
Tuning In-Sensor Data Filtering to Reduce Energy Consumption in Wireless
Sensor Networks

I. Kadayif
Dept. of Computer Engineering

Canakkale Onsekiz Mart University, TR
kadayif@comu.edu.tr

M. Kandemir
Dept. of Computer Science & Engineering
The Pennsylvania State University, USA

kandemir@cse.psu.edu

Abstract
In recent years, research on wireless sensor networks has been
undergoing a revolution, promising to have significant impact on
a broad range of applications from military to health care to
food safety. An important problem in many sensor network
applications is to decide the amount of computation (or filtering)
that needs to be done in the sensor nodes before the data are
shifted to a central base station. Right amount of data filtering in
the sensor nodes can lead to large savings in network-wide
energy consumption. The main goal of this paper is to develop an
automated strategy for data filtering in wireless sensor nodes.
Assuming that one needs to reduce the overall energy
consumption (as opposed to reducing just computation energy or
communication energy), the proposed strategy attempts to strike
a balance between computation energy consumption and
communication energy consumption. Our experimental results
clearly indicate that the proposed data filtering strategy
generates substantial energy savings in practice.

1. Introduction

Technological advances in low power wireless

communication protocols and sensor devices made construction
of large-scale sensor networks possible [9, 5, 11, 17, 12, 15, 20,
4, 8]. Sensor nodes in these networks play two major roles. First,
they read data from their environment and communicate it to
other nodes and/or to a base station. Second, they take part in
high-level decision-making process that requires participation of
multiple sensors. An important question that needs to be
addressed is how much of the data they collect should be
communicated to the other sensors in the network and/or to a
central base station, and how much of it should be filtered out in
the sensor nodes themselves. While it is possible in theory to
communicate the entire data they collect (without operating on
it), this will not be very efficient in practice because of at least
two reasons. First, such an approach does not make use of the
existing processing capability in sensor nodes; and second, it may
lead to excessive energy consumption during communication.

Since energy efficiency is crucial to achieving satisfactory
network lifetime, it is of utmost importance that both
computation and communication should be performed in an
energy-efficient manner. In particular, prior research [17]
indicates that, in a wireless sensor network environment,

communication energy can be orders of magnitude higher than
computation energy. Therefore, in most cases, communicating all
the data read (sensed) from the environment as it is (that is,
without any filtering) may not be acceptable. Instead, data should
be filtered in the sensor node before it is being passed to the other
nodes in the wireless network or to the base station.

The main goal of this paper is to develop an automated
strategy for data filtering in wireless sensor nodes. Assuming that
one needs to reduce the overall energy consumption (as opposed
to reducing just computation energy or communication energy),
the proposed strategy attempts to strike a balance between
computation energy consumption and communication energy
consumption. In other words, the main idea in this work is to
perform the right amount of data filtering in the sensor node. Our
strategy is designed for wireless sensor network environments
where an end-user wants to remotely monitor/control the
environment. In such a situation, the data from the individual
sensor nodes must be sent to a central base station, often located
far from the sensor network, through which the end-user can
access the data.

In addition, we want the sensor network to be easily
reprogrammable when desired. In other words, we want to
automate our data filtering strategy within an optimizing compiler
so that it can be reused across different applications mapped to
the wireless network. To do this, we make use of available
optimizing compiler technology [13]. More specifically, the
compiler analyzes the application code to be mapped to the
sensor network and decides, for each sensor node, the type and
amount of data filtering that needs to be accommodated.

In order to demonstrate the viability of our approach, we
implemented the necessary compiler algorithms within an
experimental compiler [1], and performed extensive experiments
with several applications suitable for sensor environments using a
custom energy simulator. Our experimental results clearly show
that the proposed data filtering strategy generates substantial
energy savings in practice. This, in turn, helps prolong lifetime of
a wireless sensor network. Moreover, our results also reveal that
working with a less aggressive or a more aggressive filtering
strategy (than the one determined by our compiler-based
approach) generates worse results across all applications tested.

