtual bank is mapped to a physical bank.
This two-level process is depicted in Figure 2.

The compiler operates under the assumption of a virtual bank
space (VBS), which can be multi-dimensional. Given an array
index vector a, we find the virtual bank it is mapped using an
affine mapping θa + ϕ. Therefore, two different elements (of the
same array) represented by index vectors a and b map onto the
same virtual bank if and only if:

θa + ϕ = θb + ϕ ⇒ θa = θb ⇒ θ(a-b) = 0.
In other words, (a-b) should be in the kernel set of θ. In this

paper, the pair (θ,ϕ) is called the bank mapping. Note that
different criteria can be used in determining suitable bank
mappings, and each array can have a different bank mapping than
the other arrays in a given application.

4. Virtual bank-to-physical bank mapping

A virtual bank-to-physical bank mapping (or a physical

mapping for short) determines how virtual banks are mapped to
the physical banks in the architecture. Let v be a virtual bank.
The corresponding physical bank can be determined using a
mapping such as: ξv + σ. Now, in order for two different array
elements a and b to be mapped to the same physical bank, one
should have:

ξθa + ξϕ + σ = ξθb + ξϕ + σ ⇒ ξθa = ξθb ⇒ ξθ (a-b) = 0.
There is a good reason to adopt such a two-level mapping

(instead of using a more intuitive one-level mapping that maps
arrays directly to the physical banks). In many cases, we want a
compiler optimization to be easily portable to another platform
without much difficulty. Because of this, it makes sense to work
with VBS rather than PBS (physical bank space). In other words,
we can write our compiler-based optimization strategy only once
(using the VBS as the reference point), and when we want to port
it to other architectures (with different physical bank structures),
we only need to change the virtual bank-to-physical bank
mapping. Note that, in general, the virtual bank-to-physical bank
mapping can reduce the dimensionality and/or extents (dimension
sizes) of the VBS. Informally, a mapping is specified by giving a
decomposition style for each dimension of the virtual bank space
along with the physical bank size in each dimension (of the
physical bank space). For example, a mapping such as

(b1,b2,b3) → (b1/p,*,*)
indicates that a three-dimensional virtual bank space is

mapped to a one-dimensional physical bank space. The * notation
indicates that the corresponding virtual bank dimension is not










01

10









0

0

Virtual Bank Mapping
Physical Bank Mapping

Array 12 Virtual Banks 3 Physical

Fig 2. Two-level mapping of an array into memory banks.

distributed across the physical banks. This means, for the
mapping above, that the second and third dimensions are not
distributed; instead, they are folded. The notation b1/p (where /
denotes integer division) in the first dimension, on the other
hand, reveals that this dimension (of the virtual bank space) is
distributed across p physical banks. So, assuming p is 8, under
such a mapping, the virtual bank (16,i,j) is mapped to physical
bank 2 for all values i and j can take. In terms of matrices, such a
mapping can be expressed as: ξ = (1/p 0 0) and σ = 0.

It should be noted that this mapping function definition is
quite general and encompasses very different types of virtual
bank-to-physical bank mappings. For example, it can
accommodate functions such as

(b1,b2,b3) → (b1/p,b2/q,*)
which indicates that a three-dimensional virtual bank space is

mapped to a two-dimensional physical bank space that contains
pxq banks (this might be useful, for example, for some SDRAMs
where memory banks form actually a two-dimensional grid). It
should also be noted that when multiple virtual banks are mapped
to the same physical bank, the loop iterations that access those
virtual banks are localized (that is, they exhibit bank locality as
they now – after folding – access the same physical bank).
Therefore, selection of a suitable mapping function can be
important. A virtual bank-to-physical bank mapping tries to take
advantage of spatial locality between neighboring banks.
However, from the compiler’s perspective, it should be sufficient
to work with the VBS instead of the PBS. This is because
whenever we achieve access locality for a virtual bank, it is
guaranteed that that locality will extend to the PBS as well since
a virtual bank is mapped to only a single physical bank.
Therefore, optimizing bank locality in the VBS is sufficient for
our purposes. The rest of this paper discusses our approach to
optimizing bank locality in the VBS.

5. Role of data transformations in bank locality

As discussed earlier, our focus in this paper is on studying the

cases where a data transformation might be of use in exploiting
bank locality for array-intensive applications. Let us start by
defining formally what we mean by bank locality.

