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Abstract—We propose an algorithm for efficient threshold network

s¥nthe5|s of arbitrary multi-output Boolean functions. The main purpose Load

of this work is to bridge the wide gap that currently exists between Positive

research on the development of nanoscale devices and research on the

development of synthesis methodologies to generate optimized networks

utilizing these devices. Many nanotechnologies, such as resonant tunnel-

ing diodes (RTD) and quantum cellular automata (QCA), are capable

of implementing threshold logic. While functionally correct threshold -

gates have been successfully demonstrated, there exists no methodology Negative

or design automation_tool for general multi-level threshold network weight ]

s¥nthe3|s. We have built the first such tool, ThrEshold Logic Synthesizer inputs c

(TELS), on toda of an existing Boolean logic synthesis tool. Experiments

with about 60 multi-output benchmarks weré performed, though the

results of on[?_/ 10 of them are reported in this paper because of space

restrictions. They indicate that up to 77% reduction in gate count ) ) ) ) )

is possible when utilizing threshold logic, with an average reduction Fig. 1. A monostable-bistable logic element and its equivalent LTG.

belnﬁ 52%, compared to traditional logic synthesis. Furthermore, the

synthesized networks are well-balanced, and hence delay-optimized.  proofs on the properties of threshold logic. Section V describes our

I INTRODUCTION synthesis methodology and its implementation in a tool in detail.
) : i o We present our experimental results in Section VI and conclude the
The Semiconductor Industries Association (SIA) roadmap [bhper in Section VII.
predicts that complementary metal-oxide semiconductor (CMOS)
chips will continue to fuel the need for high-performance systems Il. BACKGROUND AND PREVIOUS WORK

for another 10-15 years. However, advancements in the material sc!—n this section, we describe some preliminary concepts. Specifi-

weight
inputs

Driver
RTD

(@) (b)

ence and device community have enabled the creation of nanosgalg, e describe what a threshold function is and its relationship
devices (RTDs, QCA, to name a few) that have novel structures 8gd;nateness. We also review algebraically-factored and Boolean-
properties. While CMOS is used to implement Boolean logic, magyctored expressions, and linear programming. Previous work on

nanoscale devices implement threshold logic. threshold network synthesis is also presented.
As progress is made in the material and physical understang}{ig

of nanoscale devices, research must be done at the logic levef‘to! Nreshold Logic

fully harness the potential offered by these devices. Today, nanotechA linear threshold functionf is a multi-input function in which
nologies are in their infancy and the development of computer-aidesch inputx; € {0,1}, 7 € {1,2,...,1}, is assigned a weighb;,
design methodologies for these nanotechnologies is crucial if anysath thatf assumes the value 1 when the weighted sum of its inputs
them is to replace or augment CMOS. Among existing nanoscalguals or exceeds the value of the function’s threshbl{B]. That
devices [2], RTDs and QCA are two promising nanotechnologies

Itha.t are of particular interest to us because they implement threshold

ogic.

In this paper, we present the first comprehensive methodologyf(wlvw% xx
for multi-level threshold logic synthesis and optimization. Once a
threshold network has been synthesized, it can be mapped on
specific target nanotechnology. The algorithm in our methodolo
takes into account defect tolerances in the input weights, and
fanin restriction on a threshold gate. Taking these parameters i
account improves the robustness of the synthesized network. N
sharing (.e., a fanout node) is also preserved and thus, any advant
that is gained by preprocessing the network through a Boolean logi

synthesis tool remains. The synthesized network is area and der' lements a threshold function. An LTG can be considered a

optlmlz_ed._ The nqvel contrlbutlon_s of this paper are as fqllows. generalization of a conventional logic gate. Amput NAND and
« This is the firstcomprehensivenethodology for multi-level ani-input NOR gate can both be realized by a single LTG. Because
multi-output threshold network synthesis. both gates are functionally complete, any Boolean logic function
« Based on our methodology, we have built a threshold netwagkn be realized by LTGs. However, not all functions can be realized
synthesis tool on top of an existing Boolean logic synthesty a single LTG. A function that can be realized by a single LTG is
tool. i i called athreshold functionA network of threshold gates is called
« We formulate new theorems that describe properties of threghthreshold network
old logic and use them to our advantage in our methodology. An LTG based on RTDs and heterostructure field-effect transistors
The remainder of this paper is organized as follows. SeddFET) is shown in Fig. 1(a). It outputs a logic 1 whemw, +
tion 1l presents background material and previous work. Section b, — cw. > T, else a logic 0. It is called a monostable-bistable
presents an example to motivate the need for our threshold netwlodic element [4] and its equivalent LTG is shown in Fig. 1(b).
synthesis methodology. Section IV presents some theorems and tgeir

