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Abstract. We present a new decompression architecture
suitable for embedded cores in SoCs which focuses on im-
proving the download time by avoiding higher internal-
to-ATE clock ratios and by exploiting hardware paral-
lelism. The Bounded Huffman compression facilitates
decompression hardware tradeoffs. Our technique is scal-
able in that the downloadable RAM-based decode table
and accommodates for different SoC' cores with different
characteristics such as the number of scan chains and
test set data distributions.

1 Introduction

Data compression techniques are used to alleviate the
ATE test data volume problem. The idea is to compress
the precomputed test set Tp provided by the vendor to a
smaller test set T and store it in the ATE memory. An
on-chip decoder is then used to decompress T and re-
produce Tp. Huffman compression using synthesized or
ROM-based decoders has been applied to test compres-
sion [2, 3]. Many parallel Huffman architectures have
been developed [4] mainly for multimedia.

The focus of this work is on an efficient hardware archi-
tecture implementing the Bounded Huffman compres-
sion scheme [5] for test decompression and is used to
reduce the decompression chip area overhead in par-
ticular the RAM-based (not ROM-based) decode table.
Hardware parallelism is exploited in order to reduce the
download time, feed multiple scan chains simultaneously
and avoid high internal-to-external clock ratios. The
decompressor can directly use the ATE clock in a one-
to-one ratio, avoiding the complexity of the frequency
multiplication of the internal clock.

We stress that the decompression time is just as impor-
tant as the compression ratio in testing. Since ATEs
test SoCs in real-time, compression is only useful if it
reduces the download time or effective bandwidth and
thereby reduce the SoC testing time.

2 Decompression Architecture

Our approach applies to embedded cores in a SoC. The
major steps of our method are: a) Merging ATPG scan
patterns into test character bitstreams; b) assigning
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Don’t Care bits in test cubes using an entropy optimiza-
tion technique favoring Huffman encoding; ¢) Huffman-
based compression; d) downloading compressed patterns
through ATPG channels into scan pins of the SoC; e)
hardware Huffman decompression of downloaded pat-
terns and interfacing to the scan chains of the core under
test.

In order to decompress, the decompressor requires the
decode table [1] which contains the mapping of com-
press codes to decompressed symbols, followed by the
decompressed data. Fig. 1 shows an example of four
characters decoded (i.e. Dy, Dy, D3 and Dy) into four
encoded prefix codes (i.e. 0, 10, 110, 111). For ex-
ample, the prefix code '0’ occupies four table locations.
The decoder table contains two fields, P, and D, which
represent the prefix length and the decoded character,
respectively. The height of the tree, h, represents the
maximum prefix code length (i.e. 3).

Index Pn D Prefix
000 | 1| D1| OXX
001 | 1| D1| OXX
010 |1]| D1 | O0XX
011 | 1| D1 | O0XX
100 |2| D2 | 10X
101 (2| D2 | 10X
110 (3| D3| 110
111 (31 D4| 111

(a) Huffman Prefix Tree (b) Decode Table RAM

Figure 1. Example of Decode Tree to RAM mapping
The tradeoff of the decode table is decode time versus ta-

ble size. The address space of the decode table is equal
to the maximum number of bits for the longest prefix
code. This means that RAM size is proportional to 2"
and may be impractical for some designs. Bounded Huff-
man compression allows one to optimally length limit
the prefix code whereby allowing the decode table to be
smaller.

Fig. 2 shows the decompression architecture. The en-
coded test data from the ATE feeds the Sg register us-
ing k input scan pins. The external ATE clock, Carg
drives the FSM, T and Prefix registers. The amount
of shift is determined by the current FSM state and the



currently decoded prefix length, P,,. The Prefix register,
P, holds the currently encoded ATE data and must be
large enough, P, to contain the maximum prefix length,
A, and also acts as buffer when the k is less than A,,.
The shifter concatenates P and Sg registers and shifts
left in order to advance the encoded data stream. The
output of the shifter is fed to the decode table address,
A via the mask register. The width of the decode table
address, Ay, is selected by the designer to handle the
maximum prefix code desired. The mask register, M,
uses bitwise ANDing and masks all bits longer than h.
This minimizes initialization time of the decode table
The decode table RAM outputs the decompressed char-
acter, D which feeds data into m-scan chains, Tp and
the FSM drives the scan clock, Crp, when D is valid.
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Figure 2. Decompression Architecture

3 Results

Table 1 shows the download times for ITC99 b14 bench-
mark. The four rows that show the download time in
milliseconds for farg = 20M Hz as a function of k and
n. The download time improvements from 51.9ms to
9.8ms as k and n are increased. Clearly, the range of
the download time in clock cycles is, Tg > tgecode >
Tr/k. Teompression Shows the compression ratio (i.e.
(Tp — Tg)/Tp ) achieved through the combination of
Don’t Care minimization and Huffman compression.
Teompression 18 @ function of n but not k. T is the total
encoded data sent to the decompressor and includes the
the decode table overhead. The overhead relative to T’y
is shown in the next row. Clearly, the overhead is very
small to the size of the data.

The longest encoded character as a result of the optimal
Huffman compression algorithm is shown in the row as
Ay. The total size of decode table RAM is 24» x (A, +

Decoded Character Size, D,,

n=2 n=4 n==~8 n=12
tdecode(k =1) | 51.9 ms 30.8 23.5 18.4
tdecode(k = 2) 48.2 26.1 18.4 13.6
tdecode (k = 4) 46.8 24.4 16.4 10.9
tdecode(k = 8) 46.8 23.4 15.3 9.8 ms
Teompression 45% 67% 78% 32%
T 1037264 | 616622 | 404804 | 334796
Tg overhead 0.00% 0.02% | 0.46% 2.04%
Ay 3 9 17 16

Table 1. ITC99 b14 benchmark download times

D,,) bits. The RAM word consists of P, and D and
their bits sizes are (A, + D, ), respectively. Increasing
n benefits the compression ratio at the cost of increased
area size of decode table RAM.

By using Bounded Huffman we can tradeoff a small loss
of compression for a reduction of RAM overhead. For
example, Table 2 shows the effect of limiting the huffman
code length for the case n = 4 by using a length-limited
huffman algorithm [5]. For the A,, = 5 case, we can re-
duce the RAM size requirements from 1024 words to 64
words. Thus, it is possible to reduce the RAM require-
ments or at the loss of some compression ratio match
the existing RAM size for all. This ability to limited the
Huffman length is due to the non-uniform distribution
of the test set codes themselves.

Bounded Huffman length, A,

9 [ 8 | 7 [ 6 | 5
Teomp | 67.06% | 67.05% | 66.97% | 66.42% | 64.52%
RAM | 1024 512 256 128 64

tdecode 23.4 23.406 | 23.407 | 23.408 23.41

Table 2. Decode table RAM size reduction for n = 4 and
k=28
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