Definition: If two iteration vectors, say I and J, are very close
to each other (that is, I-J = a lexicographically small value,
preferably (0 0 0 … 0 1)T), they are said to have temporal
affinity.

Definition: If two iteration vectors with temporal affinity
access the array elements in the same virtual bank, they are said
to exhibit bank locality.

Now, let us determine the condition for bank locality.
Let I+ = I + (0 0 0 … 0 1)T, where + denotes vector addition.

In order to have bank locality, the array elements accessed by I
and I+ (via the same array reference in the code) should be on the
same virtual bank. In mathematical terms, we need to have:

θ(RI + r) + ϕ = θ(RI+ + r) + ϕ ⇒ θRI = θRI+⇒ θh = 0,
where h is the last column of R. This type of bank locality can

be termed as intra-reference bank locality, i.e., the bank locality
that originates from a single array reference in the application
code.

It is important to note here that for a given θ matrix, the vector
h may or may not be in its kernel set. Therefore, it is not
guaranteed that we can achieve intra-reference bank locality.

Now, let us assume that we use a data transformation represented
by (M,m) in the array in question. In this case, rewriting the
condition for intra-reference bank locality, one might have:

θ(MRI + Mr + m) + ϕ = θ(MRI+ + Mr + m) + ϕ
⇒ θMRI = θMRI+ ⇒ θMh = 0.

It is to be observed that, now, we have a flexibility of
selecting a suitable M such that h is in the kernel set of θM.
Therefore, we can conclude that data transformations can be
useful for achieving intra-reference bank locality.

Example: Let us assume an array reference A(i+j+1,j-1)
within a loop nest with two loops: i (outer) and j (inner). It is
easy to see that:

 R = and r =

Assuming that θ = (1 0), we can see that

θh = (1 0) = 1 ≠ 0.

Therefore, we can conclude that it is not possible to exploit
intra-reference bank locality under this distribution (bank
mapping). However, if we use a data transformation matrix M,
from

 θMh = (1 0) M= (1 0) = 0,

we can find that m11 + m12 = 0. A solution to this last
equation is m11 = 1 and m12 = -1, which can subsequently be
completed to a full data transformation matrix

M = .

In other words, it is possible to find an M matrix to satisfy
intra-reference bank locality. This small example illustrates how
useful a data transformation can be in optimizing bank locality.

We next focus on inter-reference bank locality. Let RI + r and
R’I + r’ be two different references to the same array. In order to
have inter-reference bank locality, we should have:

θ(RI + r) + ϕ = θ(R’I + r’) + ϕ ⇒ θ(R-R’)I = θ(r’-r).
Let us consider two cases:
Case I. R = R’. This represents a very common case in array-

intensive embedded image/video applications. In this case, the
relation above reduces to θ(r’-r) = 0. Consequently, if r’-r is not
in the kernel set of θ, we cannot have inter-reference bank
locality. On the other hand, if we employ a data transformation
represented by (M,m), we have

θ(MRI + Mr + m) + ϕ = θ(MR’I + Mr’ + m) + ϕ
⇒ θM(R-R’)I = θM(r’-r).

Since, we have R = R’, this last equation reduces to θM(r’-
r)=0. Now, it may be possible to select a suitable M such that r’-r
is in the kernel set of θM. That is, data transformation increases
the chances for inter-reference bank locality. To illustrate how
this works in practice, we consider the following example.

Example: Let us assume two array references, A(i+j+1,j-1)
and A(i, j), within a loop nest with two loops: i (outer) and j
(inner). Assuming, as before, that we use θ = (1 0) as our bank
mapping, we can find that

 θ(r’-r) = (1 0) { - } = (1 0) = 1.

Since θ(r’-r) ≠ 0, it is not possible to satisfy inter-reference
bank locality. On the other hand, if we are allowed to use a data
transformation matrix M, from

 θM(r’-r) = (1 0) = 0,

we have m11 - m12 = 0. A possible solution is m11=1 and m12

=1, which can subsequently be completed to a full data
transformation matrix










10

11









−1

1










1

1










1

1








2221

1211

mm

mm









1

1








 −
01

11










− 1

1









0

0









− 1

1









2221

1211

mm

mm









−1

1

M =

So, it is possible to obtain inter-reference bank locality using
this data transformation. This example clearly illustrates that data
transformations can be very useful in exploiting inter-reference
bank locality.