1 it S wiws > T =+ bon
,m—{ " 2y wim 2T 40 &)

L0 i wim < T — 6oy,

Pameters,,, and d,;; represent defect tolerances that must be
%sidered since variations (due to manufacturing defects, tempera-
changes, etc.) in the weights can lead to network malfunction.
his paper, we assum®,, is zero and,s iS one. In many past
ks, don @and d,¢5 are both assumed to be zero, thus providing
defect tolerance.
linear threshold gate (LTG) is a multi-terminal device that

. Unateness
Acknowled%ments: This work was supported in part by NSF under grantA logic function, f(x1,z2,...,2;), is said to be positive (neg-
No. CCR-0303789. ative) in variablez; if there exists a disjunctive or conjunctive
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expression off in which z; appears in uncomplemented (comple-
mented) form only. Iff is either positive or negative im;, it is

said to beunatein z;. Otherwise, it isbinatein z;. Unateness is

an important property for threshold logic because every threshold
function is unate [5] (the converse is not true, however).

C. Algebraically-factored and Boolean-factored Networks

A sum-of-products (SOP) expressigh= i C;, is algebraicif

=1
no cube,C;, is contained within another cube. That Y&, j, ¢ #
4. Cs ¢ C;. An expression that is not algebraic Boolean|[6].
A factored formF' is said to be algebraically-factored if the SOP
expression obtained by multiplying’ out directly, without using
the identitieszz = 0 andxx = z, and single-cube containment, is
algebraic [6]. OtherwiseF' is Boolean-factored.

D. Linear Programming

In linear programming, we haveax ¢ matrix A, ap x 1 vector (b) The equivalent synthesized threshold network.
B, and al x g vectorC. We want to find a vectoK of ¢ elements
such that the objective functioBX is minimized subject to the _ . )
constraints given byAX < B. Integer linear programming (ILP) Fig. 2. An example to motivate the need for our threshold network synthesis

[3] is a special case of linear programming that requires all of trr]neethodology.

elements inX to assume integer values. « If a function is not threshold, it must be able to split the
. function into smaller functions using efficient heuristics.

E. Previous Work « If there exist fanout nodes in the original Boolean network, it

Research in threshold logic synthesis was done mostly in the must preserve these nodes in the synthesized threshold network.
1950s and 1960s. In [7], [8], approximation methods are usedHoew a non-threshold function is split dictates the quality of the
determine the input weights and threshold of a threshold functigfynthesized network. Furthermore, node sharing helps to prevent
In [5], admissible patterns on a Karnaugh map are used to determing-network duplication during threshold network synthesis. It also
whether a function is threshold or not. Unfortunately, because Igdlps maintain the original network structure somewhat.
their computational complexity, these methods are restricted to 10
or fewer variables. Linear programming and tabulation methods IV. THEOREMS ONTHRESHOLDLOGIC
have been used in [3] to determine if a function is threshold orWe present two new theorems that describe properties of threshold
not. A CMOS implementation of threshold gates can be found liegic in this section. We utilize these theorems in our threshold
[9]. A survey of VLSI implementations of threshold logic can bdogic network synthesis methodology. Along with the proof of each
found in [10]. In [11], a branch-and-bound algorithm is used to syfiieorem, we demonstrate its application with an example.
thesize two-level threshold networks. Multi-level threshold network Theorem 1:Given an expression for a unate function,
synthesis did not receive much attention in the 1950s and 196{g1,z2, ..., z:), replace literak; by literalz;, ¢, 5 € {1,2,...,1}
because efficient algorithms to factorize a multi-level network weead ¢ # j, resulting ing(z1,z2,...,zx), k € {1,2,...,1} and
unknown at that time. Most methods performed one-to-one mappihg# 4. If g is not a threshold function, thefi is not a threshold
by replacing each Boolean gate in the network with a threshold gdtection. N ) o
However, various algorithms exist today to compute the kernels and Proof: We prove the contrapositive of the claim. That isfif
co-kernels of a network which can be used to perform algebragca threshold function, thepis a threshold function. For simplicity,
or Boolean factorization [6]. In addition, methods have also bew€ assumel,, = oy = 0. Assumingf is a threshold function,
developed for Boolean network simplification. Finally, tools such age have,

