
Energy-Aware System Design for Wireless Multimedia

Hans Van Antwerpen ∗ Nikil Dutt † Rajesh Gupta ‡ Shivajit Mohapatra §

Cristiano Pereira ¶ Nalini Venkatasubramanian ‖ Ralph von Vignau ∗∗

ABSTRACT

In this paper, we present various challenges that arise in
the delivery and exchange of multimedia information to mo-
bile devices. Specifically, we focus on techniques for main-
taining QoS to end-user multimedia applications (e.g. video
streaming, multimedia conferencing) while maximizing de-
vice lifetimes. In order to cope with the resource intensive
nature of multimedia applications (in terms of computation,
bandwidth and consequently power) and dynamic congestion
levels in wireless networks, an end-to-end approach to QoS-
aware power optimization is required. We discuss the trend
towards such an integrated approach that couples the archi-
tectural, OS, middleware and application layers to achieve
both user experience and device energy gains. We conclude
with a discussion of tools for integrated system design and
testing that will aid in rapid deployment of wireless multi-
media.

1 Motivation

Limiting the energy consumption of low-power mobile de-
vices has become an important research objective in recent
years. The capabilities of these devices are limited by their
modest sizes and the finite lifetimes of the batteries that
power them. As a result, minimizing the energy usage of
every component (e.g. CPU, network card, display, archi-
tecture etc.) in such devices remains an important design
goal and continues to pose significant challenges. On the
other hand, rapid advances in processor and wireless net-
working technology are ushering in a new class of multimedia
applications (e.g. video streaming/conferencing) for mobile
handheld devices. Multimedia applications have distinctive
Quality of Service(QoS) and processing requirements which
tend to make them extremely resource-hungry. Moreover,
the device specific attributes(e.g form factorof handhelds)
significantly influence the human perception of multimedia
quality. As a result delivering high quality realtime multi-
media content to mobile handheld devices remains a difficult
challenge.

These issues have been aggressively pursued by researchers
and numerous interesting power optimization solutions have
been proposed at various cross computational levels - sys-
tem cache and external memory access optimizations [2, 11],
dynamic voltage scaling(DVS) [18, 6] of the CPU, dynamic
power management of disks and network interfaces(NICs) [7,

∗Phillips Semiconductors
†dutt@ics.uci.edu - University of California, Irvine
‡rgupta@ucsd.edu - University of California, San Diego
§mopy@ics.uci.edu - University of California, Irvine
¶cpereira@cs.ucsd.edu - University of California, San Diego
‖nalini@ics.uci.edu - University of California, Irvine
∗∗Phillips Semiconductors

4], efficient compilers and application/middleware [14] based
adaptations for power management. Interestingly, power op-
timization techniques developed for individual components
of a device have remained seemingly incognizant of the
strategies employed for other components. Therefore, in-
creased research effort needs to be devoted to study the im-
portant issues involved in the interplay between the power
management [21, 13] of the various components. While fo-
cussing their attention to a single component, researchers
make a general assumption that no other power optimiza-
tion schemes are operational for other components. Notice-
ably, the joint performance of an aggregation of techniques
at various levels has received relatively little interest. The
cumulative power gains observed by aggregating techniques
at each stage can be potentially significant; however, it also
requires a study of the trade-offs involved and the customiza-
tions required for unified operation.

