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Abstract 
In recent years, research on wireless sensor networks has been 
undergoing a revolution, promising to have significant impact on 
a broad range of applications from military to health care to 
food safety. An important problem in many sensor network 
applications is to decide the amount of computation (or filtering) 
that needs to be done in the sensor nodes before the data are 
shifted to a central base station. Right amount of data filtering in 
the sensor nodes can lead to large savings in network-wide 
energy consumption. The main goal of this paper is to develop an 
automated strategy for data filtering in wireless sensor nodes. 
Assuming that one needs to reduce the overall energy 
consumption (as opposed to reducing just computation energy or 
communication energy), the proposed strategy attempts to strike 
a balance between computation energy consumption and 
communication energy consumption. Our experimental results 
clearly indicate that the proposed data filtering strategy 
generates substantial energy savings in practice. 
 
 

1. Introduction 
 
Technological advances in low power wireless 

communication protocols and sensor devices made construction 
of large-scale sensor networks possible [9, 5, 11, 17, 12, 15, 20, 
4, 8]. Sensor nodes in these networks play two major roles. First, 
they read data from their environment and communicate it to 
other nodes and/or to a base station. Second, they take part in 
high-level decision-making process that requires participation of 
multiple sensors. An important question that needs to be 
addressed is how much of the data they collect should be 
communicated to the other sensors in the network and/or to a 
central base station, and how much of it should be filtered out in 
the sensor nodes themselves. While it is possible in theory to 
communicate the entire data they collect (without operating on 
it), this will not be very efficient in practice because of at least 
two reasons. First, such an approach does not make use of the 
existing processing capability in sensor nodes; and second, it may 
lead to excessive energy consumption during communication. 

Since energy efficiency is crucial to achieving satisfactory 
network lifetime, it is of utmost importance that both 
computation and communication should be performed in an 
energy-efficient manner. In particular, prior research [17] 
indicates that, in a wireless sensor network environment, 

communication energy can be orders of magnitude higher than 
computation energy. Therefore, in most cases, communicating all 
the data read (sensed) from the environment as it is (that is, 
without any filtering) may not be acceptable. Instead, data should 
be filtered in the sensor node before it is being passed to the other 
nodes in the wireless network or to the base station. 

The main goal of this paper is to develop an automated 
strategy for data filtering in wireless sensor nodes. Assuming that 
one needs to reduce the overall energy consumption (as opposed 
to reducing just computation energy or communication energy), 
the proposed strategy attempts to strike a balance between 
computation energy consumption and communication energy 
consumption. In other words, the main idea in this work is to 
perform the right amount of data filtering in the sensor node. Our 
strategy is designed for wireless sensor network environments 
where an end-user wants to remotely monitor/control the 
environment. In such a situation, the data from the individual 
sensor nodes must be sent to a central base station, often located 
far from the sensor network, through which the end-user can 
access the data. 

In addition, we want the sensor network to be easily 
reprogrammable when desired. In other words, we want to 
automate our data filtering strategy within an optimizing compiler 
so that it can be reused across different applications mapped to 
the wireless network. To do this, we make use of available 
optimizing compiler technology [13]. More specifically, the 
compiler analyzes the application code to be mapped to the 
sensor network and decides, for each sensor node, the type and 
amount of data filtering that needs to be accommodated.  

In order to demonstrate the viability of our approach, we 
implemented the necessary compiler algorithms within an 
experimental compiler [1], and performed extensive experiments 
with several applications suitable for sensor environments using a 
custom energy simulator. Our experimental results clearly show 
that the proposed data filtering strategy generates substantial 
energy savings in practice. This, in turn, helps prolong lifetime of 
a wireless sensor network. Moreover, our results also reveal that 
working with a less aggressive or a more aggressive filtering 
strategy (than the one determined by our compiler-based 
approach) generates worse results across all applications tested.   