SIS [12] are available for network factorization and optimization. .

[1l. M OTIVATIONAL EXAMPLE > wpak 2T = f=1, 2)

A small example is presented in this section to motivate the k=1
need for our threshold network synthesis methodology. Consider the !
Boolean network shown in Fig. 2(a) which has seven gates and five Z wrrr <T = f=0. 3)
levels (including the inverter). If we simply replace each gate with k=1
a threshold gate, the resulting network will contain seven threshqld . ahti -
gates and five levels. This is a sub-optimal network because sdifg€ that Equations (2) and (3) representinequalities for all
nodes in Fig. 2(a) can be collapsed into a single threshold nof@Mmbinations of vangblelsg, 2,. .., 7. By replacingz; with z;,
However, choosing which node to collapse presents a problemWg obtain the following2'™" inequalities:
we set the fanin restriction of a node to foyr—= ni vV ne can be .

collapsed to gef = nsxs V zex7. NOow, we must determine if is _ o

a threshold function or not. In this case, it turns out tfids n{)t a Z wpzk +wiZ; 2T =g=1, (4)
threshold function. Consequently, we must splinto smaller nodes k=1,kzi

using efficient heuristics. We choose to splitas f = nsxzs V na !

whereny = zex7. We synthesizers next. After collapsingns is Z wrzr +wid; <T = g=0. (5)
expressed a8z = x1x2x3 V T1x4. This is not a threshold function. kLot

Therefore, we splits into two nodes to gebs = n4 V ns, where )

n4 = mizaz3 andns = Tixz4. These three nodes are threshol&incez; = 1 — x;, we obtain,

functions. The synthesized threshold network is shown in Fig. 2(b). .

It can be seen that the number of gates and levels has been reduced

by 28.6% (seven to five) and 40% (five to three), respectively. Z
The above example demonstrates that a threshold network syn- — k=1,k#i,j

thesis methodology should address the following key issues: 1

« It must be able to collapse the function of a node. > wak+ (wj —w)z; <T—wi=g=0. (7)
« It must be able to determine if a function is threshold or not. h=1 ki,

wrTr + (W —wi)x; > T —w; = g =1, (6)



If assignments forw; and T exist such that the inequalities in

Equations (2) and (3) are satisfied, then the inequalities in Equations — Node Collapsing
(6) and (7) can also be satisfied with the weight-threshold vector, - Algorithm
ollapse node n
<w1,w2, sy Wi—1, Wit 1y -0, Wi—1, Wy — Wi, Wi41, .- -, Wi T —
w;), the weights corresponding to the variable sequence
<$1,x2,...,1’i,1,$1‘+1,_...,wjfl,xj_,$j+1,...,$l>. T_h_US, g IS NO 1s n\_YES
also a threshold function. By proving the contrapositive, the proo — Binate Node {032 #— ILP Formulation
is concluded. . u Spit binate ninto | Spiiting Algorithm Algorithm
As an application of Theorem 1, considgr= z1x2 V z3z4. TO iy Pl o B for n and solve

determine iff is threshold or not, we replaag; by z,. This results
in g = x1x2 V ZT124. Sinceg is binate inzy, it is not a threshold
function and, thereforef is not a threshold function.

