
Abstract

Embedded software is becoming more flexible and adapt-

able, which presents new challenges for management of

highly constrained system resources. Software dynamic

translation (SDT) has been used to enable software mal-

leability at the instruction level for dynamic code optimiz-

ers, security checkers, and binary translators. This paper

studies the feasibility of using SDT to manage program

code storage in embedded systems. We explore to what

extent code compression can be incorporated in a software

infrastructure to reduce program storage requirements,

while minimally impacting run-time performance and

memory resources. We describe two approaches for code

compression, called full and partial image compression,

and evaluate their compression ratios and performance in

a software dynamic translation system. We demonstrate

that code decompression is indeed feasible in a SDT. 

1. Introduction

Embedded software is becoming considerably more

flexible and agile with the introduction of techniques for

code adaptivity, such as dynamic code optimization,

binary translation of one instruction set to another, code

partitions, downloadable software and code updates, and

remote computation and compilation servers. One form of

adaptivity controls, manipulates and modifies the dynamic

execution of a program with software dynamic translation

(SDT). Dynamic optimizers, such as Dynamo [1], use

SDT as their infrastructure. Other systems such as IBM’s

DAISY and HP’s DELI [4] binary translators and the

Dynamo/RIO code checker [7] use SDT to enable soft-

ware adaptivity. 

As embedded software has become more adaptive,

there has also been a demand for more efficient and

resource-aware techniques to meet stringent memory, per-

formance, and energy requirements. One way that these

requirements can be balanced is through the use of com-

piler approaches. There have been compiler techniques

proposed for managing performance, code size and energy

requirements, including optimizations that minimize

dynamic power consumption and static leakage, code and

data memory footprint sizes, and trade-offs between per-

formance and energy consumption.

While software adaptivity and resource management

have been investigated independently with SDT and com-

piler techniques, there has been less work on integrating

them. This paper looks at a specific instance of how to

integrate software adaptivity with management of system

resources. In particular, we investigate how to integrate

management of code memory in a software dynamic trans-

lator using code compression to reduce an application’s

external storage footprint. The binary is decompressed on-

the-fly by SDT as the application executes to ensure that

only needed code is fetched and decompressed from exter-

nal storage. Past approaches incorporated code decom-

pression at the hardware level. Such hardware approaches

have very good performance because the decompressor

can be included in the memory hierarchy off the critical

path of instruction fetch. 

In our case, the decompressor is implemented entirely

in software as part of the SDT system. Such an approach

with SDT is more flexible than a hardware based solution

because it allows the decompressor to be changed. Unlike

other software approaches, our technique decompresses

only instructions that are very likely to execute, which

helps to reduce the run-time overhead of decompression.

The decompressor can even be tailored to a specific appli-

cation to get the best compression ratio and lowest over-

head. The decompressor can also be integrated into a SDT

system itself. For instance, a binary translator could trans-

late compressed PowerPC instructions into ARM instruc-

tions. However, because the decompressor is implemented

in software, it can have a large performance penalty, if

invoked too often. Likewise, SDT systems typically have

main memory buffers to hold translated instructions,

which can offset cost benefits of reducing external storage

requirements. Thus, the challenge that we investigate is

whether code compression can be efficiently incorporated

in SDT without harming program performance and main

memory footprint. 

We consider decompression schemes for SDT that

trade-off the compressed image size (i.e., the compression

ratio) and the run-time performance of decompression. In

these schemes, the program binary is decompressed based

on execution paths, which ensures that only those instruc-

tions that will actually execute are decompressed. The first

approach compresses the whole binary and decompresses

those code segments that are accessed at run-time. The

Compact Binaries with Code Compression in a Software Dynamic Translator

Stacey Shogan and Bruce R. Childers

Department of Computer Science, University of Pittsburgh

Pittsburgh, PA 15260 USA

{sasst118, childers}@cs.pitt.edu

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) 

1530-1591/04 $20.00 © 2004 IEEE 



second approach keeps the most frequently used code as

uncompressed instructions and the least frequently used

code as compressed instructions. We show that full image

compression can be beneficial when program main mem-

ory is not tightly constrained, while partial image com-

pression achieves good compression for external storage

and low run-time overhead when program main memory

is constrained. 

2. Framework

The framework and infrastructure for our work is an

system-on-a-chip with external storage, a software

dynamic translator, and a code compressor/decompressor. 