The rest of this paper is organized as follows. Section 2 
presents our data filtering strategy in detail. Section 3 introduces 
our experimental platform (the simulation setup and the 
benchmarks) and discusses experimental results. Section 4 
concludes the paper with a summary of our major findings. 
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2. Data filtering  
 

2.1. Problem description 
 

The problem that we attack in this paper can be described as 
follows. Let us assume that, at processing step k, sensor node Si 

reads (senses) Ni,k bytes of data from the environment, and wants 
to perform some computation on it and subsequently pass the 
result to the central base station. Assume further that the node 
(after operating on the data) filters the data and reduces it to N’ i,k 
bytes and spends an  Ecompi,k amount of computation energy in 
doing so. After that, it passes the data to the base station by 
expending an Ecommi,k amount of communication energy. Our 
objective then is to determine the right amount of data filtering 
such that the total energy consumption (considering all sensors 
and all processing steps), 

Eall =  Σi Σk Ecompi,k + Ecommi,k , 
is minimized. It should be noted that there are several factors that 
make this problem very difficult to solve in practice. First, 
depending on the application mapping employed, different sensor 
nodes in the network can execute different code fragments. In the 
worst case, each sensor may need to employ a different filtering 
strategy (customized to its portion of the code) to obtain the best 
energy consumption behavior network-wide. Second, even one 
considers a single sensor node, it may be difficult to establish a 
relationship between the amount of data filtered and the overall 
energy consumed. This is because filtering a given amount of 
data may require different amount of computation energy 
depending on where it takes place during the course of execution. 
For example, filtering the first 10 bytes of a dataset may be fast 
(and energy efficient), whereas the second 10 bytes can be very 
costly as far as filtering is concerned (e.g., due to variances in the 
control flow of the application in question). Third, the sensor 
nodes might be different from each other in terms of their 
physical properties. That is, some of them may handle 
computation very efficiently (conserving computation energy), 

whereas some others may have low power mechanisms to reduce 
communication energy. Combined, these three factors can make 
it very hard from the perspective of the application programmer 
to decide an ideal data filtering strategy. 

Our compiler-based approach to this problem works as 
follows. First, the compiler analyzes the code mapped to each 
sensor node, and for each statement in the code, identifies the 
amount of maximum beneficial filtering possible. Note that, if a 
statement does not perform any data filtering, there is no point in 
executing it in the sensor node since doing so will not reduce the 
data to be communicated (and will eat up battery power 
unnecessarily). Instead, such a statement is a perfect candidate to 
be executed on the central base station, where there is no energy 
constraint. On the other hand, if a statement exhibits some data 
filtering, then the compiler should determine whether to execute 
it on the sensor node or on the base station side. In our approach, 
the compiler makes this decision by analyzing how the result of 
this statement is later used in the application (i.e., how it will be 
consumed). The next subsection gives the details of our 
compiler-based approach. 

 

2.2. Compiler analysis for data filtering and our 
algorithm 

 

We define our problem as a computation-mapping problem; 
that is, for each sensor node in the wireless network, given a 
fixed amount computation to be performed (whose result needs to 
be communicated to the base station), we divide the computation 
between the sensor node and the base station. In other words, we 
decide what parts of the computation should be mapped to the 
base station and what parts of it to the sensor node. Informally, in 
order for a computation to be mapped to the sensor node, it 
should contain some amount of data filtering (or data reduction) 
type of computation. A code fragment can be considered as 
filtering if the size of the output data generated by it is much 
lower than the size of the input data. As an example, consider the 
following code fragment that consists of two separate loop nests 
(written in a C-like language): 

 for(i=2;i<n;i++) 
                 for(j=2;j<n;j++) 
                   L[i][j] = α•M[i-1][j+1] + β•M[i+1][j-1];  
  for(i=2;i<n;i++) 
  for(j=2;j<n;j++) 
   for(k=1;k≤n;k++) 
    K[i][j] = θ•N[i-1][j+1][k] + σ•N[i+1][j-1][k];  
In this code fragment, M, L, N, and K are arrays and α, β, θ, 

and σ are scalar variables. Assuming that arrays M and N 
represent the data sensed (read) from the environment, the first 
loop nest above does not have any filtering type of activity since 

Table 1. Computations and communications due to three different execution strategies for the scenario in Figure 1. 