The relationship of the weights and threshold between functions
containingz; in positive and negative phase is given in [3]. That

Unate Node 4
Splitting Algorithm

1%

Split unate ninto

is, given a positive unate functiorf(z1, z2,. .., z;), with weight- ?and ny
threshold vecto ws, wo, ..., w;; T), if z; is replaced byz; to get
g(z1, T2, ..., Ti—1,Ti, Tiy1,. .., x;), then the weight of; in g is O

simply —w;. Furthermore, the threshold gfis T'— w;. We negate

the original weight of each variable that appears in negative phag

in g to get its new weight. To obtain the new threshold, we subtract

the sum of the negated weights from the original threshold.
Theorem 2:If f(z1,22,...,2;) is a threshold function, then

_h(ac;ll,xz, th s mﬁrkm f: f ?’1, T, ... ,.Tl) VZi4+1VZi42V.. VTt

is also a threshold function. .

Proof: A threshold function can always be represented in posi-

ti\{)(le unate form Fy substituting negﬁtive v?riagles with posditive i\1/ari-

ables. For simplicity, we assume thAts already expressed in this_. . . i )

form. There exists a weight-threshold vectéu; , wo, . .., w; T), E(Ie%\'/vgk S;L?wegi'g%%%o’gg%gbng a high-level overview of our threshold

for f since it is a threshold function. If any of the,.;, j € '
1,2,...,k}, equalsl, h equalsl. Otherwise,h is equal tof.

If we set the weightw;; of 2, to a value no less thali 4 d,,, | Require: noden, v > 0

for example,w;+; = T + don, then the output id whenz;,; is an_u;L |

1. Whenz;,; and some other;, i € {1,2,...,1}, equall, the | 3. it vy in'F,, o ¢ P then

output is alsol. This is because we have represented the functipn = while I < v do

in positive unate form, thereby guaranteeing that all the weights anéj_ for allz in F,,, do

threshold off are positive. When all o, ; equal0, h equalsf. “ i}’;ée@,er/\pr;mg%i?hpgﬁ nor fanout node

hreshold?

Split unate n into Use ThVEOrem 2to
[k ()7 cocsy L) combine nodes
~—— Unate Node —

Splitting Algorithm

D

For each fanin of
combined nodes, —
setitas node n

For each split node
Ny Ny ey Ny

Thus, a weight-threshold vector faralways exists. Thereforé, is substitute the function af into .’
a threshold function. [ 9: _zf T>|F ,,t I updatel
i — s i I en
To illustrate Theorem 2, lef(z1, z2) = z1T2. First, we represent 7Y e the substitution of into 1’

f in positive unate form ag(z1, y2) = z1y2 whereys = Zs. Since | 12: ) rea _ i
g is a threshold function with weight-threshold vectfr, 1;2), !f if all fanins are primary Inphuts or fanout nodes
h(z1,y2,23) = g(x1,y2) V o3 = z1y2 V x3 IS also a threshold 15: if va in F.s, 2 € (PUS) then

) : { A : k
function with weight-threshold vectdt, 1, 2; 2). Sinceys = 1—x2, return nk')r/e/acouapsed node
x1Z2 V x3 is also a threshold function with weight-threshold vector
(1,-1,2;1). Fig. 4. The node collapsing algorithm.

V. METHODOLOGY AND IMPLEMENTATION

We present our multi-level threshold network synthesis method-p Set of primary inputs in networks.

ology and its implementation in this section. Fig. 3 gives a high- § Set of fanout nodes in network.

level overview of the main steps that comprise our methodology.n, A node in networkG.

The input to our methodology is an algebraically-factored multi- 7,  Set of fanins of node:.

output combinational networl¢;, and its output is a functionally  z;)  The (") fanin of a node.

equivalent threshold networkyr. An algebraically-factored circuit o Fanin restriction on a threshold gate.

is used as an input because its nodes are more likely to be unate and Cardinality of F,.

hence possibly threshold functions. The weights and threshold are; Set of threshold functions.

specified for each node in the synthesized network. The user caik,  Set of cubes of node.

