
Unified Component Integration Flow for Multi-Processor SoC
Design and Validation

Mohamed-Anouar Dziri*, W. Cesário*, Flávio R. Wagner**, and A.A. Jerraya*

* TIMA Laboratory – 46, av. Félix Viallet - 38031 Grenoble – France

** UFRGS – Instituto de Informática – Porto Alegre – Brazil

Abstract
Most system-on-Chip (SoC) design methodologies
promote the reuse of pre-designed (hardware, software,
and functional) components. However, as these
components are heterogeneous, their integration requires
complex interface sub-systems. These sub-systems can
also be constructed by assembling pre-designed basic
interface components. Hence, SoC design and validation
involves component composition techniques to create
hardware, software, and functional interface sub-systems
by assembling basic interface components. We propose a
unified methodology for automatic component integration
that allows designers to reuse pre-designed components
effectively. We also present ROSES, a design flow that
uses this methodology to generate hardware, software,
and functional interface sub-systems automatically
starting from a system-level architectural model.

1. Introduction

SoC design must rely on pre-designed or third party

components (e.g., processors, big macro-cells, embedded
RTOS, etc.) due to always increasing time-to-market
pressures. Components obtained from different providers,
and even those designed by different teams of the same
company, may be heterogeneous on several aspects:
design domains, interfaces, abstraction levels,
granularities, etc. Thus, building global synthesis and
simulation models is becoming more and more difficult as
it requires interfacing complex heterogeneous sub-
systems. Consequently, many design bottlenecks are
created as the different design teams--for software,
hardware, and test--are not able to work concurrently.

Component integration techniques for different design
domains have been proposed. For instance, the VxWorks
[1] embedded systems’ RTOS from Wind River Systems
can be adapted to different applications using tedious
manual configuration. IBM’s Coral framework [2]
abstracts the interface of hardware blocks and automates
interface generation for its CoreConnect protocol. Sonics
[3] provides wrappers to adapt the bus-independent OCP
component interface protocol to its µNetwork bus.

Most existing component integration approaches are
limited to a standardized component or bus interface;

some of them propose automation tools that rely on these
standards. We propose a new unified methodology for
automatic component integration that allows designers to
reuse effectively pre-designed hardware, software, and
functional components and is independent of any given
standard. Component integration is required:
1. At the system-level: to compose heterogeneous
(hardware, software, functional) components onto a single
global model of the SoC. This requires the generation of
complex interface sub-systems. Figure 1 shows the target
multi-processor SoC (MPSoC) architectural model. It uses
software components (tasks), hardware components
(processors and IP cores), interface sub-system
components (hardware and software wrappers), and one
global on-chip communication network component.
2. At the interface sub-system level: to compose basic
and homogeneous interface components (e.g. hardware
blocks, or software functions) into an interface sub-system
component (wrapper).

HW interface
sub-system

(HW wrapper)

CPU core

SW interface
sub-system

(SW wrapper)

Application SW
components

(Tasks)

On-chip communication network

HW interface
sub-system

(HW wrapper)

HW component

Basic SW interface component

Basic HW interface component

API HW comp.

API network

API SW comp.

API CPU
…

…

HW interface
sub-system

(HW wrapper)

HW interface
sub-system

(HW wrapper)

CPU coreCPU core

SW interface
sub-system

(SW wrapper)

SW interface
sub-system

(SW wrapper)

Application SW
components

(Tasks)

On-chip communication network

HW interface
sub-system

(HW wrapper)

HW interface
sub-system

(HW wrapper)

HW componentHW component

Basic SW interface component

Basic HW interface component

API HW comp.

API network

API SW comp.

API CPU
…

…

Fig. 1. MPSoC target architectural model

This paper is organized as follows: Section 2 discusses
related work. Section 3 introduces different SoC
components and models. Section 4 presents the unified
component integration methodology. Section 5 introduces
ROSES, a design flow that applies the proposed
methodology through a case study. Finally, in Section 6,
we evaluate the methodology and present our conclusions.

