

Hierarchical Multi-Dimensional Table Lookup
for Model Compiler based Circuit Simulation*

Bo Wan and C.-J. Richard Shi

Department of Electrical Engineering, University of Washington
{wanbo,cjshi}@ee.Washington.edu

Abstract— In this paper, a systematic method for

automatically generating hierarchical multi-dimensional table
lookup models for compact device and behavioral models with
any number of terminals is presented. The method is based on
an Abstract Syntax Tree representation of analytic equations.
Expensive part of the computations represented by abstract
syntax trees are identified and replaced by two-dimensional table
lookup models. An error-control based optimization algorithm is
developed to generate table lookup models with the minimal
amount of table data for a given accuracy requirement. The
proposed method has been implemented in the model compiler
MCAST and the circuit simulator SPICE3. Experimental results
show that, compared to non-optimized compilation based
simulation, the simulation using the proposed table lookup
optimization method is about 40 times faster and achieves
sufficiently accurate results with error less than 1-2%.

Index Terms— Model Compiler, Abstract-Syntax-Tree,
Hierarchical Multi-dimensional Table Lookup, Optimization,
Circuit Simulation.

I. INTRODUCTION
Manually implementing a compact device model into a

circuit simulator is becoming increasingly difficult. It takes on
average one to two years for a new device model to become
available to circuit designers in a commercial circuit simulator
after it is first developed by model developers [1]. This sets a
big barrier between model developers and circuit designers;
on one hand, a lot of new models are created each year but
only a small portion of them are implemented, while on the
other hand, the need of using new models is increasing.

In modern deep sub-micron designs, many new effects such
as leakage currents need to be considered, which may not be
captured in a previous developed device model. Therefore,
circuit designers would like to have more freedom to modify
device models to meet their specific requirements.
Unfortunately, currently there is no convenient way for circuit
designers to add the specific effects into their circuit
simulator. They have to wait for simulator vendors to take
action.

Several compact device model compilers are emerging as a
solution for this problem [2][3][4][5][6]. With a model
compiler, designers can describe models in high level
behavioral languages such as VHDL-AMS or Verilog-A(MS),

and then compile automatically to a target simulator. The
process for model development and qualification is therefore
greatly shortened.

* This research was supported by DARPA NeoCAD program under Grant

No. N66001-01-8920 and NSF CAREER Award under Grant No. 9985507.

However, a major bottleneck for the mainstream use of
model compiler technologies is that the efficiency of
automatically generated model is not as good as of manually
written device model. It has been shown in [7] that it can be
typically 10 to 1000 times slower even for MOS Level 1
model and simple circuits due to the high evaluation cost of
automatically generated model. The speed further deteriorates
as the complexity of a model and the size of a circuit increase.

To improve the simulation efficiency of automatically
generated models, optimization technologies in the process of
model compilation become crucial. Some techniques have
been reported in [2], which are compiler based and do not
trade off between the accuracy and the speed. Results in [2]
show that the efficiency can be close to that of manually
written codes.

In this paper, we present a systematic method to
automatically generate hierarchical multi-dimensional table
lookup models for devices with any number of terminals and
any set of equations. Table lookup is an attractive way to
speed up the simulation by trading off memory and a little bit
of accuracy. It has been applied to the simulation of MOSFET
transistors [8][9][10][11][12] before. However, all the
previous efforts were ad hoc, and designed specifically for a
particular device with particular set of equations (MOSFETS
in most cases). No works report using table lookup for general
device models with any set of equations and any number of
terminals (for example, BSIMSOI has six terminals), as
required in model-compiler based circuit and behavioral
simulation.

This paper details a systematic table lookup method and its
implementation in the MCAST model compiler to generate
accurate hierarchical multi-dimensional table lookup models
for analytical compact devices. In particular, we describe in
Sections II and III the use of Abstract Syntax Tree to build
table lookup hierarchy and a table lookup algorithm. An error-
control based method for table sizing is presented in Section
IV. Section V describes test results with our implementation
on MOSFE Level 3 model and a set of benchmark circuits.

II. ABSTRACT SYNTAX TREE REPRESENTATION
A compact device model compiler can read compact device

models described using high-level behavioral languages such

1530-1591/04 $20.00 (c) 2004 IEEE

as VHDL-AMS or Verilog-AMS, and automatically generate
device simulator codes that can be linked with a circuit
simulator such as SPICE.

