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Abstract 
Most system-on-Chip (SoC) design methodologies 
promote the reuse of pre-designed (hardware, software, 
and functional) components. However, as these 
components are heterogeneous, their integration requires 
complex interface sub-systems. These sub-systems can 
also be constructed by assembling pre-designed basic 
interface components. Hence, SoC design and validation 
involves component composition techniques to create 
hardware, software, and functional interface sub-systems 
by assembling basic interface components. We propose a 
unified methodology for automatic component integration 
that allows designers to reuse pre-designed components 
effectively. We also present ROSES, a design flow that 
uses this methodology to generate hardware, software, 
and functional interface sub-systems automatically 
starting from a system-level architectural model.  
 
 
1. Introduction 

 
SoC design must rely on pre-designed or third party 

components (e.g., processors, big macro-cells, embedded 
RTOS, etc.) due to always increasing time-to-market 
pressures. Components obtained from different providers, 
and even those designed by different teams of the same 
company, may be heterogeneous on several aspects: 
design domains, interfaces, abstraction levels, 
granularities, etc. Thus, building global synthesis and 
simulation models is becoming more and more difficult as 
it requires interfacing complex heterogeneous sub-
systems. Consequently, many design bottlenecks are 
created as the different design teams--for software, 
hardware, and test--are not able to work concurrently. 

Component integration techniques for different design 
domains have been proposed. For instance, the VxWorks 
[1] embedded systems’ RTOS from Wind River Systems 
can be adapted to different applications using tedious 
manual configuration. IBM’s Coral framework [2] 
abstracts the interface of hardware blocks and automates 
interface generation for its CoreConnect protocol. Sonics 
[3] provides wrappers to adapt the bus-independent OCP 
component interface protocol to its µNetwork bus.  

Most existing component integration approaches are 
limited to a standardized component or bus interface; 

some of them propose automation tools that rely on these 
standards. We propose a new unified methodology for 
automatic component integration that allows designers to 
reuse effectively pre-designed hardware, software, and 
functional components and is independent of any given 
standard. Component integration is required: 
1. At the system-level: to compose heterogeneous 
(hardware, software, functional) components onto a single 
global model of the SoC. This requires the generation of 
complex interface sub-systems. Figure 1 shows the target 
multi-processor SoC (MPSoC) architectural model. It uses 
software components (tasks), hardware components 
(processors and IP cores), interface sub-system 
components (hardware and software wrappers), and one 
global on-chip communication network component. 
2. At the interface sub-system level: to compose basic 
and homogeneous interface components (e.g. hardware 
blocks, or software functions) into an interface sub-system 
component (wrapper).  

HW interface 
sub-system

(HW wrapper)

CPU core

SW interface 
sub-system

(SW wrapper)

Application SW
components

(Tasks)

On-chip communication network

HW interface 
sub-system

(HW wrapper)

HW component

Basic SW interface component

Basic HW interface component

API HW comp. 

API network

API SW comp. 

API CPU
…

…

HW interface 
sub-system

(HW wrapper)

HW interface 
sub-system

(HW wrapper)

CPU coreCPU core

SW interface 
sub-system

(SW wrapper)

SW interface 
sub-system

(SW wrapper)

Application SW
components

(Tasks)

On-chip communication network

HW interface 
sub-system

(HW wrapper)

HW interface 
sub-system

(HW wrapper)

HW componentHW component

Basic SW interface component

Basic HW interface component

API HW comp. 

API network

API SW comp. 

API CPU
…

…

 
Fig. 1. MPSoC target architectural model 

This paper is organized as follows: Section 2 discusses 
related work. Section 3 introduces different SoC 
components and models. Section 4 presents the unified 
component integration methodology. Section 5 introduces 
ROSES, a design flow that applies the proposed 
methodology through a case study. Finally, in Section 6, 
we evaluate the methodology and present our conclusions. 

 

2. Related work 
 

Many standards have been proposed to ease component 
integration in the software, hardware and simulation 
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domains. In the software domain, UML 2.0 [4] is a new 
standard proposed for modeling software components of 
reactive systems. Code generation and formal analysis 
techniques can be used for software (homogeneous) 
component integration. Although real-time extensions 
have been incorporated in version 2.0, heterogeneous 
(hardware and software) component integration 
methodologies still depend mostly on non-standard 
extensions of UML. 