Case II. R ≠ R’. In this case, if we do not use any data
transformation, we have θ(R-R’)I = θ(r’-r), as determined above.
So, there is no way that this equality can be satisfied since the
right side is constant while the left side can take different values
for different iteration vectors I. However, if we use a data
transformation (M,m), we need to satisfy θM(R-R’)I = θM(r’-r).
This can be achieved by satisfying the following two equalities:

� θM(R-R’) = 0, and
� θM(r’-r) = 0.

That is, even in this case, it might be possible to find an M
matrix to satisfy these two constraints at the same time, and thus
obtain inter-reference bank locality.

So far, we have only considered bank locality problem from
the perspective of a single array (that is, intra-array bank locality
whether it is intra-reference or inter-reference). It is also possible
to exploit inter-array bank locality. Let as assume that RI + r and
R’I + r’ are references to two different arrays. For inter-array
bank locality, one should have:

θ1(RI + r) + ϕ1 = θ2(R’I + r’) + ϕ2
⇒ (θ1R-θ2R’)I = θ2r’ - θ1r +ϕ2 - ϕ1.

In this formulation, (θ1, ϕ1) and (θ2, ϕ2) represent array-to-
virtual bank mappings for the two arrays under consideration. If
θ1R-θ2R’ = 0, then the above equation gets reduced to:

θ2r’ - θ1r +ϕ2 - ϕ1 = 0.
However, in the general case θ1R-θ2R’ ≠ 0, and as a result, it

is not possible to satisfy this equation.
On the other hand, if we assume data transformations (M1,m1)

and (M2,m2) for these two arrays, we need to satisfy:
θ1(M1RI + M1r + m1) + ϕ1 = θ2(M2R’I + M2r’ + m2) + ϕ2

⇒ (θ1M1R-θ2M2R’)I = θ2M2r’ - θ1M1r + θ2m2 - θ1m1 + ϕ2 - ϕ1.
This last equality can be satisfied if one can satisfy the

following two equations:
� θ1M1R-θ2M2R’ = 0, and
� θ2M2r’ - θ1M1r + θ2m2 - θ1m1 + ϕ2 - ϕ1

In fact, if, using the first equality, we can find M1 and M2

matrices, and we can substitute them in the second equality and
solve it for m1 and m2.

6. Experiments

6.1 Setup

All energy numbers presented in this paper have been
obtained using a custom memory energy simulator. This
simulator takes as input a C program and a banked memory
description (i.e., the number and sizes of memory banks as well
as available low-power operating modes with their energy saving
factors and re-synchronization costs). As output, it gives the
energy consumption in memory banks along with a detailed bank
inter-access time profiles. By giving original and optimized
programs to this simulator as input, we measure the impact of our
data transformation strategy on memory system energy.

The data transformation framework presented in this paper has
been fully implemented using the SUIF infrastructure from

Stanford University [1]. SUIF has independently developed
compilation passes that work together by using a common
intermediate format (IF) to represent programs. A typical
compilation framework based on SUIF includes the following
components: front end, data dependence analysis, and several
optimization modules. Our framework is implemented as a
separate optimization module within SUIF. We also use a
powerful back-end compiler (when converting the C code to
executable) that performs instruction scheduling and graph
coloring-based global register allocation. Unless stated otherwise,
8x8MB (that is, 8 memory banks, each has a capacity of 8MB) is
our default bank configuration. Note that if a bank is not accessed
during the execution of an application, it is never activated for
both the original and the optimized code versions. In other
words, even our base case takes advantage of low-power
operating modes, and the approach proposed in this paper tries to
improve over it. That is, all the energy benefits reported in this
work are coming from our data layout optimization strategy.
Also, we use a default array-to-bank mapping in most of our
experiments. In this default mapping, each array is laid out in
memory in a row-major fashion, and the next array (in the
program declaration part) is stored starting from the location next
to the one where the previous array ends (that is, the arrays are
stored in memory one after another). However, we also report
some results with smarter array mappings (distributions). While
in this work we use the energy consumption and
resynchronization values shown in Figure 1, our framework is
general enough in that it can work with different set of low-
power modes as well. The energy values shown in Figure 1 have
been obtained from the measured current values associated with
memory banks documented in memory data sheets (for 3.3V, 2.5
nsec cycle time, 8MB memory) [13]. The re-synchronization
latencies have also been obtained from the same data sheets.
Based on the trends gleaned from the data sheets, the energy
values are increased by 30% when bank size is doubled. Unless
stated otherwise, our architecture does not have a data cache
(since we want to isolate the energy benefits in the banked
memory system). However, later in this section we also report
experimental data with different data cache sizes. In fact, our
results indicate that the proposed strategy is successful with both
cacheless and cache-based systems.