2. Related work

Many standards have been proposed to ease component
integration in the software, hardware and simulation

1530-1591/04 $20.00 (c) 2004 IEEE

domains. In the software domain, UML 2.0 [4] is a new
standard proposed for modeling software components of
reactive systems. Code generation and formal analysis
techniques can be used for software (homogeneous)
component integration. Although real-time extensions
have been incorporated in version 2.0, heterogeneous
(hardware and software) component integration
methodologies still depend mostly on non-standard
extensions of UML.

In the hardware domain, VSIA [5] and OCP-IP [6]
propose standards (VCI and OCP, respectively) to ease
hardware components (called IP, for “intellectual
property”) integration. Compliant components must use a
bus-independent standardized interface. Other
organizations propose standard interconnects (e.g., bus or
on-chip networks) and adapters. In this case, compliant
components must be designed according to the
interconnect protocol. Sonics [3] uses both approaches,
providing wrappers to adapt the bus-independent OCP
socket to its µNetwork bus. In some cases, compliance to
standards represents a significant overhead since
component’s interfaces must support non-relevant
functionality only to guarantee their compatibility.

In the simulation domain, SystemC [7] is a C++ library
that provides hardware modeling concepts (e.g. time,
concurrency, events, bit types, etc.) for simulation of
hardware/software systems at different levels of
abstraction. SystemC components must use interfaces to
call methods implemented in communication channels.
Different channel implementations can be used to adapt
heterogeneous components. Ptolemy-II [8] provides a
heterogeneous system simulation environment that uses
formal model-of-computation analysis to govern
component interaction. In both cases, for precise modeling
of hardware/software interactions (e.g., as provided by
executing the software using an instruction-set simulator
for the target processor), an ad-hoc setup of a co-
simulation environment is required.

In the above paragraphs, only a small fraction of the
languages and standards that have been proposed in the
software, hardware and simulation domains were
discussed. Clearly, the problem is that many de-facto
standards exist, coming from different companies or
organizations, thus preventing a real interchange of
components developed for different sub-standards. This
leads to inefficient ad-hoc practices for heterogeneous
component integration.

The main contribution of this paper is a unified
methodology for automatic integration of heterogeneous
components. It allows designers from different design
teams to effectively reuse pre-designed components and
rapidly build global models for synthesis or simulation by
using a unified component integration flow.

3. Component models

3.1. Virtual component model

Abstraction is an essential feature in any reuse
technique [9]. Figure 2 shows a virtual component model
(VC model) that represents an abstract architecture of the
system. This model is composed of several virtual
components and an execution environment. A virtual
component has an abstract interface that includes
information such as provided/required services,
control/synchronization, parameters, etc. The execution
environment represents an abstract interconnect (e.g. NoC,
co-simulation backplane, etc).

Virtual
component 1

Virtual
component 2

Abstract interface 1 Abstract interface 1

Execution environment
Fig. 2. Virtual component model

We classify components for MPSoC design into three
groups (as illustrated in Figure 3):
1. Software components: application tasks using high-
level, portable code, and software wrappers that adapt
them to the hardware part of the system. Software
wrappers provide high-level services (e.g. scheduling, I/O,
and interrupt handling) and low-level services (e.g.
context switching, boot, drivers, etc.).

SoC Components

SW Components

HW wrappers

-

-

-

+

Interrupt management

Address decoder

-

System level: HW/SW component
integration for SoC design

Interface sub-system level: Basic interface
component integration for wrapper

generation

Communication network

Data type conversion

HW Components

Software wrappers
(OS/HAL)

….

Shared memory

Boot

- Context switch

+

+
+Mem.