P C

Switch Access
Point

Proxy

S
Server

noise

W A N W I R E D E T H E R N E T
W I R E L E SS

C

C

U
 S

 E
 R

 S

Directory
Service

Rule
base

Transcoder

Fig. 1: System Model

System Model:We assume the system model depicted in
Fig. 1. The system entities include a multimedia server, a
proxy server that utilizes a directory service, a rule base for
specific devices and a video transcoder, an ethernet switch,
the wireless access point and users with low-power wireless
devices. The multimedia servers store the multimedia con-
tent and stream videos to clients upon receipt of a request.
The users issue requests for video streams on their handheld
devices. All communication between the handheld device
and the servers are routed through the proxy server, that
can transcode the video stream in realtime. The middleware
executes on both the handheld device and the proxy, and
performs two important functions. On the device, it obtains
residual energy availability information from the underlying
architecture and feeds it back to the proxy and relates the
video stream parameters and network related control infor-
mation to lower abstraction layers. On the proxy, it per-
forms a feedback based power aware admission control and
realtime transcoding of the video stream, based on the feed-
back from the device. It also regulates the video transmis-
sion over the network based on the noise level and the video
stream quality. Additionally, the middleware exploits dy-
namic global state information(e.g mobility info, noise level
etc.) available at the directory service and static device spe-
cific knowledge (architecture, OS, video quality levels) from
the static rule base, to optimally perform its functions. The
rate at which feedbacks are sent by the device is dictated by
administrative policies like periodic feedback etc.. Moreover

1

1530-1591/04 $20.00 (c) 2004 IEEE

we assume that network connectivity is maintained at all
times.

The interaction between different layers is even more im-
portant in distributed applications where a combination of
local and global information helps and improves the control
decisions (power, performance and QoS trade-offs) made at
runtime. Fig. 2 presents the different computation levels in
a typical handheld computer and shows the cross layer in-
teractions for optimal power and performance deliverance.

Server

Clientn

Clienti

Client1

Network
Card

Display Cache Memory RegFiles
CPU

H/W

Operating System
DVS Scheduler

Network
Management

Transcoding Admission
Control

Applications
Video Player Other Tasks

Middleware

Fig. 2: Abstraction Layers in Distributed Multimedia Streaming

The purpose of our study is to develop and integrate hard-
ware based architectural optimization techniques with high
level operating system and middleware approaches (Fig. 2),
for improvements in power savings and the overall user ex-
perience, in the context of video streaming to a low-power
handheld device. Multimedia applications heavily utilize the
biggest power consumers in modern computers: the CPU ,
the network and the display(see Fig. 2). Therefore, we ag-
gregate hardware and software techniques that induce power
savings for these resources. To maximize power gains for
a CPU architecture, we identify the predominant internal
units of the architecture that contribute to power consump-
tion. We use higher-level knowledge such as quality and en-
coding parameters of the video stream to optimize internal
cache configurations, CPU registers and the external mem-
ory accesses. Further we study the trade-offs of using DVS
alongside the other optimizations. Knowledge of the un-
derlying architectural configuration is used by the compiler
to generate code that compliments the optimizations at the
low-level architecture. Similarly, we utilize hardware/design
level data(e.g cache config.) and user-level information(video
quality perception) to optimize middleware and OS compo-
nents for improved performance and power savings - through
effective video transcoding, power-aware admission control
and efficient network transmission. We reduce the power
consumption of the network card by switching it to the
“sleep” mode during periods of inactivity. An efficient mid-
dleware is used to control network traffic for optimal power
management of the network interface. To maximize user ex-
perience, we conduct extensive tests to study video quality
and power trade-offs for handheld computers. We use these
results to drive our optimization efforts at each computing
level.

In the rest of the paper, we present some of the research
challenges encountered at each cross computational level and
finally propose an integrated approach involving both dis-
tributed proxy based adaptations coupled with coordinated
cross-layer energy optimizations at the device.

2 Hardware/Architectural Level
Optimizations

Multiprocessor Systems-on-a-Chip (MPSoC) architectural
platforms are increasingly being employed to solve a diverse

CPU

MemoryDisplay

Network
card

a b

Data
Cache

Register
File

Functional
Units

Clock

Fig. 3: Main Components of a Handheld Device (a) and CPU
Detail (b)

spectrum of problems in the embedded and mobile systems
domain. MPSoC architectural platforms typically employ
multiple processor cores, together with specialized compu-
tational engines to meet the computational demands of the
applications. Since most multimedia applications spend a
significant amount of time accessing and transforming audio
and video data, the design of the memory subsystem archi-
tecture, and compiler support for exploiting the specialized
memory structures are critical for meeting the performance,
power and cost budgets of such applications.