In the hardware domain, VSIA [5] and OCP-IP [6] 
propose standards (VCI and OCP, respectively) to ease 
hardware components (called IP, for “intellectual 
property”) integration. Compliant components must use a 
bus-independent standardized interface. Other 
organizations propose standard interconnects (e.g., bus or 
on-chip networks) and adapters. In this case, compliant 
components must be designed according to the 
interconnect protocol. Sonics [3] uses both approaches, 
providing wrappers to adapt the bus-independent OCP 
socket to its µNetwork bus. In some cases, compliance to 
standards represents a significant overhead since 
component’s interfaces must support non-relevant 
functionality only to guarantee their compatibility. 

In the simulation domain, SystemC [7] is a C++ library 
that provides hardware modeling concepts (e.g. time, 
concurrency, events, bit types, etc.) for simulation of 
hardware/software systems at different levels of 
abstraction. SystemC components must use interfaces to 
call methods implemented in communication channels. 
Different channel implementations can be used to adapt 
heterogeneous components. Ptolemy-II [8] provides a 
heterogeneous system simulation environment that uses 
formal model-of-computation analysis to govern 
component interaction. In both cases, for precise modeling 
of hardware/software interactions (e.g., as provided by 
executing the software using an instruction-set simulator 
for the target processor), an ad-hoc setup of a co-
simulation environment is required.  

In the above paragraphs, only a small fraction of the 
languages and standards that have been proposed in the 
software, hardware and simulation domains were 
discussed. Clearly, the problem is that many de-facto 
standards exist, coming from different companies or 
organizations, thus preventing a real interchange of 
components developed for different sub-standards. This 
leads to inefficient ad-hoc practices for heterogeneous 
component integration.  

The main contribution of this paper is a unified 
methodology for automatic integration of heterogeneous 
components. It allows designers from different design 
teams to effectively reuse pre-designed components and 
rapidly build global models for synthesis or simulation by 
using a unified component integration flow. 

 

3. Component models 
 

3.1. Virtual component model 
 

Abstraction is an essential feature in any reuse 
technique [9]. Figure 2 shows a virtual component model 
(VC model) that represents an abstract architecture of the 
system. This model is composed of several virtual 
components and an execution environment. A virtual 
component has an abstract interface that includes 
information such as provided/required services, 
control/synchronization, parameters, etc. The execution 
environment represents an abstract interconnect (e.g. NoC, 
co-simulation backplane, etc).  
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Fig. 2. Virtual component model 

We classify components for MPSoC design into three 
groups (as illustrated in Figure 3):  
1. Software components: application tasks using high-
level, portable code, and software wrappers that adapt 
them to the hardware part of the system. Software 
wrappers provide high-level services (e.g. scheduling, I/O, 
and interrupt handling) and low-level services (e.g. 
context switching, boot, drivers, etc.). 
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Fig. 3. Component hierarchy for MPSoC design 

2. Hardware components: processors, hardware IP 
cores, memories, hardware wrappers, and the on-chip 
communication network. Hardware wrappers provide 
services such as interrupt management, data type 
conversion, etc. 
3. Functional components: simulation models, 
functional models, co-simulation wrappers, and a co-
simulation bus. The co-simulation bus enables the 
interaction between different hardware, software, and 
functional components. Co-simulation wrappers are used 
to adapt different simulators and different hardware and 
software component interfaces to the co-simulation bus. 
 