HW IPs

Processors

Application tasks

Co-sim. wrappers

Co-sim. bus

-
IPC simulator interface

-

Functional
Components

Data type conversion

…

Functional models

+HW/SW simulators

+

…

…

Fig. 3. Component hierarchy for MPSoC design

2. Hardware components: processors, hardware IP
cores, memories, hardware wrappers, and the on-chip
communication network. Hardware wrappers provide
services such as interrupt management, data type
conversion, etc.
3. Functional components: simulation models,
functional models, co-simulation wrappers, and a co-
simulation bus. The co-simulation bus enables the
interaction between different hardware, software, and
functional components. Co-simulation wrappers are used
to adapt different simulators and different hardware and
software component interfaces to the co-simulation bus.

3.2. Interface sub-system models (wrappers)
As illustrated in Figure 4(a), software components

(tasks) use an application programming interface (API) to
access an abstract communication network. Figure 4(b)
shows the structure of the software interface sub-system
(SW wrapper) as a stack of layers. The API layer isolates
software components from the hardware platform and the
other software layers. The next layer contains high-level
OS services, such as task scheduling, high-level
communication primitives, and interrupt handling. Finally,
the hardware abstraction layer (HAL) contains all software
that is directly dependent on the hardware platform [10].
For instance, boot code, context-switching code, code for
configuration and access to the hardware resources
(MMU, bus bridge, timer, etc.), and drivers.

Task_2

API

OS Services

HAL

OS_service_1

Task_1
Application software

components

SW wrapper
structure

Task_N…
API_1 API_2 API_N

Abstract communication network

Task_2Task_1 Task_N…

API_1 API_2 API_N

Application software
components

OS_service_2

…

…

HAL

Tasks

(a)

(b)

Task_2

API

OS Services

HAL

OS_service_1

Task_1
Application software

components

SW wrapper
structure

Task_N…
API_1 API_2 API_N

Abstract communication network

Task_2Task_1 Task_N…

API_1 API_2 API_N

Application software
components

OS_service_2

…

…

HAL

Tasks

(a)

(b)
Fig. 4. SW adaptation and SW wrapper structure
Figure 5 shows the structure of the hardware interface

sub-system (HW wrapper) used to adapt each processor/IP
core to the on-chip communication network. It is
composed of reusable basic hardware interface
components: processor/IP adapters and communication
adapters (CA).

HW wrapper

CPU Processor/IP
core

On-chip communication network

CPU wrapper

CPU/Processor/IP adapter

CA CA CA…

HW wrapper

CPU Processor/IP
core

On-chip communication network

CPU wrapper

CPU/Processor/IP adapter

CA CA CA…

CPU/Processor/IP adapter

CA CA CA…

Fig. 5. HW adaptation and HW wrapper structure
Component integration at the system-level may be used

to generate two kinds of models: a RTL model for
synthesis and a co-simulation model for validation. For the
synthesis model, it uses the HW and SW wrappers
described above and processor-specific local architecture
components. For the co-simulation model, specific co-
simulation interface sub-systems (co-simulation wrapper)
are used to adapt different simulators and functional
components to the co-simulation bus.

Figure 6 shows the architectural model used for co-
simulation. The co-simulation wrapper structure is the
same as that of the HW wrappers (see Figure 5).

Functional components simulate some behavior
independently of their implementation in hardware and/or
software.

Co-simulation
interface

sub-system
(Cosim. Wrapper)

HW
simulator

SW
simulator

Co-simulation bus

Co-simulation
interface

sub-system
(Cosim. Wrapper)

Co-simulation
interface

sub-system
(Cosim. Wrapper)

Functional
component

SW ComponentHW Component

Co-simulation
interface

sub-system
(Cosim. Wrapper)

HW
simulator

SW
simulator

Co-simulation bus

Co-simulation
interface

sub-system
(Cosim. Wrapper)

Co-simulation
interface

sub-system
(Cosim. Wrapper)

Functional
component

SW ComponentHW Component

Fig. 6. Generic MPSoC co-simulation model

4. Unified flow for component integration

4.1. Generic component integration flow

Figure 7 shows the overall template for the unified flow
for component integration.