Since the memory subsystem will dominate the cost
(area), performance and power, we have to pay special at-
tention to how the memory subsystem can benefit from cus-
tomization. The memory can be selectively cached; the
cache line size can be determined by the application; the
designer can opt to discard the cache completely and choose
specialized memory configurations such as FIFOs and stream
buffers; and so on. The exploration space of different pos-
sible memory architectures is vast, and there have been at-
tempts to automate or semi-automate this exploration pro-
cess [9].

2.1 Hardware-level Knobs for Handheld
Devices

As shown on Fig. 3(a), there are three major sources of
power consumption in a handheld device (e.g. iPaq): display
(around 1W for full backlight), network hardware (1.4W)
and CPU/memory (1-3W, with the additional board cir-
cuits). Each of these subsystems expose ways for control-
ling the power dissipation. In case of the display (LCD),
the main energy drain comes from the backlight, which is
a predefined user setting and therefore has a limited degree
of controllability by the system (without affecting the final
utility). The network interface allows for efficient power sav-
ings if cognizant of the higher level protocol’s behavior and
will be explored in a subsequent section. Out of the three
components mentioned above, the CPU coupled with the
memory subsystem poses the biggest challenge. Its intrin-
sic high dependence on the input data to be processed, the
quality of the code generated by the compiler and the organi-
zation of its internal architecture make predicting its power
consumption profile very hard in general; nevertheless, very
good power saving results can be obtained by utilizing the
knowledge of the application running on it and through ex-
tensive profiling of a representative data input set from the
application’s domain. Over the rest of this section, we focus
our attention on the possible optimizations at the CPU level
for a multimedia streaming application (MPEG).

We identified the subcomponents of the CPU (Fig. 3(b))
that consume the most power and observed the power dis-
tribution inside the CPU for MPEG decoding. By running
the decoder process in a power simulator (Wattch) for videos
of various types and by measuring the relative power con-
sumption of each unit in the CPU we generate the internal
processor power distribution. We conclude that:

2

1 2 4 8 16 32
64

32

16

8

4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Cache
Size

Cache Associativity

Total Energy (J)

Fig. 4: Cache Energy Variation on Size and Associativity

• The relative power contribution of the internal units of
the CPU do not vary significantly with the nature or quality
of the video played. A possible reason for this is the sym-
metrical and repetitive nature of MPEG decoding, whose
processing is done on fixed size blocks or macroblocks.
• The units that show an important contribution to the

overall power consumption and are amenable for power opti-
mization are: caches, register files, functional units. Cache
behavior greatly affects the memory performance and hence
power consumption, so we optimize the entire memory sub-
system in an integrated way.

We briefly discuss the components identified above and
suggest some additional improvements as a part of future
work.
•Caches/Memory: cache configurations are determined

by their size, number of sets, and associativity. The size
specifies how large a cache should be, while the associativ-
ity/number of sets control its internal structure. We iden-
tify that most power gains for MPEG are possible through
cache reconfiguration, more specific the data cache; cache
optimizations influence memory traffic, so they are studied
in an integrated way.
•Frame Traversal: Decompressing MPEG video in its

implied order does not leave space for exploiting the limited
locality existent between dependent macroblocks. By just
changing the frame traversal order algorithm based on the
existing locality, faster decompression rates and significant
power saving are achieved via reduced memory accesses [5].
Our proxy-based approach allows for a transparent on-the
fly traversal reordering at transcoding time, giving an advan-
tage over previous work where this was done at the device,
incurring unacceptable frame decoding delays.

We should mention that while current processors (includ-
ing the ARM core on iPaq) in general do not exhibit such
aggressive architectural reconfigurations, except for special
purposes, there are many research projects on this and even-
tually the techniques will be incorporated into more future
processors. Another knob, independent of the above is power
management through the use of dynamic voltage scaling of
the processor(DVS). DVS provides significant savings for
MPEG streaming as it allows tradeoffs for transforming the
frame decoding slack time (CPU idle time) into important
power savings. We discuss DVS in a subsequent section and
investigate the implications of DVS on other knobs in the
system. All these knobs when fine-tuned for a specific video
quality, will provide the best operating point(for power and
performance) for a specific video stream.