Naïve Mapping Step 1 Step 1  +  Step 2 
Computation Computation Computation 

Base Sensor 
Communication 

Base Sensor 
Communication 

Base Sensor 
Communication 

H1 - L1 H1  L1 H1  L1 
H2 - L2  H2 K2  H2 K2 
H3 - L3  H3 K3  H3 - 
H4 - L4 H4  L4 H4  L4 
H5 - -  H5 K5  H5 K5 
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Figure 1. An example scenario (Li denotes input 
data and Ki denotes resulting data). 



it takes a two-dimensional array (M) as input, and generates a 
two-dimensional array (L) as output. In contrast, the second loop 
nest exhibits filtering; that is, it takes a three-dimensional array 
(N) and generates a two-dimensional array (K). Therefore, it is a 
better candidate to be executed in the sensor node (as opposed to 
the central base station). This is because if we do not execute it in 
the sensor node, we need to execute it in the base station. But, to 
do this, we need to transfer an entire array N (a total of n3 
elements) from the sensor node to the base station, resulting in 
tremendous network traffic, thereby consuming potentially 
intolerable amount of communication energy. Instead, if we can 
execute the nest in the sensor node, we need to transfer only the 
resulting array  (K) to the base station (a total of n2 array 
elements). In this way, the sensor node filters data before it is 
shifted to the base station. As a simple rule, those computations 
that result in filtering and data reduction, while requiring small 
amount of computation (or energy) per unit of data, are most 
suitable for being mapped to the sensor node; because, they 
would exploit relatively less powerful processors in the sensor 
nodes, while tremendously reducing the data communication 
volume between the wireless sensor network and the base station. 

Our compiler algorithm for detecting the computations to be 
performed in the sensor nodes (and those to be performed in the 
base station) operates on loop nest granularity, and consists of 
two steps. In the first step, the compiler considers each nest in 
turn and marks the nests that should be executed in the sensor 
node since they contain some sort of data filtering. In the second 
step, we try to reduce the data that needs to be communicated to 
the base station further by checking whether the resulting data 
sets (from the loop nests selected in the first step) are actually 
needed in the base station. If not, these data sets are not 
transmitted to the base station, thereby further reducing 
communication volume. Therefore, in the second step of our 
algorithm, the compiler performs a data-flow analysis at the loop 
nest granularity.  In the following paragraphs, we discuss these 
two steps in more detail, and make a case that in order to obtain 
the best energy consumption behavior, both of these steps are 
necessary.  

To explain the first step of our algorithm, let us consider the 
following generic loop nest and the assignment statement shown, 
assuming that this loop nest is to be executed by a sensor node:   

 for (i1=L1; i1≤U1; i1++)  
  for (i2=L2; i2≤U2; i2++) 
   …………………….. 
   for (is=Ls; is≤Us; is++) 
    K[f1][f 2]...[fτ]  = ... L[g1][g2]...[gχ] ... 
We assume that f1, f2, ..., fτ, g1, g2, ..., gχ are the subscript 

expressions (array index functions), and each fi  (1 ≤ i ≤ τ) and gj 
(1 ≤ j ≤ χ) is an affine function of loop indices i1, i2, ..., is and 
loop-independent variables. We also assume that arrays K (τ-
dimensional) and L (χ-dimensional) are declared as type 
K[N1][N2]...[Nτ], L[M 1][M 2]...[Mχ], where type can be any (data) 
type of interest such as integer or float. The compiler decides that 
the assignment statement in this loop nest exhibits a filtering if 
and only if:  

c • G{K[f 1][f 2]...[fτ]} < G{L[g 1][g2]...[gχ]} 
Here, c is a constant to make sure that the difference between 