Analysis

Selection

Specialization

Generation

Assembly

Refined Architecture

C
om

po
ne

nt
s

In
te

gr
at

io
n

S
te

ps

Components
repository

1

2

5

4

3

Abstract architecture and
required services

Analysis

Selection

Specialization

Generation

Assembly

Refined Architecture

C
om

po
ne

nt
s

In
te

gr
at

io
n

S
te

ps

Components
repository

1

2

5

4

3

Abstract architecture and
required services

Fig. 7. Unified flow for component integration
Inputs and outputs for the flow are as follows:

• Input abstract architecture: it represents the system in
terms of interconnected components that provide/require
services. It can also be annotated with parameters that
guide the integration process.
• Output architecture: it is a refined architecture that
represents the system after the integration process, may be
a global architecture (for prototyping or co-simulation) or
an interface sub-system architecture.
• Components repository: includes customizable
components used for composition. Each component holds
a list of provided/required services.

 The component integration process consists of five
elementary steps:
1. Analysis step: extracts design information from the
abstract architecture to guide the integration process. For
instance, information about component interfaces such as
required services, protocols, data types and sizes, etc.
2. Selection step: locates, compares, and selects
components providing required services from a library,
according to the information extracted in the previous
step. This step must be executed recursively until we
identify a suitable (and optimal) set of components
providing all required services.

3. Specialization step: customizes components selected
in the previous step to match service requirements (e.g.,
data types, bus sizes) and verifies compatibility.
Customized values for all parameters are output to
configuration files.
4. Generation step: takes customizable component code
and configuration files and generates specialized source
code files that correspond to each component behavior.
5. Assembly step: assembles customized components
produced in the previous step into a complete refined
architecture.

4.2. System and interface integration

Figure 8 shows a component-based MPSoC design
flow where each wrapper generator uses an instance of the
unified flow presented before (dark shadowed boxes).

Co-simulation Architecture

Virtual Architecture

SoC Architecture

SW wrapper
generator (a)

HW wrapper
generator (b)

Abstract interface nAbstract interface 1

Virtual
component 1

Virtual
component n

Execution environment

...

Abstract interface nAbstract interface 1

Virtual
component 1

Virtual
component n

Execution environment

...

CPUx
CPUy

…

processor library

SyncE
HndShk

HndShk+FIFO
HndShk+Frames

…

protocol library

Hardware
wrapper library

...

CPUx
CPUy

…

processor library

SyncE
HndShk

HndShk+FIFO
HndShk+Frames

…

protocol library

Hardware
wrapper library

...

Software
wrapper library

lock
round-robin
scheduler

…

communication/system
services

I/O read
ISR
boot

…

device drives

...
Software

wrapper library

lock
round-robin
scheduler

…

communication/system
services

I/O read
ISR
boot

…

device drives

...

Co-simulation
interface

sub-system
(Cosim. Wrapper)

HW
simulator

SW
simulator

Co-simulation bus

Co-simulation
interface

sub-system
(Cosim. Wrapper)

Co-simulation
interface

sub-system
(Cosim. Wrapper)

Functional
component

SW ComponentHW Component

Co-simulation
interface

sub-system
(Cosim. Wrapper)

HW
simulator

SW
simulator

Co-simulation bus

Co-simulation
interface

sub-system
(Cosim. Wrapper)

Co-simulation
interface

sub-system
(Cosim. Wrapper)

Functional
component

SW ComponentHW Component

Co-simulation
wrapper

generator (c)

VHDL_port_IN
Matlab_port_IN

…

simulator library

SyncE
HndShk

HndShk+FIFO
HndShk+Frames

…

protocol library

Co-simulation
wrapper library

...

VHDL_port_IN
Matlab_port_IN

…

simulator library

SyncE
HndShk

HndShk+FIFO
HndShk+Frames

…

protocol library

Co-simulation
wrapper library

...