The rest of this paper is organized as follows. Section 2
presents our data filtering strategy in detail. Section 3 introduces
our experimental platform (the simulation setup and the
benchmarks) and discusses experimental results. Section 4
concludes the paper with a summary of our major findings.

1530-1591/04 $20.00 (c) 2004 IEEE

2. Data filtering

2.1. Problem description

The problem that we attack in this paper can be described as
follows. Let us assume that, at processing step k, sensor node Si

reads (senses) Ni,k bytes of data from the environment, and wants
to perform some computation on it and subsequently pass the
result to the central base station. Assume further that the node
(after operating on the data) filters the data and reduces it to N’ i,k
bytes and spends an Ecompi,k amount of computation energy in
doing so. After that, it passes the data to the base station by
expending an Ecommi,k amount of communication energy. Our
objective then is to determine the right amount of data filtering
such that the total energy consumption (considering all sensors
and all processing steps),

Eall = Σi Σk Ecompi,k + Ecommi,k ,
is minimized. It should be noted that there are several factors that
make this problem very difficult to solve in practice. First,
depending on the application mapping employed, different sensor
nodes in the network can execute different code fragments. In the
worst case, each sensor may need to employ a different filtering
strategy (customized to its portion of the code) to obtain the best
energy consumption behavior network-wide. Second, even one
considers a single sensor node, it may be difficult to establish a
relationship between the amount of data filtered and the overall
energy consumed. This is because filtering a given amount of
data may require different amount of computation energy
depending on where it takes place during the course of execution.
For example, filtering the first 10 bytes of a dataset may be fast
(and energy efficient), whereas the second 10 bytes can be very
costly as far as filtering is concerned (e.g., due to variances in the
control flow of the application in question). Third, the sensor
nodes might be different from each other in terms of their
physical properties. That is, some of them may handle
computation very efficiently (conserving computation energy),

whereas some others may have low power mechanisms to reduce
communication energy. Combined, these three factors can make
it very hard from the perspective of the application programmer
to decide an ideal data filtering strategy.

Our compiler-based approach to this problem works as
follows. First, the compiler analyzes the code mapped to each
sensor node, and for each statement in the code, identifies the
amount of maximum beneficial filtering possible. Note that, if a
statement does not perform any data filtering, there is no point in
executing it in the sensor node since doing so will not reduce the
data to be communicated (and will eat up battery power
unnecessarily). Instead, such a statement is a perfect candidate to
be executed on the central base station, where there is no energy
constraint. On the other hand, if a statement exhibits some data
filtering, then the compiler should determine whether to execute
it on the sensor node or on the base station side. In our approach,
the compiler makes this decision by analyzing how the result of
this statement is later used in the application (i.e., how it will be
consumed). The next subsection gives the details of our
compiler-based approach.

2.2. Compiler analysis for data filtering and our
algorithm

We define our problem as a computation-mapping problem;
that is, for each sensor node in the wireless network, given a
fixed amount computation to be performed (whose result needs to
be communicated to the base station), we divide the computation
between the sensor node and the base station. In other words, we
decide what parts of the computation should be mapped to the
base station and what parts of it to the sensor node. Informally, in
order for a computation to be mapped to the sensor node, it
should contain some amount of data filtering (or data reduction)
type of computation. A code fragment can be considered as
filtering if the size of the output data generated by it is much
lower than the size of the input data. As an example, consider the
following code fragment that consists of two separate loop nests
(written in a C-like language):

 for(i=2;i<n;i++)
 for(j=2;j<n;j++)
 L[i][j] = α•M[i-1][j+1] + β•M[i+1][j-1];
 for(i=2;i<n;i++)
 for(j=2;j<n;j++)
 for(k=1;k≤n;k++)
 K[i][j] = θ•N[i-1][j+1][k] + σ•N[i+1][j-1][k];
In this code fragment, M, L, N, and K are arrays and α, β, θ,

and σ are scalar variables. Assuming that arrays M and N
represent the data sensed (read) from the environment, the first
loop nest above does not have any filtering type of activity since

Table 1. Computations and communications due to three different execution strategies for the scenario in Figure 1.