the two sides is large enough so that executing the computation 
(the statement) in the sensor node will be really beneficial. Also, 
G{E} gives the number of distinct array elements accessed by 

array reference E (which is either K[f1][f 2]...[fτ]}  or  L[g1][g2]... 
[gχ]} for the assignment statement above). In other words, this 
constraint checks whether the size of the output data generated 
(K) is sufficiently smaller than the input data (L). One problem 
with this constraint is that determining the number of elements 
accessed by an affine expression is in general a costly operation 
[16][14]. In checking this constraint, we represent the set to be 
counted using the Presburger formulas and use the technique 
proposed in [6].  

It should be observed that in most of the cases with array-
dominated applications encountered in practice, it is possible to 
check the above condition statically (at compile-time) using a 
polyhedral tool such as the Omega Library [10]. In cases where 
this is not possible, we have two options. First, we can collect 
profile data (e.g., by instrumenting the code) to see whether the 
condition above holds for typical input data. Second, we can 
insert a conditional statement (if-statement) into the code that 
chooses between performing computation in the base station and 
performing it in the sensor node, depending on the outcome of 
the condition. It should be noted that selecting a suitable c value 
is critical. This is because a small c value can force aggressive 
computation mapping to the sensor node. This, in turn, can result 
in some unsuitable computation being mapped to the embedded 
processor in the sensor node (which is typically much less 
powerful than the one in the central base station), thereby 
reducing overall performance (i.e., increasing application 
execution time) and impacting energy consumption behavior 
negatively. On the other hand, a very large c value can be overly 
conservative and can result in a code mapping that does not make 
use of the processor in the sensor node at all.  If, in a given loop 
nest, there exists at least one statement that exhibits filtering, our 
current implementation marks the entire loop to be executed in 
the sensor node. As an example, let us consider the example code 
fragment given at the beginning of Section 2.2 (which consists of 
two separate nests). Assuming that all array dimensions are of the 
same size (extent), using the approach summarized in the 
previous paragraph, one can easily see that only the second nest 
is identified to be executed in the sensor node (assuming c = 1). 
While it might be possible to have more elaborate strategies for 
identifying the loop nests that need to be executed in the sensor 
node (instead of the base station), as the experimental results 
presented later show, our approach performs very well in 
practice.  

We now discuss the second step of our compiler-based 
approach. It is to be noted that mapping large code fragments to 
the sensor node is preferred to mapping smaller ones as the 
former implies less communication between the base station and 
the sensor node. In the second step of our algorithm, in order to 
minimize communication between the sensor nodes and the base 
station further, we use data-flow analysis. Data-flow analysis is a 
program analysis technique that is mainly used to collect 
information about how data flows through program 
statements/blocks [13]. To explain our approach, let us assume 
that in the first step we have decided that two loop nests, named 
ξ1 and ξ2, have been decided to be executed in the sensor node. If 
the output of ξ1 is used only by ξ2 (as input), then the mentioned 
output does not need to be communicated to the base station 
(following the execution of ξ1). Instead, we can communicate the 
output of ξ2 after the execution of both ξ1 and ξ2. In this way, we 



can reduce communication volume beyond what could be 
achieved by using only step 1.  

To illustrate the importance of these two steps of our 
optimization algorithm, we now consider the example scenario 
depicted in Figure 1. In this figure, we have five separate loop 
nests (shown on the left side of the figure) and the function 
performed by each nest is shown on the right hand side. The 
arrow in the figure indicates that the output of the third loop nest 
is used as input to the fifth loop nest. As can be seen from the 
first three columns of Table 1, in a naïve execution, all data 
sensed from the environment are communicated to the central 
base station, which in turn executes all functions. The middle part 
of Table 2 shows the computations and communications when 
only the first step of our approach is used, under the assumption 
that the second, third, and fifth nests contain filtering. In 
comparison, the last portion of the table shows the situation if 
both of the steps of our algorithm are applied. Comparing this 
with the middle part of the same table, one can see the advantage 
of employing both the steps. If we use only step 1, at the end of 
the third nest, the sensor node communicates K3 to the base 
station. On the other hand, if we use both the steps, the sensor 
node does not perform this communication. Instead, since K3 
itself is not required by the base station, the sensor node keeps it 
and uses it in the fifth nest. In other words, using both the steps 
of our approach reduces communication beyond what could be 
possible had we used only the first step of the algorithm. 