6.2 Results

To evaluate our strategy quantitatively, we performed

experiments with nine array-intensive benchmarks. Important
characteristics of these codes are listed in Table 1. The third
column gives the execution cycles, while the fourth column
shows the memory energy consumption without our optimization.

Table 1. Benchmark codes used in this study.
Benchmark
Name

Dataset
Size (KB)

Execution
Cycles (M)

Energy
Consumption (mJ)

oreg 728.60 482.22 244.08
adi 555.94 396.07 180.84
full-search 624.00 474.33 209.38
hier 624.00 412.69 191.47
mxm 1,280.00 681.53 424.49
compress 876.14 619.90 320.99
tomcatv 767.80 560.16 274.37
jacobi 1,018.00 677.77 387.65
red-black SOR 1,018.00 790.05 479.44










01

11

As mentioned earlier, even this baseline version makes full use of
low-power operating modes available in the architecture.

The first bar for each benchmark in Figure 3 (called Base)
gives the energy consumption due to our strategy, normalized
with respect to the default array distribution without any program
transformation (the last column in Table 1). We see that our data
optimization brings 29.6% improvement on the average. We also
note that relative energy savings depends on the benchmark used.
For example, the savings with some benchmarks such as hier are
not as good as those with the others, mainly due to fact that the
compiler was not able to select good data transformations for the
arrays in these codes. The main reason for this is that the
references to the same array create conflicts that prevent the
compiler from using the ideal data transformation matrix (M) for
the array in question. Still, even with such benchmarks, our
approach achieves energy savings around 15%. In comparison, in
benchmarks such as compress, there are few references per array;
hence fewer chances for conflict in selecting the most appropriate
data transformation.

While our energy savings are significant, one might argue that
data distribution (across the memory banks) also plays a key role
in shaping energy consumption behavior. So, we also measured
the energy savings with respect to a distribution-optimized code.
The specific data distribution algorithm (that is, the algorithm
that decides which arrays should be mapped to which banks) is
from [2]. The second bar for each benchmark in the figure
(named Base+Distr) shows the normalized energy consumption
of our strategy. The average energy reduction is around 21.2%,
indicating that our approach is still very successful in optimizing
memory energy behavior. The third bar for each code (named
Base+Loop) gives the normalized energy consumption of our
strategy with respect to a version that uses the default array
distribution and data locality oriented loop transformation. The
rationale behind this version is that locality oriented loop
transformations in general improve spatial access patterns, and
this can also improve bank locality. The specific loop
transformation strategy that is used here is from [10]. We see that
the average energy savings brought by our approach with respect
to this version is around 19.1%. What this result says is that the
data transformation strategy complements the loop
transformation based optimization. Finally, the last bar in the
figure (referred to as Base+Distr+Loop) shows the normalized
energy consumption of our scheme with respect to a strategy that
uses both optimized data distribution and loop transformation.
Even against this highly-optimized version we achieve 14.7%
energy savings on the average when considering all codes in our
benchmark suite. Overall, these results clearly show that our data
transformation based approach is very effective in increasing the
effectiveness of low-power operating modes.

It should be emphasized that the energy benefits shown in
Figure 3 have been obtained by trying to satisfy both intra-
reference constraints and inter-reference constraints. To illustrate
individual contributions coming from these different types of
localities, we show in Figure 4 how the energy benefits are
broken down (the results are normalized with respect to the
Base+Distr+Loop version). One can observe from the trends
shown in this graph that most of the energy savings are coming
from optimizing intra-reference bank locality. The main reason
for this behavior is that satisfying intra-reference locality brings
more benefits since this captures access behavior across loop
iterations. This is in contrast to inter-reference locality whose
impact is limited by the number of references to the same array in
the loop body. Nevertheless, we still observe that the contribution
of satisfying inter-reference constraints to overall memory energy
savings is around 20.8% on the average, which indicates that it is
important to take care of them as well.