CPU core 1

Communication network

IP core 1

HW wrapper HW wrapper

HAL

...
task

1
task

n

OS

CPU core 1

Communication network

IP core 1

HW wrapper HW wrapper

HAL

...
task

1
task

n

OS

Fig. 8. Component-based MPSoC design flow
For the software part, the flow integrates application

software components running on one or several target
processors (Figure 8a). This requires building SW
wrappers for each processor by composing basic software
interface components available in a library. The generated
SW wrapper – a specialized RTOS – will adapt the
application software components to the hardware part.
Binding the application software components to the
generated RTOS will produce an executable SW
component specific to a selected processor. Processors and

IPs must be adapted to the on-chip communication-
network, which is achieved through HW wrapper
generation (Figure 8b) using a library of basic hardware
interface components.

Finally, the unified flow is used by the co-simulation
wrapper generator in order to create co-simulation models
for system validation (Figure 8c).

5. ROSES: MPSoC design flow

ROSES [11] is a set of tools aimed at the integration of
heterogeneous HW/SW IP components for MPSoC
design. It generates hardware, software, and co-simulation
wrappers to produce refined MPSoC models for synthesis
or simulation at the system level. Table 1 summarizes all
the models manipulated. The next subsections illustrate
these concepts through a subset of a high-bandwidth
modem application [12]. Figure 9 shows the VC model for
the subset used; it corresponds to a deframing/framing unit
(DFU). The DFU has two processors (VM1 and VM2) and
the TX_Framer (VM3), which is a dedicated hardware IP
component described at the RT-level.

In the rest of the paper, we will deal only with the
second processor (VM2) and the IP component (VM3).
VM2 includes six sub-modules corresponding to software
tasks (T4-T9); they require multipoint communication
channels and other sophisticated OS services.

5.1. System-level integration

ROSES starts by capturing design parameters annotated
in the DFU virtual architecture (see Figure 9). Two
hardware IP cores have been selected: an ARM7 processor
and the TX_Framer. The application software has been
built by reusing several available SW IP components for
implementing tasks T4 to T9.

: wrapper
: module
: task

: virtual port
: virtual channel

: virtual component

T3 T1 T2 T5T7

T6
T9T8 T4

VM3

VM2

VM1

…

…

Fig. 9. DFU virtual architecture specification
Figure 10 illustrates the RTL-architecture produced by

 Abstract architecture Components Refined architecture
SW wrapper

generator Abstract SW interface Pipe, Interrupt, Block,
Unblock, Boot,…etc.

Software wrapper
 (OS/HAL)

HW wrapper
generator Abstract HW interface Module adapter,

Channel adapter (Fifo,…), etc. Hardware wrapper

Interface
sub-system
component
Integration Co-simulation

wrapper generator Abstract functional interface Simulator adapters (ISS, …),
protocols adapters,…etc. Co-simulation wrapper

Table 1. ROSES component integration models

ROSES. It includes the “concrete” ARM7 local
architecture containing additional IP components (local
memory, local bus, and address decoder). The HW
wrapper implements point-to-point communication
between the processor and the IP component. The SW
wrapper is composed of a dedicated OS that includes only
the functionality required by tasks T4-T9 and a HAL.

For system-level integration, wrappers are treated as
components of a library. However, if they do not exist,
ROSES can generate them automatically by assembling
basic interface components available in a user-extensible
library. The next section presents component integration
dedicated for wrapper generation.

VM3 VM2

. .

FIFO 1
CA

FIFO 3
CA

ARM7 processor adapter

Wrapper bus

TIMER HW
wrapper.

. .

FIFO
CA

.

Polling
16 CA

...

Polling
1 CA

SHM
internal

Pipe
internal

Pipe
LReg

ITI/OSched.

Register

Timer
LReg

Signal
internal

Semaph
internal

Pipe
buffer

Direct
register

Pipe SHM GSHM Signal Timer

SW
wrapper

ARM7
processor

core

Memory
(RAM/ROM)

Address
decoder

IP
(ASIC/FPGA)

...