3.2. Interface sub-system models (wrappers) 
As illustrated in Figure 4(a), software components 

(tasks) use an application programming interface (API) to 
access an abstract communication network. Figure 4(b) 
shows the structure of the software interface sub-system 
(SW wrapper) as a stack of layers. The API layer isolates 
software components from the hardware platform and the 
other software layers. The next layer contains high-level 
OS services, such as task scheduling, high-level 
communication primitives, and interrupt handling. Finally, 
the hardware abstraction layer (HAL) contains all software 
that is directly dependent on the hardware platform [10]. 
For instance, boot code, context-switching code, code for 
configuration and access to the hardware resources 
(MMU, bus bridge, timer, etc.), and drivers.  
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Fig. 4. SW adaptation and SW wrapper structure 
Figure 5 shows the structure of the hardware interface 

sub-system (HW wrapper) used to adapt each processor/IP 
core to the on-chip communication network. It is 
composed of reusable basic hardware interface 
components: processor/IP adapters and communication 
adapters (CA). 

HW wrapper

CPU Processor/IP
core

On-chip communication network

CPU wrapper

CPU/Processor/IP adapter

CA CA CA…

HW wrapper

CPU Processor/IP
core

On-chip communication network

CPU wrapper

CPU/Processor/IP adapter

CA CA CA…

CPU/Processor/IP adapter

CA CA CA…

 
Fig. 5. HW adaptation and HW wrapper structure 
Component integration at the system-level may be used 

to generate two kinds of models: a RTL model for 
synthesis and a co-simulation model for validation. For the 
synthesis model, it uses the HW and SW wrappers 
described above and processor-specific local architecture 
components. For the co-simulation model, specific co-
simulation interface sub-systems (co-simulation wrapper) 
are used to adapt different simulators and functional 
components to the co-simulation bus. 

Figure 6 shows the architectural model used for co-
simulation. The co-simulation wrapper structure is the 
same as that of the HW wrappers (see Figure 5). 

Functional components simulate some behavior 
independently of their implementation in hardware and/or 
software.  
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Fig. 6. Generic MPSoC co-simulation model 

 

4. Unified flow for component integration 
 
4.1. Generic component integration flow 
 

Figure 7 shows the overall template for the unified flow 
for component integration.  
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Fig. 7. Unified flow for component integration 
Inputs and outputs for the flow are as follows:  

• Input abstract architecture: it represents the system in 
terms of interconnected components that provide/require 
services. It can also be annotated with parameters that 
guide the integration process. 
• Output architecture: it is a refined architecture that 
represents the system after the integration process, may be 
a global architecture (for prototyping or co-simulation) or 
an interface sub-system architecture. 
• Components repository: includes customizable 
components used for composition. Each component holds 
a list of provided/required services. 

 The component integration process consists of five 
elementary steps: 
1. Analysis step: extracts design information from the 
abstract architecture to guide the integration process. For 
instance, information about component interfaces such as 
required services, protocols, data types and sizes, etc. 
2. Selection step: locates, compares, and selects 
components providing required services from a library, 
according to the information extracted in the previous 
step. This step must be executed recursively until we 
identify a suitable (and optimal) set of components 
providing all required services. 



3. Specialization step: customizes components selected 
in the previous step to match service requirements (e.g., 
data types, bus sizes) and verifies compatibility. 
Customized values for all parameters are output to 
configuration files. 
4. Generation step: takes customizable component code 
and configuration files and generates specialized source 
code files that correspond to each component behavior. 
5. Assembly step: assembles customized components 
produced in the previous step into a complete refined 
architecture. 
 

4.2. System and interface integration  
 

Figure 8 shows a component-based MPSoC design 
flow where each wrapper generator uses an instance of the 
unified flow presented before (dark shadowed boxes).  
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Fig. 8. Component-based MPSoC design flow 
For the software part, the flow integrates application 

software components running on one or several target 
processors (Figure 8a). This requires building SW 
wrappers for each processor by composing basic software 
interface components available in a library. The generated 
SW wrapper – a specialized RTOS – will adapt the 
application software components to the hardware part. 
Binding the application software components to the 
generated RTOS will produce an executable SW 
component specific to a selected processor. Processors and 

IPs must be adapted to the on-chip communication- 
network, which is achieved through HW wrapper 
generation (Figure 8b) using a library of basic hardware 
interface components.  

Finally, the unified flow is used by the co-simulation 
wrapper generator in order to create co-simulation models 
for system validation (Figure 8c). 
 