An important parameter that influences the magnitude of
energy savings is the number of memory banks. This is because a
larger number of banks give a finer-granular control to the
compiler to place memory regions into low-power operating
modes. In order to quantify the impact of our approach with
different bank configurations, we performed another set of
experiments. More specifically, keeping the total memory size
fixed at 64MB, we conducted experiments with 2, 4, 8, 16, and
32 banks. The results are given in Figure 5 (again as values
normalized with respect to the Base+Distr+Loop version). We
can observe from these results that working with larger number
of banks (i.e., with smaller bank sizes) in general increases the
energy benefits coming from the proposed data layout
optimization strategy. This is because, as indicated above, smaller
bank sizes give our strategy more opportunities for energy-
managing even smaller portions of main memory. Such a finer-
grain management, in turn, increases the energy benefits.
However, we also note that in some applications, increasing the
number of banks beyond a specific number does not increase
savings. This occurs because of the data access pattern of such
applications. Specifically, the access pattern of those applications

0
20
40
60
80

100

or
e

g

a
di

fu
ll-

se
a

rc
h

h
ie

r

m
xm

co
m

pr
e

ss

to
m

ca
tv

ja
co

bi
re

d
-

b
la

ck
-

No
rm

a
liz

e
d

 M
e

m
or

y
En

e
rg

y

2x32MB
4x16MB
8x8MB
16x4MB
32x2MB

Fig 5. Normalized memory energy consumption with varying

number of banks.

0%
20%
40%
60%
80%
100%

o
re
g

ad
i

fu
ll
-

h
ie
r

m
xm

co
m
p
re
ss

to
m
ca
tv

ja
co
b
i

re
d
-

Sa
vi
n
gs
 B
re
ak
d
o
w
n

Inter-Reference

Intra-Reference

Fig 4. Breakdown of energy savings.

0
20
40
60
80

100

or
e

g
a

d
i

fu
ll- h
ie

r
m

xm
co

m
pr

e
ss

to
m

ca
tv

ja
co

b
i

re
d

-

No
rm

a
liz

e
d

 M
e

m
or

y
E

ne
rg

y
Base

Base+Distr

Base +Loop

Base+Distr+Loop

Fig 3. Normalized energy consumption with respect to

different versions.

spans more banks when the number of banks is increased beyond
a specific value.

In our experiments so far we have focused on a memory
architecture without data cache. Including a cache in the
hierarchy can filter some requests, thereby increasing the idleness
of memory banks. However, since even unoptimized codes
benefit such filtering, we can expect some reduction in energy
savings. The result shown in Figure 6 corroborates this
expectation. Still, even with a 16KB data cache, we obtain an
average energy saving of roughly 7% over the Base+Distr+Loop
version (which itself is highly optimized). Thus, our data
optimization is beneficial even with data caches. It should also be
emphasized that the Base+Distr+Loop version is already a highly
optimized version, and it is really difficult to further improve its
energy behavior.

While the experimental data presented so far clearly
demonstrate the energy benefits of our strategy, to be fair, one
needs to consider performance impact as well. Therefore, in
Figure 7, we give the percentage increase in original execution
cycles (i.e., the cycles when no power control is present) when
the proposed data transformation is used. Overall, one can see
that the increase in execution cycles varies from 0.79% to 2.21%
depending on the benchmark used, averaging in 1.35%. The
reason that we do not incur much performance penalty is that the
compiler pre-activates a memory bank before it is actually
needed. Note that this is possible in our application domain since
(considering the array-to-bank mappings) the compiler can
accurately predict the next access to a given bank. This bank pre-
activation strategy in turn limits the potential degradation in
performance.

7. Concluding remarks

Energy consumption is becoming a first-order design

parameter as processor-based systems continue to become more
and more complex. Off-chip memory energy consumption in

particular can be a limiting factor in many system designs. In this
work, we focus on executing array-intensive benchmarks in
banked memory architectures, and propose a compiler-directed
strategy that modifies data layouts in memory to place more
memory banks into low-power mode and/or keep memory banks
in low-power operating modes longer. The experimental data
obtained using nine array-intensive benchmarks and a simulation
environment show the potential of our approach in saving
memory energy.