2.2 Quality-driven Cache Reconfiguration

There are various techniques pertinent to cache optimiza-
tions. Power consumption for the cache depends on the run-
time access counts: while hits result in only a cache access,
misses add the penalty of accessing the main memory (exter-

nal). Fortunately, in most applications the inherent locality
of data means that cache miss rate is relatively low and so
are accesses to external memory. However, MPEG decoding
exhibits a relatively poor data locality, which, when com-
bined with the large data sets exercised by the algorithm,
leads to an increase in the cache memory-traffic.

In order to find the best solution point, we performed an
extensive simulation and profiling with data that is represen-
tative for the video domain. Internal CPU caches are charac-
terized by their size(S), number of sets(NS), line size(LS)
and associativity(A). Over the next paragraphs, by cache
we refer to data cache (not instruction cache, which is not
the scope of our optimizations).

Our cache reconfiguration goal is optimizing energy con-
sumption for a particular video quality level Qk. In general,
cache power consumption for a particular configuration and
video quality is given by the function Ecache,k(S, A). By
profiling this function for the entire search space (S, A) of
available cache configurations, we generate a cache energy
variation graph shown in Fig. 4. Depending on the video
quality Qk played, there will be one optimal operating point
for that video quality: (Soptk , Aopt

k). We found out that for
all video qualities an optimized operating point exists and
it improves cache power consumption by up to 10-20% (as
opposed to a suboptimized configuration). This technique
effectively fine-tune the organization of the cache so that it
perfectly matches the application and the data sets to be
processed, yielding important power savings.

2.3 Reducing Backlight Power Consump-
tion

As mentioned earlier, the backlight accounts for significant
energy overheads in a low-power device. However, signifi-
cant energy savings are possible by operating the device at
a lower backlight intensity levels. We therefore explore a
more aggressive approach to brightness compensation and
device backlight control for streaming video. Furthermore,
the adaptation is shifted away from the low-power device
and performed at a network proxy server, obviating the need
for the decoder on the device to be modified. We have
found that aggressive brightness compensation is possible
for streaming video as compared to still images, without
considerably impacting the video quality. This is because
small defects (introduced due to aggressive compensation)
that might be noticeable in a still image are less discern-
able in streaming video where several frames (images) are
displayed on the screen every second. We also propose an
effective brightness compensation algorithm for optimized
power savings [15]. Finally, we introduce middleware based
adaptation schemes which integrate our compensation algo-
rithm to achieve low power backlight operation for streaming
video content to mobile handheld devices. Our proposed ap-
proach gives significant power reductions, up to 60% of the
power consumption attributed to the backlight, depending
on the chosen adaptation scheme and the characteristics of
the streamed video.

We assume that the proxy server that has access to
a database of profiled luminosity values for various video
streams and device specific parameters (e.g. number of
backlight levels, average luminosity at each level etc.), a
rule base to determine compensation values and a video
transcoder(Fig. 5); and low-power wireless devices capable
of displaying streaming MPEG video content. Moreover, all
communication between the handhelds and the multimedia
server are routed through the proxy server that can change
the video stream in real-time. Each device/client has an

3

Fig. 5: Model for Backlight Adaptation

application layer where the video stream is decoded and a
middleware layer which routes the information flowing from
and to the video decoder application. The client middleware
layer has access to system parameters such as the backlight
levels, the current battery level and information identifying
the type and make of the handheld (e.g. iPAQ, Jornada
etc). In addition to accessing these system parameters, the
middleware layer on the client can change these parameters
(e.g. operating backlight level) through API calls to the
underlying OS. The middleware on the proxy performs the
dynamic adaptation of the streaming video content (bright-
ness compensation) and communicates control information
to the client middleware (operating backlight levels) through
the low bandwidth control stream. The proxy maintains a
database of information about the videos available at the
server and information specific to different handheld types
such as the number, luminous intensity and average power
consumption of the backlight levels. Additionally, the proxy
also employs a static rule base which specifies conditions
which determine values for backlight and video compensa-
tion. The database and certain parameters of the rule base
are populated by extensive profiling and subjective assess-
ment of videos on different handhelds.