 

3. Experimental setup and evaluation 
 

3.1. Benchmark codes 
 

We use a set of array-intensive benchmark programs in our 
experiments. The salient characteristics of the benchmark codes 
in our experimental suite are summarized in Table 2. The first, 
third, fourth, and sixth benchmarks are motion estimation codes. 
The second one is an alternate direction integral code. mxm and 
tomcatv are an integer matrix multiplication code and a mesh 
generation code, respectively. The last two codes, Jacobi 
relaxation and red-black successive over-relaxation (SOR), 
contain stencil-like computations and reductions. Each array 
element is assumed to be 4-bit wide. The third column in this 
table gives the number of arrays (including the temporary ones) 
in each benchmark code. The last column shows the energy 
consumption (computation plus communication) when no data 
filtering is performed in the sensor nodes. The energy 

consumption values reported in the rest of this section are 
normalized with respect to this last column of Table 2 (our 
energy modeling will be discussed shortly).  

 

3.2. Application parallelization over sensor nodes 
 

In this work, we focus on applications where arrays (which 
represent the sensed data) are processed by multiple sensor nodes 
in parallel. In such applications, given an array, typically, each 
processor is responsible from processing a portion of it. Note that 
this operation style matches directly to an environment where 
each sensor node is collecting some data from the portion of an 
area covered by it, and processing the collected data [17].  

Our parallelization strategy works on a single loop nest at a 
time; that is, each loop nest in the application code being 
optimized is parallelized independently of the other loop nests. In 
order to parallelize a given loop nest over sensor nodes, we need 
to perform two main tasks: (1) decomposing arrays of signals 
across the memories of the sensor nodes, and (2) distributing the 
loop iterations across the sensor nodes. Note that array 
decomposition and loop iteration distribution, together, achieve 
some sort of data parallelism across sensor nodes. In this work, 
we adopt an array decomposition oriented parallelization strategy 
based on the owner-computes rule used by state-of-the-art 
optimizing compilers [13]. In this strategy, an array element is 
updated (written) by only the node that owns it.  

 

3.3. Energy modeling 
 

In this study, we focus only on dynamic energy. Dynamic 
energy consumption is due to switching of hardware components 
is dependent strongly on how different components of a sensor 
node are exercised by a given application [2].  We separate the 
overall energy consumption into two components: computation 
energy and communication energy. Computation energy is the 
energy consumed in processor core (datapath), instruction 
memory, data memory, and clock network. In this work, we focus 
on a simple, single-issue, five-stage pipelined embedded (and 
low-power) processor core that is suitable to be employed in a 
sensor node. This core has instruction fetch (IF), instruction 
decode/operand fetch (ID), execution/address calculation (EXE), 
memory access (MEM), and write-back (WB) stages. We use 
SimplePower [18], a publicly-available cycle-accurate energy 
simulator, to model the energy consumption in this processor 
core. The modeling approach used in SimplePower has been 
validated to be accurate (with an average error rate of 8.98%) 

Table 2. Benchmark codes used in the experiments. 
The last column shows the energy consumption 
(computation plus communication) when no data 
filtering is performed in the sensor nodes. 