_specirf]y thﬁ fﬁnin resrt]riction anddtktlje o_Iefe(;]t tolﬁrallgces in tEe weli‘ght_scﬂ_ The ;" cube of noden.

in a threshold gate that are used during threshold network synthesis" : .
The synthesis algorithm begins by processing each primary outpu The weight-threshold vectofws, we, - .., wi; T).

of network G. First, the node representing a primary output ia. Node Collapsing

collapsed. If the node represents a binate function, it is split into . . . N .
multiple smaller nodes which are then processed recursively. If thel '€ Ir(lode collapsing algorithm is shown in Fig. 4. Given a node
unate node is a threshold function, it is saved in the threshdlg W€ keep collapsing it until one of the following conditions is

network and the fanins of the node are processed recursively:™ ) . .
Otherwise, the unate node is first split into two nodes. If eithere All fanins of n are primary inputs and/or fanout nodes.
of the split nodes is a threshold function, Theorem 2 is used as The fanin ofn exceeds).
a simplification step. If neither of the split nodes is a threshoMote that the algorithm guarantees that the fanin of a node never
function, the original node is split into multiple smaller nodes whicexceeds) by choosing to undo the effects of node collapsing that
are then processed recursively. The synthesis algorithm terminat@s done in line8 of the node collapsing algorithm.
when all the nodes in networ are mapped into threshold nodes. To demonstrate node collapsing, let us consider the network with
We describe each step in detail in the following subsections.  output nodef shown in Fig. 5. Herey is set to four,l = 2,

The variables that are used in our algorithms are defined Bs= {n1,n2}, P = {1, 22, ®3, 24}, S = {na}, andf = n1Vna.
follows: Since the inputs tof are not primary inputs and is less than



Fig. 5. Example network to demonstrate node collapsing on oytput

Require: positive unate noder
Np < n
n, < invertn
3: for i = 1 to | F,| do // objective function
print “w; +"
print “T™"
6: for i =1to \K,,LP| do // ON-set inequalities
for j =1to |Fp| do
if z; € Cn,, then
9: print “w;+"
print “—d,,, > T"
for i = 1 to |K,,, | do// OFF-set inequalities
for j =1in |F),| do
if z; ¢ Cp,,. then
print “w; +
15: print “6,5p < T"
—
W — solve ILP problem
if W # @ then

12:

18: for j =1in |F,| do
if ; in negative phase im then
W(T] < WI[T] — W[w; ] /l subtract weight from original threshold
21: Vﬂwj] — —W{wj,] /I negate the weight

return W // weight-threshold vector

else . .
24:  return® // no solution exists

Fig. 6. The ILP formulation algorithm.

1, we first collapsen; to get f = zi1n3 V ne. Now, [ = 3 and
{z1,n2,n3}. Sincel is still less thaniy, we continue by
collapsingn. to getf = x1n3V nsxs. NOow, we cannot collapse;

Require: unate noden, ¥ > 0
if all variables appear ondben // condition 1
n=mni1Vns St |K"1‘ = \Kn2|
3: else ifVe, c € K, variablez; € c then // conditions2 and4
ni < x; I/ assuming correct phase
no « factorn w.rt. nq
6: else// condition3 ) .
x,; < most frequently appearing variable
ny «— Yy ¢,x; EcNhc€ Ky,
9 mno«— > ci,cr€niAecr € Ky
if n1 € Zthen// assuming K,,, | > |Kn, |
combine nodes according to ]I’heorem 5
T—mniVmng
else ifny € Z then
combine nodes according to Theorem 2
T—mniVmng

12:

15:
else .
k — (|[Kn| <) 7 |Kyn| : 4 Il pick the smaller one
k

18: T «— Z n; I/ split n into k& smaller nodes

i=1
return o ;/ array of split nodes

Fig. 7. The unate node splitting algorithm.

The objective function for this ILP problem is defined as the
summation of the weights and threshold, in order to reduce threshold
gate area. Sinceg has been transformed into a positive unate form,
only 1 and don't care ) will appear in its ON-set cubes (set
of cubes for which the function is 1). The ON-set cubes gof
are(11—)and(1 — 1), wherez1, y2, andys is the variable
sequence. To transform the ON-set cubes into inequalities;*the
1 value corresponds t@,;. We need not consider don't cares in the
inequalities, because they represent redundancigshkor example,
the ON-set cubd1 1 —) corresponds to two inequalities, namely,
wy +ws > T + dop andwy + wz + ws > T + don. The second
inequality is redundant because once the first inequality is satisfied,
the second inequality is automatically satisfied as well.