3 OS/Middleware Level Optimiza-
tions

As seen in the previous section, architectural level optimiza-
tions can lead to substantial power and performance im-
provements. The gains can be further amplified if the low-
level architecture is cognizant of the exact characteristics of
the streamed video. An adaptive middleware framework at
a proxy can dynamically intercept and doctor a video stream
to exactly match the video characteristics for which the tar-
get architecture has been optimized. Additionally, it can
regulate the network traffic to induce maximal power sav-
ings in a network interface. Additionally, with knowledge of
the video stream the operating system can employ an opti-
mized dynamic voltage scaling of the CPU.

3.1 Integrated Dynamic Voltage Scaling

The previous section shows that significant power savings
can be achieved by optimally reconfiguring the cache to
match the video quality. The savings can be further in-
creased when this is combined with dynamic voltage scaling
(DVS) [6]. A processor normally operates at a specific sup-
ply voltage V and clock frequency f . The dynamic power
dissipated by the CPU (and any other CMOS circuits due
to switching activity, in addition to the static component)
varies linearly with frequency and circuit capacitance, and

quadratically with voltage: P ∝ C × f × V 2. The dis-
advantage of applying dynamic voltage scaling is its power-
performance tradeoff.

In MPEG decoding, frames are processed in a fraction of
the frame delay (Fd = 1/frame rate). The actual frame
decoding time D depends on the type of MPEG frame be-
ing processed (I, P, B) and is also influenced by the cache
configuration (S, A) and DVS setting (f, V). We assume
a buffered based decoding, where the decoded frames are
placed in a temporary buffer and are only read when the
frame is displayed. This allows us to decouple the decoder
from the displaying; decoding time it still different for differ-
ent frame, but we can assume an average D for a particular
video stream/quality. The difference between the average
frame delay and actual frame decoding time gives us the
slack time θ = Fd − D. When we perform DVS, we slow
down the CPU so as to decrease the slack time to a mini-
mum. Cache configuration also slightly influences the frame
decoding time (due to the cache misses, which translate into
external memory traffic), extreme values proving very in-
efficient. An optimized cache combined with DVS should
yield best power saving results. Through simulation, we find
the best operating points for the DVS/cache reconfiguration
combined approach in a manner similar to the one applied
in the previous section.

3.2 Power Aware Operating System Archi-
tecture

We view the notion of power awareness in the application
and OS as a capability that enables a continuous dialogue
between the application, the OS, and the underlying hard-
ware. This dialogue establishes the functionality and perfor-
mance expectations (or even contracts, as in real-time sense)
within the available energy constraints. We describe here our
implementation of a specific service, namely the task sched-
uler, that makes the OS power aware. The architecture is
composed of two software layers and the OS kernel. One
layer interfaces applications with operating system and the
other layer makes power related hardware “knobs” available
to the operating system. Both layers are connected by means
of corresponding power aware operating system services as
shown in Figure 6. At the topmost level, embedded applica-
tions call the API level interface functions to make use of a
range of services that ultimately makes the application en-
ergy efficient in the context of its specific functionality. The
API level is separated into two sub-layers. PA-API layer pro-
vides all the functions available to the applications, while the
other layer provides access to operating system services and
power aware modified operating system services (PA OS Ser-
vices). Active entities that are not implemented within the
OS kernel should also be implemented at this level (threads
created with the sole purpose of assisting the power man-
agement of an operating system service.

We call this layer the power aware operating system layer
(PA-OSL). To interface the modified operating system level
and the underlying hardware level, we define a power aware
hardware abstraction layer (PA-HAL). The PA-HAL gives
the access to the power related hardware “knobs” in a way
that makes it independent of the hardware.