2.1. Target SoC System

We focus on SoCs that store program binaries in exter-

nal FLASH or other storage that has a high access latency

compared to on-chip SRAM. Our target structure reads a

program from external FLASH and executes it in on-chip

main memory with memory shadowing. Traditional mem-

ory shadowing copies the entire binary to the main mem-

ory where it executes; in this work, the binary is

incrementally loaded and decompressed into a translation

buffer in main memory based on execution paths. The

program executes directly from the translation buffer to

achieve high performance. Although we focus on SoCs

with external FLASH, our approach can also be used in

devices that execute programs directly from FLASH with

a small scratchpad memory for the translation buffer.

Our goal is to minimize the memory footprint of pro-

grams in external storage and to reduce the relative cost of

loading the program from external storage. Because a

compressed program has a smaller code footprint and

fewer memory fetches are needed to copy the program to

shadow memory (each fetch gets more information with

compression) than an uncompressed program, code com-

pression with SDT effectively manages storage require-

ments and can reduce the number of fetches to external

storage [9]. However, the main memory footprint and

behavior of the translation buffer must be considered. An

SDT must provide a mechanism for managing the transla-

tion buffer so old code segments that are no longer needed

can be evicted from the translation buffer.

2.2. Software Dynamic Translation

SDT can affect an executing program by inserting new

code, modifying some existing code, or controlling the

execution of the program in some way. A typical SDT has

a software layer below the executable that controls and

modifies the program code. There is a translation buffer in

main memory in which an SDT keeps the modified exe-

cutable, called a “fragment cache” or FC$. A program

executes directly in the fragment after being modified. 

We use the reconfigurable and retargetable Strata SDT

system, which supports many SDT applications, such as

dynamic optimization, safe execution of untrusted bina-

ries, and program profiling [11]. Figure 1 shows the struc-

ture of Strata, which is arranged as a virtual machine

(VM) that sits between the program and the CPU. The

VM translates a program’s instructions before they exe-

cute on the CPU. The VM mimics the standard hardware

with fetch, decode, translate and execute steps. Fetch

loads instructions from memory, decode cracks instruc-

tions into fields, and translate does any modifications to

the instructions as they are written into the FC$. The

translate step is the point at which the code can be modi-

fied. For example, in a binary translator, translate would

convert one instruction set into another, or a code security

checker might insert instrumentation to enforce policies

on the use of operating system calls. The execute step

occurs when control is returned to the binary in the FC$. 

The Strata VM has a set of target-independent common

services, a set of target-dependent specific services, and

an interface through which the two communicate. The

common services include memory management, code

cache management, a dynamic linker, and the virtual

CPU. The target-specific services are the ones that do the

dynamic translation of instructions and support different

SDT applications. A code decompressor can be incorpo-

rated as a target-independent service and integrated with

FC$ management, which makes the decompressor trans-

parent to the rest of the SDT system.

Strata works by translating blocks of instructions from

the executable program and caching the blocks (after pos-

sibly modifying the instructions) in the fragment cache (in

main memory). The blocks of instructions in the FC$ are

called fragments. A fragment is a set of uncompressed

instructions that begin at a target of a control transfer

Figure 1: Strata Virtual Machine

Application Binary

Operating System

CPU

Context
Capture

New
PC

Context
Switch

Cached?
New

Fragment

Fetch

Decode

Translate

Next PC

Dynamic Translator

Finished?

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) 

1530-1591/04 $20.00 © 2004 IEEE 



instruction and end at a branch or jump instruction. The

branch instruction ending a fragment is modified to

branch to an exit stub that returns control to the translator.

In this way, the SDT layer gets control of the application

after every fragment executes. The target fragment of a

control transfer is translated and cached in the FC$. Once

a fragment and its successors are inside the fragment

cache, the translator links them together to avoid unneces-

sary context-switches between the translator and the

application. Hence, once a program’s fragments are in the

FC$, execution is entirely out of the cache on uncom-

pressed instructions. 

SDTs often operate on instruction traces, which are

sequences of fragments on an execution path. Traces for

hot paths dominate execution time and applying optimiza-

tions, such as instruction cache code re-layout, can signif-

icantly improve performance. Traces are important

beyond optimization for code compression/decompres-

sion. We can use traces as the granularity for compression

to get locality benefits during decompression. 