5. ROSES: MPSoC design flow 
 

ROSES [11] is a set of tools aimed at the integration of 
heterogeneous HW/SW IP components for MPSoC 
design. It generates hardware, software, and co-simulation 
wrappers to produce refined MPSoC models for synthesis 
or simulation at the system level. Table 1 summarizes all 
the models manipulated. The next subsections illustrate 
these concepts through a subset of a high-bandwidth 
modem application [12]. Figure 9 shows the VC model for 
the subset used; it corresponds to a deframing/framing unit 
(DFU). The DFU has two processors (VM1 and VM2) and 
the TX_Framer (VM3), which is a dedicated hardware IP 
component described at the RT-level. 

In the rest of the paper, we will deal only with the 
second processor (VM2) and the IP component (VM3). 
VM2 includes six sub-modules corresponding to software 
tasks (T4-T9); they require multipoint communication 
channels and other sophisticated OS services.  

 

5.1. System-level integration 
 

ROSES starts by capturing design parameters annotated 
in the DFU virtual architecture (see Figure 9). Two 
hardware IP cores have been selected: an ARM7 processor 
and the TX_Framer. The application software has been 
built by reusing several available SW IP components for 
implementing tasks T4 to T9. 
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Fig. 9. DFU virtual architecture specification 
Figure 10 illustrates the RTL-architecture produced by 

 Abstract architecture Components Refined architecture 
SW wrapper 

generator Abstract SW interface Pipe, Interrupt, Block,  
Unblock, Boot,…etc. 

Software wrapper 
 (OS/HAL) 

HW wrapper 
generator Abstract HW interface Module adapter,  

Channel adapter (Fifo,…), etc. Hardware wrapper 

Interface 
sub-system 
component 
Integration Co-simulation 

wrapper generator  Abstract functional interface Simulator adapters (ISS, …),  
protocols adapters,…etc. Co-simulation wrapper 

Table 1. ROSES component integration models 



ROSES. It includes the “concrete” ARM7 local 
architecture containing additional IP components (local 
memory, local bus, and address decoder). The HW 
wrapper implements point-to-point communication 
between the processor and the IP component. The SW 
wrapper is composed of a dedicated OS that includes only 
the functionality required by tasks T4-T9 and a HAL. 

For system-level integration, wrappers are treated as 
components of a library. However, if they do not exist, 
ROSES can generate them automatically by assembling 
basic interface components available in a user-extensible 
library. The next section presents component integration 
dedicated for wrapper generation. 
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Fig. 10. The generated RTL architecture 

 

5.2. Interface sub-system level integration 
 
Hardware interface sub-systems generator  
This generator [13] produces the HW wrapper, which 
contains a processor adapter that bridges the ARM7 local 
bus to channel adapters (CA). A CA is generated for each 
communication protocol used in the virtual architecture. 
• Component library. The generator uses an extensible 
library, containing customizable basic hardware interface 
components, which is organized as follows: 
- A set of “Processor Centric Architectures” (PCAs) 
annotated with design parameters such as internal bus type 
and CPU type. Each PCA has four types of elements: 
processor cores, local buses, local IP components (such as 
memory, address decoders, and coprocessors), and 
processor adapters. 
- A set of “Channel Adapters” (CAs) corresponding to 
a list of communication protocols, a list of compatible 
software communication drivers, and a list of compatible 
internal buses. 
• Component integration steps. The HW wrapper 
generator follows the unified flow illustrated in Figure 7. 
It analyzes the DFU virtual architecture in order to extract 
design information such as data type, data size, CA’s 

internal buffer size, and channel’s protocol type. Then, the 
generator performs a search in its library to select an 
appropriate ARM7 adapter and a CA for each 
communication protocol. Components are specialized by 
configuration files that are generated according to the 
design parameters extracted from the virtual architecture. 
Each component in the library has its behavior described 
in customizable macro-code. The generation step 
configures different macro definitions in order to generate 
the final source code that describes the hardware 
component. Finally, the different CAs and the processor 
adapter are connected to an internal wrapper bus. 
 