3.3 Middleware based Network Traffic Reg-
ulation

In this section, we develop a proxy-based traffic regula-
tion mechanism to reduce energy consumption by the device
network interface. Our mechanism (a) dynamically adapts

4

POSIX

HARDWARE

API Level

Application Level

Hardware Level

OS Level

PA-HALOS HAL

PA-OSL

Applications

Scheduler

Device
Drivers

Memory
Manager

Services

PA OS
OS
Kernel

PA-API

Fig. 6: Power Aware Operating System Architecture

to changing network(e.g noise) and device conditions. (b)
accounts for attributes of the wireless access points (e.g.
buffering capabilities) and the underlying network protocol
(e.g. packet size). (c) uses the proxy to buffer and transmit
optimized bursts of video along with control information to
the device. However, even though packets are transmitted
in bursts by the proxy, the device receives packets that are
skewed over time Fig. 7; this cuts power savings, as the net
sleep time of the interface is reduced. The skew is caused due
to the ethernet access protocol(e.g CSMA/CD) and/or the
fair queueing algorithms implemented at the AP. Our mech-
anism optimizes the stream, such that the optimal video
bursts sizes are sent for a given noise level, thus maximizing
energy savings without performance costs.

Wireless network interface(WNIC) cards typically oper-
ate in four modes: transmit, receive, sleep and idle. We
estimated the power consumption of the Cisco Aironet 350
series WLAN card to have the following power consump-
tion characteristics: transmit(1.68W), receive(1.435W), idle
(1.34W) and sleep(0.184W) which agree with the measure-
ments made by Havinga et al. in [10]. This observation [3]
suggests that significant energy savings can be achieved by
transitioning the network interface from idle to sleep mode
during periods of inactivity. The use of bursty traffic was
first suggested by Chandra [3, 4] and control information
was used for adaptation in [16].

We analyze the above power saving approach using a re-
alistic network framework(Fig. 7), in the presence of noise
and AP limitations. The proxy middleware buffers the
transcoded video and transmits I seconds of video in a sin-
gle burst along with the time τ=I for the next transmission
as control information. The device then uses this control in-
formation to switch the interface to the active/idle mode at
time τ + γ × DEtoE , where γ is an estimate between zero
and one and DEtoE is the end-to-end network delay with
no noise [16].

We acknowledge that a QoS aware preferential service al-
gorithm at the access point can impact power management
significantly. The above analysis can be used by an adaptive
middleware to calculate an optimal I (burst length) for any
given video stream and noise level. Note that energy over-
head for buffering the video packets is not affected by using
our strategy because the number of read and write mem-
ory operations remain unchanged irrespective of the memory
buffer size.

t t

P CHTTP/TCP/IP

RTP/UDP/IP
802.11b

C

C
Wired

Wired wireless

User NUser 1

Proxy

Access
Point

Wireless
device

packets

Fig. 7: Wireless Network

Quality Parameters Avg. Power Avg. Power
(WinCE) (Linux)

(Q8) SIF, 30fps, 650Kbps 4.42W 6.07W
(Q7) SIF, 25fps,450Kbps 4.37W 5.99W
(Q6) SIF, 25fps, 350Kbs 4.31W 5.86W
(Q5) HSIF, 24fps, 350Kbps 4.24W 5.81W
(Q4) HSIF, 24fps, 200Kbps 4.15W 5.73W
(Q3) HSIF, 24fps, 150Kbps 4.06W 5.63W
(Q2) QSIF, 20fps, 150Kbps 3.95W 5.5W
(Q1) QSIF, 20fps, 100kbps 3.88W 5.38W

Table 1: Energy-Aware Transformations for Compaq Ipaq 3650
with bright backlight, Cisco 350 Series Aironet WNIC card. (Q1)
Terrible, (Q2) Bad, (Q3) Poor, (Q4) Fair, (Q5) Good, (Q6) Very
Good, (Q7) Excellent, (Q8) Like Original