To compute the OFF-set cubes (set of cubes for which the
function is 0) of g, we simply invertg to get g. The ON-set
cubes ofg correspond to the OFF-set cubes @f Becauseg is

and z, since they are primary inputs. Furthermore, observing th@ivays in negative unate form, only and — appear in its ON-
ns is a fanout node, we do not collapse it either. Thus, the fing#t cubes. Continuing with the earlier example, we inyetd get

result after collapsing i = z1ns V n3za.

As demonstrated in the example, node sharing is present

g = %1 V go2ys after simplification. The ON-set cubes fgrare
— —) and(— 0 0). For the OFF-set inequalities, th&" don’t

during node collapsing because the process stops once a fagét@ corresponds to weight;. Therefore, the OFF-set inequalities
node is encountered. This implicitly helps to maintain some of tfier g arews +ws < T — orp andwy < T — doy, @S given in
original network structure and provides guidance for better netwdrguations (11) and (12). _ _ _
decomposition. The benefit is profound when the network containgBy requiring the variables to be integer-valugce.( constraint

many fanout nodes.

B. Formulating Synthesis as an ILP Problem

(13)), this ILP problem has an optimal solution. The weight-
threshold vector fog is (2, 1, 1; 3). Using the relationship stated in
Section 1V, the final weight-threshold vector féris (2, —1, —1; 1).

Once a node has been collapsed into a unate function, it s - -
necessary to determine whether it is threshold or not. We soge Unate Node Splitting and Combining
this problem by casting it in an ILP formulation. There are at most If the ILP problem for node: does not have a solution, the node
2! distinct cubes for a logic function dfvariables and this leads tomust be split into smaller nodes to increase the likelihood of the
2! inequalities which represent the constraints. However, many $¥lit nodes being threshold functions. Fig. 7 outlines the splitting
these constraints are redundant. We have devised a simple mef@gess of a unate node. How a unate node is split is contingent
to eliminate redundant constraints which makes the ILP formulatigRon one of the following conditions:
smaller and possibly faster to solve. The algorithm for formulating 1) All of the variables appear exactly once.
the ILP problem and determining the weight-threshold vector for a2) Some of the variables appear in all the cubes.
threshold function is shown in Fig. 6. 3) The most frequent variable(s) does not appear in all the cubes.
The algorithm is best demonstrated by an example. Given &) A tie between the most frequent variables is broken randomly.

unate functionf(z1, zz, ..., ), if it contains variables in negative ¢ 51| the variabl r onlv once. we simpl lit the n in
phase, we first transform these variables into other variables in p%?) the variables appear only once, we simply spiit the node into

Lyt h ; v ! ‘e > 0, with each node containing roughly equal number of cubes. For
itive phase using variable substitution. Considles 172 V 173,  examplen = x172 V 374 V 526 IS SPIit asny = z172 V 374
wherez, and x3 are in negative phase. By replaciag with y. ' '

d. with h vl f . ne = x5x6, With n = nq V ne. When a variable appears in all the
andzs with y3, we get the positive unate functign= z1y2Vx1ys.  cybes, we split the node into two by factoring this variable out of the
The ILP formulation forg is as follows:

node. For example, fat = 2122 V212324 V 212576, N1 = 1 and
na = x2Vr3xsVrsze, With n = nins. If the above two conditions

TIMEIMAZE = 101 twatwy 4T ) are not met, we split the node using the most frequently appearing
subject to: w1 + w2 > T + don (9) variable. For example, given = 125 V 2123 V z4x5, We Split on
w1 + w3z > T + don (10) 1 _tO getn; = T1T2 V z1z3 and N2 = T45, with n = N1 \/_ na.
W +ws < T — Sop (11) This last condition reduces the likelihood of a function being non-
threshold because there are fewer candidate variables to choose from
w1 <T = doff (12) inthe split nodes to prevent the condition in Theorem 1 from being
w; > 0,integer, i = 1,2, 3. (13) satisfied.