Benchmark Input Arrays Energy  
3-step-log 295.08KB 3 230.4mJ 

adi 271.09KB 6 408.6mJ 

full-search 98.77KB 3 316.6mJ 

hier 97.77KB 7 228.5mJ 

mxm 464.84KB 3 838.7mJ 

parallel-hier 295.08KB 3 220.6mJ 
tomcatv 174.22KB 9 910.0mJ 
jacobi 312.00KB 4 661.9mJ 
red-black SOR 156.00KB 4 892.2mJ 

 

Table 3. The default parameters used in our base 
configuration. Some of these parameters are later 
modified to conduct a sensitivity analysis. 

Parameter Value 
|P| 120 

Instruction Memory 8 KB 

Data Memory 16 KB 

Ptx 80 mW 

Prx 200 mW 

Tst 450 msec 

Pout 1 mW 

l 250 bits 

b 1 Mb/sec 

 



using actual current measurements of a commercial architecture 
[3].  

We assume that each sensor node has an instruction memory 
and a data memory (both are SRAM).  The energy consumed in 
these memories is dependent primarily on the number of accesses 
and memory configuration (e.g., capacity, the number of 
read/write ports, and whether it is banked or not). We modified 
the Shade simulation environment [7] to capture the number of 
references to instruction and data memories, and used the CACTI 
tool [19] to calculate the per access energy cost.  The data 
collected from Shade and CACTI are then combined to compute 
the overall energy consumption due to memory accesses.  The 
clock generation circuit (PLL), the clock distribution buffers and 
wires, and the clock-load on the clock network presented by the 
clocked components are the main energy consumers for the clock 
network in our sensor node. We enhanced SimplePower to 
estimate the clock network energy consumption in each cycle by 
determining which parts of clock network are active, and using 
the corresponding energy models for active components.   

As our communication energy component, we consider the 
energy expended for sending/receiving data. The radio in the 
sensor nodes is capable of both sending data and, at the same 
time, sensing incoming data. We assume that if the radio is not 
sending any data, it does not spend any energy (omitting the 
energy expended due to sensing). After packing data, the 
processor sends the data to the other processors via radio.  The 
radio needs a specific startup time to start sending/receiving a 
message.   In this study, we used the radio energy model 
presented by [17] to account for communication energy. In this 
model, the power equation of the radio is expressed as: 

Pradio = Ntx[Ptx(Ton-tx+Tst)+PoutTon-tx] 
+ Nrx[Prx(Ton-rx+Tst)], 
where Ntx/rx is the average number of times per second that the 

transmitter/receiver is used; Ptx/rx is the power consumption of 
transmitter/receiver;  Pout is the output transmit power that drives 
the antenna; Ton-tx/on-rx is the time interval required to send/receive 
data; and Tst is the startup time of the transceiver. Also, note that 
Ton-tx/on-rx=l/b, where l is packet size (message length in bits), and 
b is the data transmit/receive rate in bits per second. 

Our base configuration uses the values given in Table 3. The 
power values in this table are similar to those used in [17, 12]. In 
all our experiments we maintain that Prx is equal to 2.5Ptx (since 
the receiver has more circuitry than transmitter). That is, 
whenever Ptx is modified, Prx is also modified accordingly to 
satisfy Prx=2.5Ptx. In Table 3, |P| denotes the total number of 
sensor nodes that participate in the execution of the application.   

 

3.4. Results 
 

We start our discussion of experimental results by giving 
energy breakdown for each application in our benchmark suite. 
In Figure 2, for each benchmark, the first bar corresponds to the 
energy breakdown between computation and communication 
when no filtering is performed. The second bar, on the other 
hand, shows the breakdown when our filtering based strategy is 
employed. We see from these results that, on the average, when 
no filtering is used communication energy constitutes 93.62% of 
the overall energy budget. When we use filtering, however, the 
contribution drops to 59.68% (at the expense of some increase in 
computation energy). In other words, filtering is very effective in 
practice, giving 31.44% saving in overall energy consumption. In 
order to illustrate the contribution of the second step of our 
algorithm, in Figure 2,  the last bar for each application gives the 
energy when only the first step of our approach is used. We 
observe that the average energy savings is around 26.04%, much 
lower than the case when we used both the steps of the algorithm. 
These results emphasize the importance of using both the steps of 
our algorithm. In the remainder of this section, we always use 
both the steps of our algorithm.  