4 Application Layer Adaptation

Improving the service lifetimes of low-power mobile devices
through effective power management strategies can facili-
tate optimization of user experience for streaming video on
to handheld devices. To achieve this, a system should be
able to dynamically adapt to global system changes, such
that the entire duration of a requested video is streamed
to the user at the highest possible quality, while meeting
the power constraints of the user’s low-power device. We
achieve such an optimal balance between power and per-
formance, by introducing a notion of “Utility Factor UF ”
for a system, and optimizing the UF for the system. This
approach precludes the system from aggressively optimiz-
ing for power at the expense of performance and vice-versa;
thereby providing an optimized operating point for the sys-
tem at all times. UF is a measure of “user satisfaction”
and we specify it as follows: given the residual energy Eres
on a handheld device, a threshold video quality level (QA
: QMAX ≥ QA ≥ QMIN) acceptable to the user, and
the time of the video playback T, the UF of the system is
non-negative, if the system can stream the highest possible
quality of video to the user such that the time, quality and
the power constraints are satisfied; otherwise UF is nega-
tive. Let PV ID denote the average power consumption rate
of the video playback at the handheld and QPLAY be the
quality of video(Table 1)streamed to the user by the system.
Using the above notation, we define UF as follows:

UF =

{
QPLAY − QMIN IFF PV ID ∗ T < ERES

QPLAY ≥ QA
−1 Otherwise

5 Related Work and Conclusions

To provide acceptable video performance at the hardware
level, efforts have concentrated on analyzing the behav-
ior of the decoder software and devising either architec-
tural enhancements or software improvements for the de-
coding algorithm. Until recently it was believed that caches
can bring no potential benefit in the context of MPEG

5

(video) decoding. In fact, due to the poor locality of the
data stream, many MPEG implementations viewed video
data as “un-cacheable” and completely disabled the internal
caches during playback. However, Soderquist and Leeser [17]
show that video data has sufficient locality that can be
exploited to reduce cache-memory traffic by 50 percent or
more through simple architectural changes. Dynamic Volt-
age Scaling [12, 6] for MPEG streams have been widely re-
searched. A different way of improving cache performance
by reordering frame traversal was proposed in [5]. Register
file reconfiguration was applied in [2]. At the application and
middleware levels, the primary focus has been to optimize
network interface power consumption [7, 3, 4]. A thorough
analysis of power consumption of wireless network interfaces
has been presented in [7]. Chandra et al. [3] have explored
the wireless network energy consumption of streaming video
formats like Windows Media etc.. In [4], they have explored
the effectiveness of energy aware traffic shaping closer to a
mobile client. In [16], Shenoy suggests performing power
friendly proxy based video transformations to reduce video
quality in real-time for energy savings. They also suggest an
intelligent network streaming strategy for saving power on
the network interface. We have a similar approach, but we
model a noisy channel. Caching streams of multiple quali-
ties for efficient performance has been suggested in [8]. The
GRACE project [21] professes the use of cross-layer adap-
tations for maximizing system utility. They suggest both
coarse grained and fine grained tuning of parameters for op-
timal gains. In [20], a resource aware admission control
and adaptation is suggested for multimedia applications for
optimal CPU gains. Dynamic transcoding techniques have
been studied in [1] and objective video quality assessment
has been studied in [19].
Conclusions: We conclude that significant energy gains
are achievable for low-power devices if a cross-layer com-
munication framework is developed that allows for the var-
ious computation levels (architecture, OS, middleware, ap-
plication) to interact dynamically. Moreover, proxy-based
middleware adaptations that are cognizant of the architec-
ture/OS level adaptations can significantly improve user
experience for multimedia applications. User perception
of video played a vital role in deciding the proxy-based
video transformations and in identifying architectural tun-
ing knobs. In practice, the widespread deployment of such
a unified power management framework for mobile devices
would require a set of APIs (programming interfaces) to be
implemented at the various computational layers; this API
should facilitate effective communication between the vari-
ous levels. Recent approaches towards power management
suggest a more open and flexible architecture for mobile
devices that allows higher layers to make informed adap-
tations at lower layers and vice-versa. A prototype im-
plementation of the framework is currently underway as a
part of the FORGE (http://www.ics.uci.edu/ f̃orge) and DY-
NAMO(http://dynamo.ics.uci.edu) projects at University of
California, Irvine.

Rapid deployment of the technology presented in this pa-
per will require the cost effective design of development plat-
form that facilitates integrated system design. Tools such as
Nx-Builder from Philips will allow us to define design tem-
plates for integrated multimedia applications. A major focus
in Nx-Builder will be on the reuse of verification suites at all
stages of the development flow. The Nx-Builder verification
capabilities will encompass Trans-actors for data insertion,
automated regression testing and the automated compila-
tion of individual IP test suites into verification frameworks.
Additionally the use of standards such as System C, RTL,
XML and SPIRIT will also enable reuse by multiple EDA

vendors.