Software interface sub-systems generator 
This generator [14] produces the SW wrapper, which is a 
customized multi-task operating system providing several 
high-level (e.g., task scheduling, interrupt management) 
and low-level services (e.g., context switching, boot code, 
drivers).  
• Component library. The generator uses an extensible 
library, containing customizable basic software interface 
components, which is organized into three layers: APIs, 
communication/system services, and HAL. The library is 
structured as a dependency graph where nodes correspond 
to elements and services, and arcs connect each element to 
its provided and required services. The generated OS 
avoids including elements that provide unnecessary 
services. Configurable files (macro files) are also stored in 
order to give a desired implementation of an element 
within a given architecture.  
 

Services Basic interface components 
API Pipe, Memory, Over, Semaphore, Signal 

kernel Cxt, Task, Boot, Schedule 
Interrupt Call, LowInterrupt, HardInterrupt, SoftInterrupt 

Synchronization Block, UnBlock 
HAL Fifo, Shm, Register, LockedRegister, Access 

Table 2: Basic SW interface components 
• Component integration steps. The SW wrapper 
generator analyzes the DFU virtual architecture to extract 
design parameters related to the tasks T4-T9. Basic 
software interface components are then selected from its 
library according to a dependency relationship (starting 
from the services required by the tasks). Specialization is 
performed by using a macro definitions’ file for each 
selected wrapper component. Finally, all software wrapper 
components are compiled and linked together to produce 
an application-specific OS using a HAL. Table 2 
summarizes the basic software interface components used 
to generate the OS/HAL for the ARM7 processor. 
 
Simulation interface sub-systems generator  
This generator [10] starts by capturing design parameters 
from the DFU virtual architecture and produces an 
executable model containing a SystemC simulator that 
acts as a master for other simulators. Different simulators 



(e.g., ISS, SystemC, and VHDL) can be involved in the 
co-simulation session. The simulation sub-system 
interface generator automatically generates co-simulation 
wrappers to adapt the required simulators. 
• Component library. The co-simulation library includes 
three different kinds of components:  
- Co-simulation buses: based on standard signals 
provided by the SystemC library to model the 
communication at the RT-level, and on dynamic events to 
model the communication at the transaction-level. 
- Customizable basic communication interface 
components: port adapters, channel adapters, and data type 
converters. These components are SystemC template 
object models that can be configured using design 
information extracted from the system description such as 
transferred-data type, data size, and characteristics of 
communication protocol (e.g. FIFO size). 
- Unix inter-process communication: components for 
generation of simulator interface sub-systems, supporting 
various simulators. They are grouped into a UNIX library 
that supports inter-process communication by using shared 
memory and semaphores.  
• Component integration steps. The co-simulation 
wrapper generator analyzes the virtual architecture and 
extracts design information such as abstraction level, port 
directions, communication protocols, and type of data. 
Then, basic components are selected from the libraries 
according to this information. Components can be 
specialized by configuring their template parameters 
according to design parameter’s values. Finally, a global 
top-level co-simulation netlist for SystemC is generated 
which assemble together all co-simulation wrappers. 
 
6. Conclusion 
 

This paper has presented a unified methodology that 
enables heterogeneous components integration for MPSoC 
design and validation using basic interface components 
integration for generation of different wrappers. ROSES 
uses this methodology for the generation of interface sub-
systems. Starting from an abstract architecture model, 
hardware, software and co-simulation wrappers can be 
automatically generated by assembling basic interface 
components. Global MPSoC models can then be obtained 
by using these wrappers to integrate hardware, software, 
and functional components into a single model. Designers 
do not need to generate manually any interfacing code. 
This efficient solution to the component integration 
problem presents a unique combination of features: 
• It implements a unified approach for the component 
integration that eases the integration of heterogeneous 
components for MPSoC design and validation at the 
system level by automating the integration of basic 
interface components for the generation of different 
interface sub-systems; 

• It provides an environment that is able to accommodate 
components having different interfaces and granularities 
and to handle complex interface sub-systems by 
composing user-extensible open-library components; and 
• It provides an automatic process for component reuse 
and integration, so that designers are free from the tedious 
and error-prone work of manual wrapper coding for each 
new architectural solution. Thus, they can concentrate on 
more critical design problems where their expertise is 
essential. 
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