Require: binate noden, ¢ > 0 TABLE |
ko (|Kn] <) ? Kn : 4 I pick the smaller one THRESHOLD SYNTHESIS RESULTS WITH FANIN RESTRICTIONSET TO 3
¥« n /I split on binate variables when needed
3: while |7] # kA 317) € 7, s.t. p has binate variable; do ’ ‘ One-to-one mapping | Threshold network synthesis
Z; : zg;:: o :) /I assign the resulting split nodes to vector Benchmark || Gafes | Levels | Area [ Gales [ Levels | Area |
6: U {v—p}V{ni,ne cml52a 28 4 99 13 4 69
11 split on unate var|ablgs when needed cordic 92 9 307 39 8 219
while |71 ;S”’f NIp o tP unatedo cm85a 70 8 254 16 6 158
L1
9:  // assign the resulting split nodes to vector comp 181 12 625 70 9 435
U {U—p}Vn cmb 41 7 142 16 7 103
return@ // array of split nodes terml 397 12 1,459 144 16 787
pml 49 5 176 22 3 119
: : g ; x1 428 10 1,589 144 10 968
Fig. 8. The binate node splitting algorithm. 10 2.874 19 10934 | 1.276 27 7261
Algebraically-factored tcon 24 2 80 32 2 96

Boolean Networks
both the unate and binate node splitting algorithm@ (&, |- | K, |).

] Since ILP is NP-complete, our synthesis problem is NP-complete
in theory. However, in practice, the ILP solver is implemented such
that if the optimal solution cannot be found in a reasonable amount

thsyn theonv of time, it declares the problem as infeasible. If that happens, the
splitting algorithms in our methodology create smaller problems for
the ILP solver to solve. In this way, the threshold network synthesis
problem can be solved efficiently in practice with our methodology.

One-to-one
Mapping

Threshold Logic
Synthesis

Threshold Networks F. |mp|ementati0n
, _ We implemented the proposed methodology in a tool called
l thprint 1”5“"5 1‘”S’m ThrEshold Logic Synthesizer (TELS) which has been integrated
sis>thprint sis>thstats sis>thsim 001 1 within SIS. This is the first multi-output multi-level threshold
0 2721 11 ipia outout. 1 network synthesis tool to the best of our knowledge. The package
Ri7l-abizi1 PO 1 Pt currently consists of approximately 3,500 lines of C code. We
218]=cd;1;1-1 Total nodes: 3 sis>thsim 1010 integrated a linear programming tool calleB_SOLVE[13] in SIS
. Max levels: 3 _ to solve the ILP problems. The framework of TELS is shown in
e froa:s Outeut:0 Fig. 9. Currently, it supports five commands, which perform one-
sis> sis> to-one mapping, threshold synthesis and simulation, and displaying

of network information.

Fig. 9. The framework of the threshold network synthesis tool: TELS.
VI. EXPERIMENTAL RESULTS

Once a node has been split, we choose the larger riadetife = We present our experimental results in this section. The exper-

one with more cubes) and check that node to see if it is a threshiients were conducted on a 2.4 GHz Pentium IV machine with

function. If it is, we apply Theorem 2. Looking at the last example/68MB RAM running Redhat Linux 8.0. We ran all the benchmarks
sincen; = zize V z123 iS a threshold function with weight- in the MCNC benchmark suite through TELS. All the synthesized
threshold vector(2,1,1;3), functionn = x1x2 V x173 V N2 IS networks were simulated for functional correctness to validate our

also a threshold function with weight-threshold veqtarl, 1,3; 3). methodology.
Now, ns is processed by further collapsing, threshold checking, qr
splitting. If neither of the split nodes is a threshold function, th%‘ Threshold Gate Count and Area

original node is split intd; smaller nodes, wherk is the smaller of  Due to space limitations, Table I lists the results for only 10

k of the 60 benchmarks. In this table, one-to-one mapping refers

1 and|K,|. After splitting,n = Y n; which is a threshold function to replacing each gate in the optimized Boolean network with a
. i i=1 ) threshold gate. The optimized Boolean network was obtained by

with weight-threshold vectof1,1,...,1;1). The split nodesn:, running the script.booleanscript in SIS. The threshold network

i €{1,2,...,k}, are then processed recursively. synthesis results were obtained by runningsbept.algebraicscript