2.3. Code Compression

Our approach incorporates the code decompressor as a

module in Strata’s fetch step. Such a structure allows the

decompression algorithm to be changed and tailored to an

application. To demonstrate the benefit of path-based

decompression in a SDT system, we implemented a

decompressor in Strata based on IBM’s CodePack com-

pression and decompression algorithm, which achieves

compression ratios of 50-60% [6]. CodePack has low

overhead and uses small dictionaries to map compressed

codewords to their uncompressed equivalent. There is

also a table that maps program addresses (in the uncom-

pressed image) to positions in the compressed binary. 

3. Code Decompression with SDT

In this section, we first describe how decompression

can be incorporated in Strata. We then discuss two

approaches that permit trade-offs between the compres-

sion ratio and the overhead of decompression. 

3.1. Integrating the Code Decompressor

To decompress a binary at run-time, a decompression

engine can be incorporated in the fetch step of a SDT.

Fetch reads compressed instructions from FLASH and

returns uncompressed instructions to the SDT’s instruc-

tion decoder. Figure 2 shows how we incorporate Code-

Pack into the fetch step of Strata. 

Fetch is invoked with a target address from which to

return an instruction in the uncompressed binary. Fetch

maintains a buffer of uncompressed instructions and when

a requested address corresponds to an instruction in the

buffer, fetch returns the uncompressed instruction from

the buffer. When a requested address is not in the buffer,

the target address is mapped to an address in the com-

pressed image and a compression block is fetched. A com-

pression block is the smallest region in the uncompressed

binary image that can be compressed as a single unit. To

map target addresses in the uncompressed image to com-

pression blocks, fetch searches a lookup address table

(LAT) with the target address. The LAT maps a target

address to a compression block. A single entry in the

lookup table maps all addresses associated with a com-

pression block to keep the table small. After reading the

compression block, it is decompressed by doing a dictio-

nary lookup on each symbol in the block. The uncom-

pressed instructions are constructed and stored into a

buffer. The instruction at the requested target address can

be returned from this buffer. 

3.2. Compression/Decompression Strategy

Two strategies for code compression/decompression

are full and partial image compression/decompression.

The first approach keeps the entire binary compressed and

decompresses only those code segments that are accessed

at run-time. The second approach compresses the least

frequently used code and keeps the most frequently used

code uncompressed to get similar code size benefits as

full image compression with less performance overhead. 

In full image compression, the whole binary is com-

pressed as a sequence of compression blocks. It achieves

the best compression ratio since every fragment is com-

pressed. Partial image compression can have good com-

pression ratios, but also reduce the performance penalty

associated with decompressing fragments. Partial image

works well due to the 90-10 rule that says 90% of execu-

tion time is spent in 10% of the code. In partial image

compression, the goal is to keep that 10% of code uncom-

In buffer?

Lookup requested
address in LAT

Return instruction

Fetch compression
block

Decompress block
into buffer

For each symbol in
compression block:
1. look up uncompressed
symbol in dictionary
2. write uncompressed
symbol into buffer

Fetch with Decompression

Requested address

Replay access

Figure 2: Decompression Engine in Strata

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) 

1530-1591/04 $20.00 © 2004 IEEE 



pressed. In this way, decompression costs are paid only

for a small portion of the code. The challenge is to iden-

tify that 10% of code, particularly when data inputs can

influence what code is hot and what code is not. 

To identify hot code segments, we profile the applica-

tion to find fragment execution counts with training data.

For profiling, we configure Strata to insert a counter into

every loaded fragment that is incremented whenever a

fragment is executed. With the fragment counts, we can

determine the hottest ones and exclude them from com-

pression based on a hotness threshold. Our hotness thresh-

old is a percentage that captures the most frequently

executed fragments. For example, a 10% threshold will

identify the 10% most frequently executed fragments as

hot fragments and the remaining 90% as cold fragments.

To avoid fragmentation when forming compression

blocks, we partition hot and cold fragments into separate

groups in the binary image. We want to arrange fragments

that are temporally related to one another to be adjacent in

the binary in a way similar to code layout optimizations.