References
[1] Acharia, S., and B.C.Smith. Compressed Domain

Transcoding of MPEG. In ICMCS (1998).

[2] Azevedo, A., Cornea, R., Issenin, I., Gupta, R., Dutt,
N., Nicolau, A., and Veidenbaum, A. Architectural and
compiler strategies for dynamic power management in the
copper project. In IWIA (2001).

[3] Chandra, S. Wireless Network Interface Energy Consump-
tion Implications of Popular Streaming Formats. In MMCN-
02.

[4] Chandra, S., and Vahdat, A. Application-specific Net-
work Management for Energy-aware Streaming of Popular
Multimedia Formats. In Usenix Annual Technical Confer-
ence (June 2002).

[5] chi Feng, W., and Sechrest, S. Improving data caching
for software mpeg video decompression. In IS&T/SPIE
Digital Video Compresssion: Algorithms and Technologies
(1996).

[6] Choi, K., Dantu, K., Chen, W.-C., and Pedram, M.
Frame-Based Dynamic Voltage and Frequency Scaling for a
MPEG Decoder. In ICCAD 2000 (2002).

[7] Feeney, L., and Nilsson, M. Investigating the Energy
Consumption of a Wireless Network Interface in an ad hoc
Networking Environment. In IEEE Infocom (April 2001).

[8] Flinn, J., and Satyanarayanan, M. Energy-Aware
Adaptations for Mobile Applications. In In Symposium on
Operating Systems Principles (December 1999).

[9] Grun, P., Dutt, N., and Nicolau, A. ”Memory architec-
ture exploration for programmable embedded systems”. In
Kluwer Academic Publishers, Norwell, MA 2003.

[10] Havinga, P. J. M. Mobile Multimedia Systems. PhD thesis,
University of Twente, Feb 2000.

[11] Hughes, C. J., Srinivasan, J., and Adve, S. V. Sav-
ing energy with architectural and frequency adaptations for
multimedia applications. In MICRO (2001).

[12] Mesarina, M., and Turner, Y. A Reduced Energy De-
coding of MPEG Streams. In MMCN (January 2002).

[13] Mohapatra, S., and Venkatasubramanian, N. PARM:
Power-Aware Reconfigurable Middleware. In ICDCS-03.

[14] Noble, B. D., Satyanarayanan, M., D.Narayanan,
J.E.Tilton, and Flinn, J. Agile Application-Aware Adap-
tation for Mobility. In In Symposium on Operating Systems
Principles (October 1997).

[15] Pasricha, S., Mohapatra, S., and et. al. ”Reducing
backlight power consumption for streaming video applica-
tions on mobile handheld devices”. In ACM/IEEE/IFIP
Workshop on Embedded Systems for Real-Time Multimedia,
2003.

[16] Shenoy, P., and Radkov, P. Proxy-Assisted Power-
Friendly Streaming to Mobile Devices. In MMCN (2003).

[17] Soderquist, P., and Leeser, M. Optimizing the data
cache performance of a software MPEG-2 video decoder. In
ACM Multimedia (1997), pp. 291–301.

[18] Weiser, M., Welch, B., Demers, A., and Shenker, S.
Scheduling for Reduced CPU Energy. In In Symposium on
Operating Systems Design and Implementation (1994).

[19] Winkler, S. Issues in vision modeling for perceptual video
quality assessment. In Signal Processing 78(2), 1999. (1999).

[20] Yuan, W., and Nahrstedt, K. A Middleware Frame-
work Coordinating Processor/Power Resource Management
for Multimedia Applications. In IEEE Globecom (Nov 2001).

[21] Yuan, W., Nahrstedt, K., Adve, S., Jones, D., and
Kravets, R. Design and Evaluation of a Cross-Layer
Adaptation Framework for Mobile Multimedia Systems. In
MMCN-03 (2003).

6

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