D. Binate Node Splitting and then synthesizing the threshold network from the resulting

S o . algebraically-factored network. The area of the netwodk, was
If a noden is binate, we split it intok smaller nodes wherk is ca%culated alsing the following equation: ofk

the smaller of) and|K,|. The algorithm for binate node splitting is

shown in Fig. 8. We first split the binate node on the most frequently l

appearing binate variable. If the split nodes are binate, we repeat A= Z Z(|wi\ +|T))Au, (14)
the process. Otherwise, we use the unate node splitting algorithm, g€Gp im1

as detailed in the previous subsection.

To demonstrate binate splitting, consider= zixs V z2x3 vV Whereg is a threshold gate in networkr, [ is the number of inputs
Taxaxs, Where is five and |K,,| is three. This node is split in gateg, w; is the weight of input, A, is the unit area of an RTD
into three nodes. First it is split on the binate variablg, to with w = 1, andT is the threshold of the gate. In our case, we
getni = Zixa V 2273 and na = Zexaxs. Now, ng is further let A, equal one. The HFET area is ignored because it is typically
split into n; = Z1z4 andns = x223. Thus,n is represented as much smaller than the RTD area.

n = n1 V na V nz, which is a threshold function with weight- The total time required to algebraically factor and synthesize the
threshold vector(1, 1, 1; 1). Threshold network synthesis proceedbenchmarks was less than one second in each case. On an average,

recursively by processing each of the split nodes. 42% of the total execution time was spent on threshold network
. . synthesis while the remaining time was spent on factoring the
E. Complexity Analysis network. Comparing the results, we see that 52% average reduction

In this subsection, we perform the complexity analysis of this possible in gate count. In some cases, suctt@s we do worse
algorithms in our threshold network synthesis methodology. Thigan a one-to-one mapping because there exist Boolean functions
complexity of the node collapsing algorithm 3(1), because the that require more threshold gates than Boolean gates. However, this
total number of operations performed by the algorithm is propads not a significant problem because we can always choose the better
tional to the fanin restriction, which is constant. The complexity aff the two networks, thereby, guaranteeing that TELS will never
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The algorithm in our methodology is recursive in nature and is
based upon efficient heuristics that partition a logic function if it is
determined to be non-threshold using an ILP formulation. Any logic
sharing that occurs in the algebraically-factored network is reflected
in the threshold network. We have implemented the methodology on
top of an existing logic synthesis tool to produce the first threshold
network synthesis tool, and validated it by running the tool on a large
number of benchmarks and simulating the synthesized networks.
Experimental results for the benchmarks show that the quality of
the generated networks, in terms of total gate count and the number
of levels, is very good.

Because this is the first tool for threshold network synthesis, there
is room for improvement. For example, our method performs a back-
ward traversal of the network from the outputs to the inputs. This

akes the synthesized network somewhat dependent on the original

twork structure. Perhaps other approaches, such as divide and
conquer, could also be used in threshold network synthesis. There
%ﬂay also exist better partitioning heuristics that might generate

Failure Rate (%)

0.2

> ®

-

0.0 0.4 0.6 0.8

Variation Multiplier, v

Fig. 11. The failure rate due to variations in the input weights.

output a network requiring more gates than that required for o
to-one mapping.

B. Trend of Threshold Gate Count with Change in Fanin Restricti

Fig. 10 demonstrates the trend in the total number of thresh
gates required for theomp benchmark as the maximum faniny
restriction is relaxed from three to eight. There is a significa
difference in ga|1te cgunhin th% one-to-onehrlnapping”cas%a;s the fag
restriction is relaxed. This is because with larger allowed fanin, it |g; f
possible to decompose a factorized network better. However, therg%lsng nanotechnologies.
no significant reduction in the number of threshold gates for TELS.
This is understandable because as the allowed fanin increases,

tter results. Furthermore, perhaps different heuristics are required
pending upon the optimization criteria. We hope that others will
in in our efforts to improve upon this work. We also hope that
tegrating our methodology in commercial design automation tools
iMhelp pave the way for a smoother transition towards logic design
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