In this way, when compression is applied, cold blocks

with a temporal relationship will be compressed together

in a compression block. This partitioning reduces frag-

mentation in compression groups and exploits locality

during decompression. Our approach for partitioning

relies on identifying instruction code traces of related

code fragments. The instruction traces are similar to the

traces that are formed dynamically for instruction cache

code re-layout. However, the traces can be formed a pri-

ori to program execution by the profiling step. Fragments

along an execution path that are identified as hot are

grouped as a single trace and stored in an uncompressed

form. Any fragments that are not part of a hot trace are

stored in compressed form. Compressed traces are

marked to distinguish them from uncompressed traces. 

3.3. Fragment Cache Management

When decompressing an application binary, the run-

time main memory footprint of the fragment cache must

be considered. An SDT system should provide a mecha-

nism for managing the FC$ so old code segments that are

no longer needed can be evicted. The memory space asso-

ciated with those old segments can then be reclaimed. 

Similar to hardware caches, there are many manage-

ment schemes for the FC$ [5]. However, there is an

unique challenge with SDT memory management: the

cost of the policy must make it efficient to implement. For

example, some policies may be fairly expensive due to

instrumentation code that updates usage information.

Sampling the usage information at a sufficiently high

interval may help to offset the cost of instrumentation for

more sophisticated policies. There are simple schemes

such as circular replacement that do not need instrumenta-

tion, but they may make poor FC$ management decisions.

Hence, there is a trade-off between the quality of manage-

ment decisions and the cost of gathering information. A

similar difficulty is that the FC$ unit size is variable

because fragments can vary in size. Hence, when inserting

a new fragment, we may have to evict multiple fragments

to get enough memory space for the new fragment. Like-

wise, we may evict a fragment that is larger than the one

being inserted, which results in fragmentation. 

For code decompression, the memory management

scheme is independent of the decompressor. In our sys-

tem, the code decompressor is in the fetch step and it

passes instructions to the decode and translate steps. A

memory manager is invoked by the translate step when

writing instructions into the FC$. 

4. Experiments

For compression/decompression to be successful, the

compression ratio must be high enough to warrant apply-

ing compression and the overhead of the decompressor

must be low enough that it does not adversely impact per-

formance. In this section, we look at the overhead associ-

ated with full and partial image decompression. 

4.1. Methodology

Using MediaBench benchmarks and Strata, we investi-

gated the overhead of full and partial image decompres-

sion on SPARC/Solaris 9. To ensure good compression

ratios with CodePack, we changed the uncompressed

symbol sizes to 13 and 19 bits to correspond with imme-

diate boundaries in the SPARC instruction set. 

To conduct experiments, we developed a simulator that

models decompression overhead and the fragment cache.

We used a simulator to make it easier to vary the size of

the FC$. The simulator accepts an input trace of fragment

addresses that is collected from Strata. 

The simulator models the fragment cache and the

memory management policy to determine the instructions

fetched due to fragment cache misses. The simulator

keeps track of uncompressed and compressed fragments

that are fetched based on the execution trace to model the

performance overhead of decompression. The decompres-

sion overhead from the simulator is added to the execu-

tion time of a benchmark with Strata (no decompression)

to compute estimated run-time. While this approach has

some error, it is accurate enough to investigate the trade-

offs associated with code decompression in Strata. 

The experiments used a 4 KB, 8 KB and 32 KB frag-

ment cache. The 32 KB cache fully captured the working

set of all benchmarks to represent an unconstrained cache.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) 

1530-1591/04 $20.00 © 2004 IEEE 



All fragment caches are fully associative and use LRU. To

get enough space, our memory manager will evict frag-

ments after the one being replaced as needed. We did not

model the overhead of cache management because we are

interested only in how decompression overhead varies

with full and partial image compression. 

4.2. Results

The first set of results that we consider is the compres-

sion ratio for full and partial image compression. Table 1

lists the compression ratio for full image compression and

the number of instructions excluded from compression for

partial image compression. Column 1 lists the benchmark,

column 2 lists the number of instructions in the uncom-

pressed binary, column 3 lists the compression ratio for

full image compression (as a percentage), and the remain-

ing columns list the number of instructions excluded from

compression for partial image compression with hotness

thresholds of 1%, 5%, and 10%. From the table, the com-

pression ratio for full image compression is 54.1–56.2%,

which is similar to CodePack on the PowerPC. 

For partial image compression, the compression ratios

do not appreciably differ from the full image ratios. In the

table, we list the number of instructions excluded from

compression for different hotness thresholds to illustrate

how few instructions are actually considered hot. The

fewer instructions that are excluded, the closer the ratio is

to full image compression. At a threshold of 1%, 2 to 402

instructions are excluded, which is very small relative to

overall image size. At a 10% threshold, the number of

instructions excluded is much higher than at a threshold

of 1%. However, even in this case, the number of instruc-

tions excluded is very small and varies from 69 to 2142. 