8. References

[1] S. P. Amarasinghe, J. M. Anderson, C. S. Wilson, S.-W. Liao, B. R.

Murphy, R. S. French, M. S. Lam, and M. W. Hall. Multiprocessors
from a Software Perspective. IEEE Micro, June 1996, pages 52-61.

[2] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin. DRAM Energy Management Using Software and
Hardware Directed Power Mode Control. In Proc. the 7th Int’l
Symposium on High Performance Computer Architecture, 2001.

[3] X. Fan, C. S. Ellis, and A. R. Lebeck. Modeling of DRAM Power
Control Policies Using Deterministic and Stochastic Petri Nets, In
Proc. Workshop on Power-Aware Computer Systems, Springer-
Verlag, February, 2002.

[4] A. Farrahi, G. Tellez, and M. Sarrafzadeh. Exploiting Sleep Mode for
Memory Partitions and Other Applications, VLSI Design, Vol. 7,
No. 3, pp. 271-287.

[5] W-M. W. Hwu. Embedded microprocessor comparison.
http://www.crhc.uiuc.edu/IMPACT/ece412/public_html/Notes/412_l
ec1/ppframe.htm.

[6] M. Kandemir, U. Sezer, and V. Delaluz. Improving Memory Energy
Using Access Pattern Classification. In Proc. the International
Conference on Computer Aided Design, San Jose, CA, November 4-
8, 2001.

[7] M. Kandemir, I. Kolcu, and I. Kadayif. Influence of Loop
Optimizations on Energy Consumption of Multi-Bank Memory
Systems. In Proc. International Conference on Compiler
Construction, Grenoble, France, April 6-14, 2002.

[8] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power-Aware Page
Allocation. In Proc. the 9th International Conference on
Architectural Support for Programming Languages and Operating
Systems, November 2000.

[9] S. -T. Leung and J. Zahorjan. Optimizing Data Locality by Array
Restructuring. Technical Report TR 95-09-01, Dept. of Computer
Science and Engineering, University of Washington, September
1995.

[10] W. Li. Compiling for NUMA Parallel Machines. Ph.D. Thesis,
Computer Science Department, Cornell University, Ithaca, NY,
1993.

[11] M. O'Boyle and P. Knijnenburg. Integrating Loop and Data
Transformations for Global Optimization. In Proc. International
Conference on Parallel Architectures and Compilation Techniques,
October 1998, Paris, France.

[12] P. R. Panda. Memory Bank Customization and Assignment in
Behavioral Synthesis. In Proc. ICCAD, 1999.

[13] 128/144-MBit Direct RDRAM Data Sheet, Rambus Inc., May 1999.
[14] M. A. R. Saghir, P. Chow and C. G. Lee, Exploiting dual data-

memory banks in digital signal processors. In Proc. International
conference on Architectural Support for Programming Languages
and Operating Systems, Cambridge, MA, 1996, pp. 234–243.

[15] A. Sudarsanam, S. Malik. Simultaneous Reference Allocation in
Code Generation for Dual Data Memory Bank ASIPs. ACM
Transactions on Design Automation of Electronic Systems 5, 2000,
pp. 242–264.

[16] M. Wolf and M. Lam. A Data Locality Optimizing Algorithm. In
Proc. ACM Conference on Programming Language Design and
Implementation, pp. 30-44, June 1991.

[17] M. Wolfe. High Performance Compilers for Parallel Computing,
Addison-Wesley Publishing Company, 1996.

70
75
80
85
90
95

100
105

32
KB

16
KB

8K
B

4K
B

2K
B

1K
B NoNo

rm
a

liz
e

d
 M

e
m

or
y

E
n

er
gy

oreg
adi
full- search
hier
mxm
compress
tomcatv
jacobi
red- black- SOR

Fig 6. Normalized memory energy consumption with

varying data cache sizes.

0
0.5
1

1.5
2

2.5

o
re
g

ad
i

fu
ll
-

se
ar
ch

h
ie
r

m
x
m

co
m
p
re
ss

to
m
ca
tv

ja
co
b
i

re
d
-

b
la
ck
-

In
cr

e
a

se
 i

n
 E

xe
cu

tio
n

C

yc
le

s
(%

)

Fig 7. Percentage increase in execution cycles due to our

data transformation strategy.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