Naïve Mapping Step 1 Step 1 + Step 2
Computation Computation Computation

Base Sensor
Communication

Base Sensor
Communication

Base Sensor
Communication

H1 - L1 H1 L1 H1 L1
H2 - L2 H2 K2 H2 K2
H3 - L3 H3 K3 H3 -
H4 - L4 H4 L4 H4 L4
H5 - - H5 K5 H5 K5

Nest1

Nest 2

Nest 3

Nest 5

Nest 4

L1 K1

L2 K2

L3 K3

L4 K4

K3 K5

H1

H2

H3

H4

H5

fil
te

ri
ng

fil
te

ri
ng

fil
te

ri
ng

Figure 1. An example scenario (Li denotes input
data and Ki denotes resulting data).

it takes a two-dimensional array (M) as input, and generates a
two-dimensional array (L) as output. In contrast, the second loop
nest exhibits filtering; that is, it takes a three-dimensional array
(N) and generates a two-dimensional array (K). Therefore, it is a
better candidate to be executed in the sensor node (as opposed to
the central base station). This is because if we do not execute it in
the sensor node, we need to execute it in the base station. But, to
do this, we need to transfer an entire array N (a total of n3
elements) from the sensor node to the base station, resulting in
tremendous network traffic, thereby consuming potentially
intolerable amount of communication energy. Instead, if we can
execute the nest in the sensor node, we need to transfer only the
resulting array (K) to the base station (a total of n2 array
elements). In this way, the sensor node filters data before it is
shifted to the base station. As a simple rule, those computations
that result in filtering and data reduction, while requiring small
amount of computation (or energy) per unit of data, are most
suitable for being mapped to the sensor node; because, they
would exploit relatively less powerful processors in the sensor
nodes, while tremendously reducing the data communication
volume between the wireless sensor network and the base station.

Our compiler algorithm for detecting the computations to be
performed in the sensor nodes (and those to be performed in the
base station) operates on loop nest granularity, and consists of
two steps. In the first step, the compiler considers each nest in
turn and marks the nests that should be executed in the sensor
node since they contain some sort of data filtering. In the second
step, we try to reduce the data that needs to be communicated to
the base station further by checking whether the resulting data
sets (from the loop nests selected in the first step) are actually
needed in the base station. If not, these data sets are not
transmitted to the base station, thereby further reducing
communication volume. Therefore, in the second step of our
algorithm, the compiler performs a data-flow analysis at the loop
nest granularity. In the following paragraphs, we discuss these
two steps in more detail, and make a case that in order to obtain
the best energy consumption behavior, both of these steps are
necessary.

To explain the first step of our algorithm, let us consider the
following generic loop nest and the assignment statement shown,
assuming that this loop nest is to be executed by a sensor node:

 for (i1=L1; i1≤U1; i1++)
 for (i2=L2; i2≤U2; i2++)
 ……………………..
 for (is=Ls; is≤Us; is++)
 K[f1][f 2]...[fτ] = ... L[g1][g2]...[gχ] ...
We assume that f1, f2, ..., fτ, g1, g2, ..., gχ are the subscript

expressions (array index functions), and each fi (1 ≤ i ≤ τ) and gj
(1 ≤ j ≤ χ) is an affine function of loop indices i1, i2, ..., is and
loop-independent variables. We also assume that arrays K (τ-
dimensional) and L (χ-dimensional) are declared as type
K[N1][N2]...[Nτ], L[M 1][M 2]...[Mχ], where type can be any (data)
type of interest such as integer or float. The compiler decides that
the assignment statement in this loop nest exhibits a filtering if
and only if:

c • G{K[f 1][f 2]...[fτ]} < G{L[g 1][g2]...[gχ]}
Here, c is a constant to make sure that the difference between

the two sides is large enough so that executing the computation
(the statement) in the sensor node will be really beneficial. Also,
G{E} gives the number of distinct array elements accessed by

array reference E (which is either K[f1][f 2]...[fτ]} or L[g1][g2]...
[gχ]} for the assignment statement above). In other words, this
constraint checks whether the size of the output data generated
(K) is sufficiently smaller than the input data (L). One problem
with this constraint is that determining the number of elements
accessed by an affine expression is in general a costly operation
[16][14]. In checking this constraint, we represent the set to be
counted using the Presburger formulas and use the technique
proposed in [6].