A second and perhaps more critical question is whether

the run-time performance overhead of decompression is

small enough to make it worthwhile. For full and partial

image decompression, we measured the run-time over-

head as shown in Table 2. Column 2 lists the percentage

run-time increase with full image decompression relative

to running the benchmarks in a native uncompressed form

with Strata. The FC$ is 32 KB (unconstrained) for full

image decompression in these results. The results for par-

tial image decompression (columns 3 to 8) report the per-

centage improvement in overhead relative to full image

decompression for 4KB and 8KB FC$ sizes. 

From the table, the overhead for full image decompres-

sion varies from 0.7% (GSMdec) to 5.2% (JPEGenc). The

decompression overhead is small because the fragment

cache size is unconstrained. Here, a fragment is decom-

pressed only once when it is first loaded into the FC$.

Most of a program’s execution time is spent executing

code in the FC$ and the number of decompressed frag-

ments is small relative to execution time. 

Partial image decompression will not help much when

the FC$ size is unlimited because the total number of

fragments fetched is relatively small and avoiding decom-

pression on a small number of fragments will minimally

improve performance. However, for a constrained FC$,

keeping the hottest fragments as uncompressed instruc-

tions may improve run-time performance. 

Table 2 shows the improvement (%) in run-time over-

head for partial versus full image decompression. The

results show the benefit of avoiding decompression on

some fragments. There is a benefit because conflict

misses can occur for small FC$ sizes. If those conflict

misses cause an eviction of a fragment from a hot trace

that may be needed again in the future, the miss penalty

associated with refetching that hot fragment is less. For

full image decompression, that same miss would cause

decompression of a fragment, whereas in partial image

decompression, the fragment would not be decompressed. 

The relative improvement of partial image decompres-

sion depends on the conflict misses and whether they

involve hot or cold fragments. As the table shows, the

Benchmark
Num. 

Instrs.

Full Image 

Ratio

Excluded Instructions 

for Partial Image

1% 5% 10%

EPIC 73619 54.5 83 337 703

UNEPIC 69693 54.3 43 262 684

GSMenc 70628 55.2 402 801 1080

GSMdec 70624 55.2 46 224 503

JPEGenc 84793 54.0 71 682 1390

JPEGdec 85357 55.1 101 745 1186

ADPCMenc 62717 54.1 2 26 69

ADPCMdec 62711 54.1 3 29 77

MPEG2dec 75189 55.5 60 401 823

MPEG2enc 84307 56.2 162 888 2142

Table 1: Compression ratios and number instructions

excluded by partial image compression

Benchmark
Full Image 

Overhead

% Improvement for Partial Image

1% 5% 10%

4K 8K 4K 8K 4K 8K

EPIC 3.3 1.2 1.2 5.1 5.2 11.7 11.5

UNEPIC 1.6 0.0 0.0 3.7 4.1 10.5 11.6

GSMenc 0.04 7.6 5.6 17.9 11.9 23.7 16.7

GSMdec 0.7 1.1 -- 5.6 -- 13.6 --

JPEGenc 5.2 1.6 1.3 11.4 10.9 19.0 18.5

JPEGdec 2.4 0.0 0.0 9.0 7.9 19.8 17.4

ADPCMenc 1.4 1.1 -- 19.6 -- 77.0 --

ADPCMdec 0.7 2.0 -- 20.5 -- 82.1 --

MPEG2dec 0.3 1.3 1.3 7.1 7.2 12.1 12.2

MPEG2enc 0.1 1.3 1.3 7.2 7.2 12.1 12.2

Table 2: Overhead (%) for full image decompression

and overhead improvement (%) due to partial image

decompression. 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) 

1530-1591/04 $20.00 © 2004 IEEE 



improvement can be as high as 82.1% in an outlying case

and 0.0% in other cases. For a GSMdec, ADPCMenc, and

ADPCMdec, there was no difference between a 4 KB and

8 KB cache. The 4 KB FC$ captured most of the working

set, so the 8 KB FC$ had similar behavior (noted by “--”).