ARM7 local bus
clock

reset

T4 T5 T6 T7 T8 T9

Fig. 10. The generated RTL architecture

5.2. Interface sub-system level integration

Hardware interface sub-systems generator
This generator [13] produces the HW wrapper, which
contains a processor adapter that bridges the ARM7 local
bus to channel adapters (CA). A CA is generated for each
communication protocol used in the virtual architecture.
• Component library. The generator uses an extensible
library, containing customizable basic hardware interface
components, which is organized as follows:
- A set of “Processor Centric Architectures” (PCAs)
annotated with design parameters such as internal bus type
and CPU type. Each PCA has four types of elements:
processor cores, local buses, local IP components (such as
memory, address decoders, and coprocessors), and
processor adapters.
- A set of “Channel Adapters” (CAs) corresponding to
a list of communication protocols, a list of compatible
software communication drivers, and a list of compatible
internal buses.
• Component integration steps. The HW wrapper
generator follows the unified flow illustrated in Figure 7.
It analyzes the DFU virtual architecture in order to extract
design information such as data type, data size, CA’s

internal buffer size, and channel’s protocol type. Then, the
generator performs a search in its library to select an
appropriate ARM7 adapter and a CA for each
communication protocol. Components are specialized by
configuration files that are generated according to the
design parameters extracted from the virtual architecture.
Each component in the library has its behavior described
in customizable macro-code. The generation step
configures different macro definitions in order to generate
the final source code that describes the hardware
component. Finally, the different CAs and the processor
adapter are connected to an internal wrapper bus.

Software interface sub-systems generator
This generator [14] produces the SW wrapper, which is a
customized multi-task operating system providing several
high-level (e.g., task scheduling, interrupt management)
and low-level services (e.g., context switching, boot code,
drivers).
• Component library. The generator uses an extensible
library, containing customizable basic software interface
components, which is organized into three layers: APIs,
communication/system services, and HAL. The library is
structured as a dependency graph where nodes correspond
to elements and services, and arcs connect each element to
its provided and required services. The generated OS
avoids including elements that provide unnecessary
services. Configurable files (macro files) are also stored in
order to give a desired implementation of an element
within a given architecture.

Services Basic interface components
API Pipe, Memory, Over, Semaphore, Signal

kernel Cxt, Task, Boot, Schedule
Interrupt Call, LowInterrupt, HardInterrupt, SoftInterrupt

Synchronization Block, UnBlock
HAL Fifo, Shm, Register, LockedRegister, Access

Table 2: Basic SW interface components
• Component integration steps. The SW wrapper
generator analyzes the DFU virtual architecture to extract
design parameters related to the tasks T4-T9. Basic
software interface components are then selected from its
library according to a dependency relationship (starting
from the services required by the tasks). Specialization is
performed by using a macro definitions’ file for each
selected wrapper component. Finally, all software wrapper
components are compiled and linked together to produce
an application-specific OS using a HAL. Table 2
summarizes the basic software interface components used
to generate the OS/HAL for the ARM7 processor.

Simulation interface sub-systems generator
This generator [10] starts by capturing design parameters
from the DFU virtual architecture and produces an
executable model containing a SystemC simulator that
acts as a master for other simulators. Different simulators

(e.g., ISS, SystemC, and VHDL) can be involved in the
co-simulation session. The simulation sub-system
interface generator automatically generates co-simulation
wrappers to adapt the required simulators.
• Component library. The co-simulation library includes
three different kinds of components:
- Co-simulation buses: based on standard signals
provided by the SystemC library to model the
communication at the RT-level, and on dynamic events to
model the communication at the transaction-level.
- Customizable basic communication interface
components: port adapters, channel adapters, and data type
converters. These components are SystemC template
object models that can be configured using design
information extracted from the system description such as
transferred-data type, data size, and characteristics of
communication protocol (e.g. FIFO size).
- Unix inter-process communication: components for
generation of simulator interface sub-systems, supporting
various simulators. They are grouped into a UNIX library
that supports inter-process communication by using shared
memory and semaphores.
• Component integration steps. The co-simulation
wrapper generator analyzes the virtual architecture and
extracts design information such as abstraction level, port
directions, communication protocols, and type of data.
Then, basic components are selected from the libraries
according to this information. Components can be
specialized by configuring their template parameters
according to design parameter’s values. Finally, a global
top-level co-simulation netlist for SystemC is generated
which assemble together all co-simulation wrappers.