It should be observed that in most of the cases with array-
dominated applications encountered in practice, it is possible to
check the above condition statically (at compile-time) using a
polyhedral tool such as the Omega Library [10]. In cases where
this is not possible, we have two options. First, we can collect
profile data (e.g., by instrumenting the code) to see whether the
condition above holds for typical input data. Second, we can
insert a conditional statement (if-statement) into the code that
chooses between performing computation in the base station and
performing it in the sensor node, depending on the outcome of
the condition. It should be noted that selecting a suitable c value
is critical. This is because a small c value can force aggressive
computation mapping to the sensor node. This, in turn, can result
in some unsuitable computation being mapped to the embedded
processor in the sensor node (which is typically much less
powerful than the one in the central base station), thereby
reducing overall performance (i.e., increasing application
execution time) and impacting energy consumption behavior
negatively. On the other hand, a very large c value can be overly
conservative and can result in a code mapping that does not make
use of the processor in the sensor node at all. If, in a given loop
nest, there exists at least one statement that exhibits filtering, our
current implementation marks the entire loop to be executed in
the sensor node. As an example, let us consider the example code
fragment given at the beginning of Section 2.2 (which consists of
two separate nests). Assuming that all array dimensions are of the
same size (extent), using the approach summarized in the
previous paragraph, one can easily see that only the second nest
is identified to be executed in the sensor node (assuming c = 1).
While it might be possible to have more elaborate strategies for
identifying the loop nests that need to be executed in the sensor
node (instead of the base station), as the experimental results
presented later show, our approach performs very well in
practice.

We now discuss the second step of our compiler-based
approach. It is to be noted that mapping large code fragments to
the sensor node is preferred to mapping smaller ones as the
former implies less communication between the base station and
the sensor node. In the second step of our algorithm, in order to
minimize communication between the sensor nodes and the base
station further, we use data-flow analysis. Data-flow analysis is a
program analysis technique that is mainly used to collect
information about how data flows through program
statements/blocks [13]. To explain our approach, let us assume
that in the first step we have decided that two loop nests, named
ξ1 and ξ2, have been decided to be executed in the sensor node. If
the output of ξ1 is used only by ξ2 (as input), then the mentioned
output does not need to be communicated to the base station
(following the execution of ξ1). Instead, we can communicate the
output of ξ2 after the execution of both ξ1 and ξ2. In this way, we

can reduce communication volume beyond what could be
achieved by using only step 1.

To illustrate the importance of these two steps of our
optimization algorithm, we now consider the example scenario
depicted in Figure 1. In this figure, we have five separate loop
nests (shown on the left side of the figure) and the function
performed by each nest is shown on the right hand side. The
arrow in the figure indicates that the output of the third loop nest
is used as input to the fifth loop nest. As can be seen from the
first three columns of Table 1, in a naïve execution, all data
sensed from the environment are communicated to the central
base station, which in turn executes all functions. The middle part
of Table 2 shows the computations and communications when
only the first step of our approach is used, under the assumption
that the second, third, and fifth nests contain filtering. In
comparison, the last portion of the table shows the situation if
both of the steps of our algorithm are applied. Comparing this
with the middle part of the same table, one can see the advantage
of employing both the steps. If we use only step 1, at the end of
the third nest, the sensor node communicates K3 to the base
station. On the other hand, if we use both the steps, the sensor
node does not perform this communication. Instead, since K3
itself is not required by the base station, the sensor node keeps it
and uses it in the fifth nest. In other words, using both the steps
of our approach reduces communication beyond what could be
possible had we used only the first step of the algorithm.