The programs with the largest improvements, ADPCM-

dec and ADPCMenc, have small working sets and at high

hotness thresholds, a large portion of the working set is

not decompressed. Here, most cache misses involve cold

start misses when the application is first brought into the

cache. Hence, avoiding decompression on a large portion

of the working set leads to a large overhead improvement. 

Importantly, from the results in the tables, with a hot-

ness threshold of 10%, partial image decompression has a

significant performance improvement over full image

decompression for a small 4KB FC$. Yet, the compres-

sion ratio is within 1% of full image compression. From

these results, we conclude that partial image compression

is effective and practical in a software dynamic translator. 

5. Related Work

There has been much work on code compression and

we describe techniques that are most similar to our

approach. Kirovski et al. proposed a compiler-directed

technique that manages a hardware cache to decompress

program procedures [8]. However, it may decompress

portions of procedures that are unneeded. Lefurgy et al.

avoid decompressing a procedure by decompressing

instruction cache lines [10]. In their approach, an interrupt

occurs on an instruction cache miss, which invokes an

interrupt routine to decompress a line into the instruction

cache. While this approach tries to ensure that only

instructions that are likely to be executed are decom-

pressed, the high interrupt latency to invoke decompres-

sion on a per line basis may be detrimental to system

performance. Desoli et al. mention code decompression in

DELI, but they do not describe their approach or an

implementation [4]. Debray and Evans proposed to

decompresses a program based on code regions [3]. The

regions are identified by profiling to identify the working

set to partition the program into uncompressed and com-

pressed code. Unlike our approach, their technique is not

targeted to SDT, such as a dynamic optimizer or binary

translator. Our approach also operates on the same granu-

larity as typical dynamic translators. Xie et al. proposed a

scheme that uses profiles to identify code regions for

compression [12]. We could use a version of their decom-

pressor in the same way that we use CodePack. 

6. Summary

Embedded software has become more adaptive and

software dynamic translation is one technique for

enabling that adaptivity. The combination of adaptivity

and the need to meet strict design requirements in embed-

ded systems makes it challenging to effectively managing

system resources. This paper described an approach for

managing program code storage resources with compres-

sion in a SDT. We showed that full image compression

achieves high compression ratios, while partial image

compression can minimize decompression overhead and

achieve high compression ratios. This paper demonstrated

that it is feasible to apply code decompression in a SDT

system without unduly affecting performance. 

References

[1] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A

transparent dynamic optimization system”, Programming

Language Design and Implementation, 2000. 

[2] D. Bruening, T. Garnett, and S. Amarasinghe, “An infra-

structure for adaptive dynamic optimization”, Symp. on

Code Generation and Optimization, 2003. 

[3] S. Debray and W. Evans, “Profile-guided code compres-

sion”, Programming Language Design and Implementa-

tion, 2002. 

[4] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and

J. A. Fisher, “DELI: A new run-time control point”, Int’l.

Symp. on Microarchitecture, 2002. 

[5] K. Hazelwood and M. Smith, “Code cache management

schemes for dynamic optimizers”, Workshop on Interac-

tion betw. Compilers and Computer Architecture, 2002.

[6] T. Kemp, R. Montoye, J. Harper, J. Palmer, and D. Auer-

bach, “A decompression core for PowerPC”, IBM Jour-

nal of Research and Development, 42(6), Nov. 1998. 

[7] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure

execution via program shepherding”, 11th USENIX Secu-

rity Symposium, 2002. 

[8] D. Kirovski, J. Kin, and W. H. Mangione-Smith, “Proce-

dure based program compression”, Int’l. Symp. on

Microarchitecture (MICRO-30), 1997.

[9] C. Lefurgy, E. Piccininni, and T. Mudge, “Evaluation of a

high performance code compression method”, Int’l.

Symp. on Microarchitecture (MICRO-32), 1999. 

[10] C. Lefurgy, E. Piccininni, and T. Mudge, “Reducing code

size with run-time decompression”, Int’l. Symp. on High-

Performance Computer Architecture, 2000.

[11] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. David-

son, and M. L. Soffa, “Retargetable and reconfigurable

software dynamic translation”, Symp. on Code Genera-

tion and Optimization, 2003. 

[12] Y. Xie, W. Wulf, and H. Lekatsas, “Profile-driven selec-

tive code compression”, Design, Automation, and Test in

Europe, 2003.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) 

1530-1591/04 $20.00 © 2004 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