6. Conclusion

This paper has presented a unified methodology that
enables heterogeneous components integration for MPSoC
design and validation using basic interface components
integration for generation of different wrappers. ROSES
uses this methodology for the generation of interface sub-
systems. Starting from an abstract architecture model,
hardware, software and co-simulation wrappers can be
automatically generated by assembling basic interface
components. Global MPSoC models can then be obtained
by using these wrappers to integrate hardware, software,
and functional components into a single model. Designers
do not need to generate manually any interfacing code.
This efficient solution to the component integration
problem presents a unique combination of features:
• It implements a unified approach for the component
integration that eases the integration of heterogeneous
components for MPSoC design and validation at the
system level by automating the integration of basic
interface components for the generation of different
interface sub-systems;

• It provides an environment that is able to accommodate
components having different interfaces and granularities
and to handle complex interface sub-systems by
composing user-extensible open-library components; and
• It provides an automatic process for component reuse
and integration, so that designers are free from the tedious
and error-prone work of manual wrapper coding for each
new architectural solution. Thus, they can concentrate on
more critical design problems where their expertise is
essential.

Acknowledgments

This research has been sponsored in part by the ToolIP-
A511, SpeAC-A508 projects of the Europe’s MEDEA+
(Microelectronics for European Applications) program
and the French project MERCED/ITEA.

References

[1] VxWorks, http://www.windriver.com
[2] R.A.Bergamaschi, et al., “Automating the Design of
SOCs Using Cores”, IEEE Design & Test of Computers,
Vol. 18, Nr. 5, 2001.
[3] Sonics, Inc. “Sonics µNetworks, Technical Overview”,
June 2000, available at http://www.sonicsinc.com/
[4] T.Ziadi, B.Traverson, J.M.Jézéquel, “From a UML
Platform Independent Component Model to Platform
Specific Component Models”, Workshop in Software
Model Engineering, Germany, 2002.
[5] Virtual Socket Interface Alliance, http://www.vsi.org
[6] Open Core Protocol, http://www.ocpip.org
[7] SystemC, http://www.systemc.org
[8] “The Ptolemy 2 Project, UC Berkeley”. Available at:
http://ptolemy.eecs.berkeley.edu/
[9] C.W.Krueger, “Software Reuse”, ACM Computing
Surveys, Vol. 24, Nr. 2, June 1992.
[10] A.Bouchhima, S.Yoo, A.A.Jerraya, “Fast and
Accurate Timed Execution of High Level Embedded
Software using HW/SW Interface Simulation Model”,
ASP-DAC, to appear 2004.
[11] W.O.Cesario, et al., “Multiprocessor SoC Platforms:
A Component-Based Design Approach”, IEEE Design &
Test of Computers, Vol. 19, Nr. 6, Nov-Dec 2002.
[12] M.Diaz-Nava, G.S.Okvist, “The Zipper Prototype: A
Complete and Flexible VDSL Multi-carrier Solution”, ST
Journal, September 2000.
[13] D.Lyonnard, S.Yoo, A.Baghdadi, A.A.Jerraya,
"Automatic Generation of Application-Specific
Architectures for Heterogeneous Multiprocessor System-
on-Chip", DAC, Las Vegas, USA, June 2001.
[14] L.Gauthier, S.Yoo, A.A.Jerraya, "Automatic
Generation and Targeting of Application Specific
Operating Systems and Embedded Systems Software",
IEEE Transactions on Computer-Aided Design, Vol. 20,
Nr. 11, November 2001.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