3. Experimental setup and evaluation

3.1. Benchmark codes

We use a set of array-intensive benchmark programs in our
experiments. The salient characteristics of the benchmark codes
in our experimental suite are summarized in Table 2. The first,
third, fourth, and sixth benchmarks are motion estimation codes.
The second one is an alternate direction integral code. mxm and
tomcatv are an integer matrix multiplication code and a mesh
generation code, respectively. The last two codes, Jacobi
relaxation and red-black successive over-relaxation (SOR),
contain stencil-like computations and reductions. Each array
element is assumed to be 4-bit wide. The third column in this
table gives the number of arrays (including the temporary ones)
in each benchmark code. The last column shows the energy
consumption (computation plus communication) when no data
filtering is performed in the sensor nodes. The energy

consumption values reported in the rest of this section are
normalized with respect to this last column of Table 2 (our
energy modeling will be discussed shortly).

3.2. Application parallelization over sensor nodes

In this work, we focus on applications where arrays (which
represent the sensed data) are processed by multiple sensor nodes
in parallel. In such applications, given an array, typically, each
processor is responsible from processing a portion of it. Note that
this operation style matches directly to an environment where
each sensor node is collecting some data from the portion of an
area covered by it, and processing the collected data [17].

Our parallelization strategy works on a single loop nest at a
time; that is, each loop nest in the application code being
optimized is parallelized independently of the other loop nests. In
order to parallelize a given loop nest over sensor nodes, we need
to perform two main tasks: (1) decomposing arrays of signals
across the memories of the sensor nodes, and (2) distributing the
loop iterations across the sensor nodes. Note that array
decomposition and loop iteration distribution, together, achieve
some sort of data parallelism across sensor nodes. In this work,
we adopt an array decomposition oriented parallelization strategy
based on the owner-computes rule used by state-of-the-art
optimizing compilers [13]. In this strategy, an array element is
updated (written) by only the node that owns it.

3.3. Energy modeling

In this study, we focus only on dynamic energy. Dynamic
energy consumption is due to switching of hardware components
is dependent strongly on how different components of a sensor
node are exercised by a given application [2]. We separate the
overall energy consumption into two components: computation
energy and communication energy. Computation energy is the
energy consumed in processor core (datapath), instruction
memory, data memory, and clock network. In this work, we focus
on a simple, single-issue, five-stage pipelined embedded (and
low-power) processor core that is suitable to be employed in a
sensor node. This core has instruction fetch (IF), instruction
decode/operand fetch (ID), execution/address calculation (EXE),
memory access (MEM), and write-back (WB) stages. We use
SimplePower [18], a publicly-available cycle-accurate energy
simulator, to model the energy consumption in this processor
core. The modeling approach used in SimplePower has been
validated to be accurate (with an average error rate of 8.98%)

Table 2. Benchmark codes used in the experiments.
The last column shows the energy consumption
(computation plus communication) when no data
filtering is performed in the sensor nodes.

Benchmark Input Arrays Energy
3-step-log 295.08KB 3 230.4mJ

adi 271.09KB 6 408.6mJ

full-search 98.77KB 3 316.6mJ

hier 97.77KB 7 228.5mJ

mxm 464.84KB 3 838.7mJ

parallel-hier 295.08KB 3 220.6mJ
tomcatv 174.22KB 9 910.0mJ
jacobi 312.00KB 4 661.9mJ
red-black SOR 156.00KB 4 892.2mJ

Table 3. The default parameters used in our base
configuration. Some of these parameters are later
modified to conduct a sensitivity analysis.

Parameter Value
|P| 120

Instruction Memory 8 KB

Data Memory 16 KB

Ptx 80 mW

Prx 200 mW

Tst 450 msec

Pout 1 mW

l 250 bits

b 1 Mb/sec

using actual current measurements of a commercial architecture
[3].