To see what would happen if we perform all computations in 
the sensor nodes, we computed another set of experiments. The 
results are given in Figure 3 as fraction of the values represented 
by the first bar in Figure 2. One can clearly see from these results 
aggressive in-sensor computation is not a good idea. Specifically, 
it generates worse results that the base case in three of our 
benchmarks. Even for the remaining benchmarks, its energy 
behavior is very close to that of the base case. Therefore, careful 
tuning the aggressiveness of data filtering is critical.  

 

3.5. Sensitivity analysis 
 
In this section, we study the behavior of our algorithm when 

several experimental parameters are modified. The parameters 
modified here are Tst (startup time), Ptx (transmitter power), and b 
(data rate). Note that some of these variations also help us 
(indirectly) evaluate the impact of different communication 
protocols. For example, increasing the number of error-control 
bits added by a protocol can be thought of as increasing Ptx. In 
this subsection, using the base configuration, we also 
experimented with different network sizes. In most of the results 
presented in this section, we focus on two applications only 
(tomcatv and red-black-SOR) due to lack of space. However, our 
observations hold for other applications as well.  
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Figure 3. Energy breakdown between communication 
and computation. For each benchmark, the first bar 
corresponds to the default case (without any filtering) 
and the second one corresponds to the optimized case 
when only the first step of our algorithm is used. 
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Figure 2. Energy breakdown between communication 
and computation. For each benchmark, the first bar 
corresponds to the default case (without any filtering) 
and the second one corresponds to the optimized case 
when both steps of our algorithm are used. 



First, in Figure 4, we show the influence of startup latency on 
communication energy consumption. We observe that startup 
latency has a great impact on energy behavior of these two 
applications. In our second experiment, we measure the effect of 
transceiver power on communication energy. As can be seen 
clearly from Figure 5, the communication energy increases 
almost linearly with the transceiver power (Ptx). This is because 
the transceiver power is very large as compared to the transmit 
power of the antenna (Pout), and is the main factor that determines 
the overall trend in communication energy. The effect of data 
transmit/receive rate on energy behavior of these two benchmarks 
is given in Figure 6. Since an increase in transmit/receive rate 
reduces transmit/receive time, the radio will need to be active for 
a smaller period of time to send/receive the message, and 
consequently, communication energy is reduced. Also, note that, 
for very high rates, the startup time balances or dominates the 
transmit/receive time, so energy overhead due to startup time 
plays a very critical role in total communication time. As a 
consequence, the number of messages (rather than total size of 
messages) determines the communication energy. 

 

4. Concluding remarks 
 
Wireless, microsensor networks have potential for enabling a 

myriad of applications for sensing and controlling the physical 
world. Recent years have witnessed several efforts at the 
architectural and circuit level for designing and implementing 
microsensor-based networks. While architectural/circuit-level 
techniques are extremely critical for the success of these 
networks, software optimizations are also expected to become 
instrumental in extracting the maximum benefits from the 
performance and energy behavior angles. The main goal of this 
paper is to develop an automated strategy for data filtering in 
wireless sensor nodes. Data filtering performs some select 
computation at the sensor nodes and shifts to the central base 
station only the results. Assuming that one needs to reduce the 
overall energy consumption (as opposed to reducing just 
computation energy or communication energy), the proposed 
strategy attempts to strike a balance between computation energy 

consumption and communication energy consumption. Our 
experimental results clearly indicate that the proposed data 
filtering strategy generates substantial energy savings in practice. 
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Figure 4. Communication energy consumption due 
to our approach with different startup latencies. 
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Figure 5. Communication energy consumption due to 
our approach with different transceiver power values. 
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Figure 6. Communication energy consumption due 
to our approach with different transmit/receive rates.  
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