We assume that each sensor node has an instruction memory
and a data memory (both are SRAM). The energy consumed in
these memories is dependent primarily on the number of accesses
and memory configuration (e.g., capacity, the number of
read/write ports, and whether it is banked or not). We modified
the Shade simulation environment [7] to capture the number of
references to instruction and data memories, and used the CACTI
tool [19] to calculate the per access energy cost. The data
collected from Shade and CACTI are then combined to compute
the overall energy consumption due to memory accesses. The
clock generation circuit (PLL), the clock distribution buffers and
wires, and the clock-load on the clock network presented by the
clocked components are the main energy consumers for the clock
network in our sensor node. We enhanced SimplePower to
estimate the clock network energy consumption in each cycle by
determining which parts of clock network are active, and using
the corresponding energy models for active components.

As our communication energy component, we consider the
energy expended for sending/receiving data. The radio in the
sensor nodes is capable of both sending data and, at the same
time, sensing incoming data. We assume that if the radio is not
sending any data, it does not spend any energy (omitting the
energy expended due to sensing). After packing data, the
processor sends the data to the other processors via radio. The
radio needs a specific startup time to start sending/receiving a
message. In this study, we used the radio energy model
presented by [17] to account for communication energy. In this
model, the power equation of the radio is expressed as:

Pradio = Ntx[Ptx(Ton-tx+Tst)+PoutTon-tx]
+ Nrx[Prx(Ton-rx+Tst)],
where Ntx/rx is the average number of times per second that the

transmitter/receiver is used; Ptx/rx is the power consumption of
transmitter/receiver; Pout is the output transmit power that drives
the antenna; Ton-tx/on-rx is the time interval required to send/receive
data; and Tst is the startup time of the transceiver. Also, note that
Ton-tx/on-rx=l/b, where l is packet size (message length in bits), and
b is the data transmit/receive rate in bits per second.

Our base configuration uses the values given in Table 3. The
power values in this table are similar to those used in [17, 12]. In
all our experiments we maintain that Prx is equal to 2.5Ptx (since
the receiver has more circuitry than transmitter). That is,
whenever Ptx is modified, Prx is also modified accordingly to
satisfy Prx=2.5Ptx. In Table 3, |P| denotes the total number of
sensor nodes that participate in the execution of the application.

3.4. Results

We start our discussion of experimental results by giving
energy breakdown for each application in our benchmark suite.
In Figure 2, for each benchmark, the first bar corresponds to the
energy breakdown between computation and communication
when no filtering is performed. The second bar, on the other
hand, shows the breakdown when our filtering based strategy is
employed. We see from these results that, on the average, when
no filtering is used communication energy constitutes 93.62% of
the overall energy budget. When we use filtering, however, the
contribution drops to 59.68% (at the expense of some increase in
computation energy). In other words, filtering is very effective in
practice, giving 31.44% saving in overall energy consumption. In
order to illustrate the contribution of the second step of our
algorithm, in Figure 2, the last bar for each application gives the
energy when only the first step of our approach is used. We
observe that the average energy savings is around 26.04%, much
lower than the case when we used both the steps of the algorithm.
These results emphasize the importance of using both the steps of
our algorithm. In the remainder of this section, we always use
both the steps of our algorithm.

To see what would happen if we perform all computations in
the sensor nodes, we computed another set of experiments. The
results are given in Figure 3 as fraction of the values represented
by the first bar in Figure 2. One can clearly see from these results
aggressive in-sensor computation is not a good idea. Specifically,
it generates worse results that the base case in three of our
benchmarks. Even for the remaining benchmarks, its energy
behavior is very close to that of the base case. Therefore, careful
tuning the aggressiveness of data filtering is critical.

3.5. Sensitivity analysis

In this section, we study the behavior of our algorithm when

several experimental parameters are modified. The parameters
modified here are Tst (startup time), Ptx (transmitter power), and b
(data rate). Note that some of these variations also help us
(indirectly) evaluate the impact of different communication
protocols. For example, increasing the number of error-control
bits added by a protocol can be thought of as increasing Ptx. In
this subsection, using the base configuration, we also
experimented with different network sizes. In most of the results
presented in this section, we focus on two applications only
(tomcatv and red-black-SOR) due to lack of space. However, our
observations hold for other applications as well.

0
20
40
60
80

100
120

3-
st

ep
-

ad
i

fu
ll-

hi
er

m
xm

pa
ra

to
m

ca
tv

ja
co

bi

re
d-E

ne
rg

y
B

re
ak

do
w

n

Communication

Computation

Figure 3. Energy breakdown between communication
and computation. For each benchmark, the first bar
corresponds to the default case (without any filtering)
and the second one corresponds to the optimized case
when only the first step of our algorithm is used.

0

20

40

60

80

100

3-
st

ep
-

ad
i

fu
ll-

hi
er

m
xm

pa
ra

to
m

ca
tv

ja
co

bi

re
d-

E
ne

rg
y

B
re

ak
do

w
n

Communication

Computation

Figure 2. Energy breakdown between communication
and computation. For each benchmark, the first bar
corresponds to the default case (without any filtering)
and the second one corresponds to the optimized case
when both steps of our algorithm are used.

First, in Figure 4, we show the influence of startup latency on
communication energy consumption. We observe that startup
latency has a great impact on energy behavior of these two
applications. In our second experiment, we measure the effect of
transceiver power on communication energy. As can be seen
clearly from Figure 5, the communication energy increases
almost linearly with the transceiver power (Ptx). This is because
the transceiver power is very large as compared to the transmit
power of the antenna (Pout), and is the main factor that determines
the overall trend in communication energy. The effect of data
transmit/receive rate on energy behavior of these two benchmarks
is given in Figure 6. Since an increase in transmit/receive rate
reduces transmit/receive time, the radio will need to be active for
a smaller period of time to send/receive the message, and
consequently, communication energy is reduced. Also, note that,
for very high rates, the startup time balances or dominates the
transmit/receive time, so energy overhead due to startup time
plays a very critical role in total communication time. As a
consequence, the number of messages (rather than total size of
messages) determines the communication energy.

4. Concluding remarks

Wireless, microsensor networks have potential for enabling a

myriad of applications for sensing and controlling the physical
world. Recent years have witnessed several efforts at the
architectural and circuit level for designing and implementing
microsensor-based networks. While architectural/circuit-level
techniques are extremely critical for the success of these
networks, software optimizations are also expected to become
instrumental in extracting the maximum benefits from the
performance and energy behavior angles. The main goal of this
paper is to develop an automated strategy for data filtering in
wireless sensor nodes. Data filtering performs some select
computation at the sensor nodes and shifts to the central base
station only the results. Assuming that one needs to reduce the
overall energy consumption (as opposed to reducing just
computation energy or communication energy), the proposed
strategy attempts to strike a balance between computation energy

consumption and communication energy consumption. Our
experimental results clearly indicate that the proposed data
filtering strategy generates substantial energy savings in practice.

5. References

[1] S. P. Amarasinghe et al. “Multiprocessors from a software perspective.” IEEE
Micro, June 1996, pages 52-61.

[2] A. Chandrakasan, W. J. Bowhill, and F. Fox. “Design of High-Performance
Microprocessor Circuits.” IEEE Press, 2001.

[3] R. Y. Chen, R. M. Owens, and M. J. Irwin. “Validation of an architectural level
power analysis technique. “ In Proc. the 35th Design Automation Conference,
June 1998.

[4] B. Chen, K. Jamieson, R. Morris, and H. Balakrishnan. “Span: an energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless
networks.” In Proc. the ACM MOBICOM Conference, Rome, Italy, July 2001.

[5] S.-H. Cho and A. Chandrakasan. “Energy-efficient protocols for low duty cycle
wireless microsensor networks.” In Proc. ICASSP'2001, May 2001.

[6] P. Clauss. "Counting Solutions to Linear and Nonlinear Constraints through
Ehrhart Polynomials: Applications to Analyze and Transform Scientific
Programs". In Proc. the 10th International Conference on Supercomputing, pp.
278--285, May 25--28, 1996, PA.

[7] B. Cmelik and D. Keppel. “Shade: a fast instruction-set simulator for execution
profiling.” In Proc. the 1994 ACM SIGMETRICS Conference on the
Measurement and Modeling of Computer Systems, May 1994, pp. 128—137.

[8] J. Elson and K. Römer. “Wireless sensor networks: a new regime for time
synchronization.” In Proc. the First Workshop on Hot Topics In Networks
(HotNets-I), Princeton, New Jersey. October 28-29 2002.

[9] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar “Next century challenges:
scalable coordination in sensor networks.” In Proc. the Fifth Annual
International Conference on Mobile Computing and Networks, August 1999,
Seattle, Washington.

[10] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott.
“The Omega library interface guide.” Technical Report CS-TR-3445, CS Dept.,
University of Maryland, College Park, MD, March 1995.

[11] A. Lim. “Distributed services for information dissemination in self-organizing
sensor networks.” Special Issue on Distributed Sensor Networks for Real-Time
Systems with Adaptive Reconfiguration, Journal of Franklin Institute, Elsevier
Science Publisher, Vol. 338, 2001, pp. 707--727.

[12] R. Min, M. Bhardwaj, S.-H. Cho, A. Sinha, E. Shih, A. Wang, and A.
Chandrakasan. “Low-power wireless sensor networks.” In Proc. VLSI
Design'01, January 2001.

[13] S. S. Muchnick. "Advanced Compiler Design Implementation." Morgan
Kaufmann Publishers, San Francisco, California, 1997.

[14] W. Pugh "Counting Solutions to Presburger Formulas: How and Why", In Proc.
the ACM Conference on Programming Language Design and Implementation
1994, Orlando, Florida.

[15] J. Rabaey et al. “PicoRadio supports ad-hoc ultra-low power wireless
networking.” IEEE Computer Magazine, July 2000, pp. 42--48.

[16] A. Schrijver. "Theory of Linear and Integer Programming", John Wiley and
Sons, Inc., New York, NY, 1986.

[17] E. Shih, S. H. Choo, N. Ickes, R. Min, A. Sinha, A. Wang, A. Chandrakasan.
“Physical layer driven protocol and algorithm design for energy-efficient
wireless sensor network.” In Proc. the 7th Annual International Conference on
Mobile Computing and Networking, July 16-22, 2001, Rome Italy.

[18] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. Y. Kim, and W. Ye. “Energy-
driven integrated hardware-software optimizations using SimplePower.” In Proc.
the International Symposium on Computer Architecture, June 2000.

[19] S. Wilton and N. P. Jouppi. “CACTI: an enhanced cycle access and cycle time
model.” IEEE Journal of Solid-State Circuits, pp. 677--687, 1996.

[20] W. Ye, J. Heidemann, and D. Estrin. “An energy-efficient MAC protocol for
wireless sensor networks.” In Proc. the 21st International Annual Joint
Conference of the IEEE Computer and Communications Societies, New York,
NY, USA, June, 2002.

0
50

100
150
200

10
0m

se
c

20
0m

se
c

45
0m

se
c

10
00

m
se

c

20
00

m
se

c

C
om

m
un

ic
at

io
n

E
ne

rg
y

tomcatv

red-black-SOR

Figure 4. Communication energy consumption due
to our approach with different startup latencies.

0
50

100
150
200
250
300

20
m

W

40
m

W

80
m

W

16
0m

W

32
0m

WC
om

m
un

ic
at

io
n

E
ne

rg
y

tomcatv

red-black-SOR

Figure 5. Communication energy consumption due to
our approach with different transceiver power values.

0

100

200

300

400

0.1Mb 1Mb 10Mb

C
om

m
un

ic
at

io
n

E
ne

rg
y

tomcatv

red-black-SOR

Figure 6. Communication energy consumption due
to our approach with different transmit/receive rates.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