A compact device model is described as a set of time-
dependent ordinary differential equations. These equations
must be formulated before they can be solved. Using
automatic modeling techniques described in [2][14][20][22],
these equations can be transformed into a set of nonlinear
functions (2.1) to calculate their corresponding entries in the
Jacobian matrix and the right hand side (RHS) vectors. These
functions will be evaluated during simulation.

),,,,,,,(2121 nmii cccxxxfy ⋅⋅⋅⋅⋅⋅= (2.1)

where are independent variables, such as voltages of
device terminals. Since if-else-endif block is frequently used
when describing complex device models such as BSIM3 and
BSIMSOI, are used to formulate condition descriptions.

The functions are currently composed of the following

operators {+, -, *, /, ^, log, exp}. The operators in c include

{>, >=, ==, <, <=}. Each function is mapped to an
Abstract-Syntax-Tree (AST) that forms the foundation of
MCAST and the optimization algorithms.

ix

ic

if

i

if

Figure 1 shows one of the AST of a MOSFET level 1
model. Full description of this model can be found in [2]. The
root of the tree is variable Ids, where leaf nodes can be
constants or terminal voltages. Different from traditional AST
used in computer science, we introduce a new type of Switch
(SW) node to represent the widely used if-else-endif structure
in VHDL-AMS. One SW node represents one condition in
(2.1).

III. HIERARCHICAL TWO DIMENSIONAL TABLE LOOKUP
ALGORITHM

High computational complexity is a major challenge for
device model evaluation. The basic idea of our table lookup
method is to replace computation-intensive blocks by two-
dimension tables to save the evaluation time. Below, we first
describe a table build up algorithm.

A. Building the hierarchy of tables
Our table lookup method starts with the calculation of the

evaluation costs of all of the basic operators {+, -, *, /, ^, log,
exp, Boolean operators}, etc. The evaluation cost of an
operator is an empirical value and is defined as the relative
ratio of the running time of the operator to the running time of
the “+” operation. This is achieved by taking the average
value of 10 tests. The evaluation cost of “+” is assigned to 1.
Since the evaluation costs may be different on different
machine, they are measured in real time when the compiler
runs.

6

The building process of the hierarchical table lookup model
is a reduction process in which a sub-tree representing a

computation-intensive block of the AST is reduced to a two-
dimension table. Table 1 shows the reduction algorithm,
which is a depth-first, recursive algorithm. It starts from the
root of the AST to be optimized, but the real reduction process
is bottom-up from the leaf nodes.

ids

SW1

SW2

Forward

SW30.0

Condition Tree
(Vgs<Vth)

Condition Tree
(Vgs-Vth<=Vds)

*
*

/

**

-

/*

*
*- 2.0

VthVgs

2.0

Beta

Vds 2.0

2.0

-

Vg Vs

Vgstmp -

Vd

Vdstmp

- Vgdtmp

Condition Tree
(Vdstmp>=0)

SW4

*

-1

SW5

*

-1 1

Figure 1. An AST example for MOS Level 1 model.

TABLE 1. REDUCTION ALGORITHM
Algorithm: Reduction
Input: AST Tree Node T
This algorithm begins with the root of AST
Output: Reduced AST with tables
1. Reduction for T’s left child if exists
2. Reduction for T’s right child if exists
3. Set related variables for T
4. Combine, if success, return
5. For T’s left and right children, if they have been

reduced to a table, reset their related variables.
6. Reset T’s related variables
7. Set T’s calculation cost
8. If T is leaf node, return
9. If T’s number of related variables > 2, set T as a

bottleneck node, return
10. If T’s calculation cost > evaluation cost threshold &&

T’s number of related variables == 2, reduce T to a
table.

The details of some steps are explained below:
• A node T’s related variables are those node voltages

that affect T’s evaluation. In step 3, T’s related
variables are the sum of its children’s related variables.

• In order to contain as more operations as possible in
the reduced two-dimension table, step 4 has a
combination process that helps to build the table
upward as high as possible in AST, and thus we can
reduce the number of tables. The combination process
will try to combine T and its children’s tables together
if the tables exists and they share the same set of
related variables.

• In steps 5 and 6, for T’s each child C, if C has been
reduced to a table, C’s related variables will be reset to
contain only one related variable that is C’s name.
Therefore, we can reduce the number of related
variables and can build multi-level tables further based
on the new related variable. Accordingly T’s related
variables are reset based on the children’s new related
variables.

• In step 7, T’s calculation cost is calculated as the sum
of T’s children’s calculation. The calculation cost of
leaf nodes, such as the primary device node voltage
node, parameter node and constant node, etc., are set to
a very small number in practice.

• In step 9, a bottleneck node B is recognized if it has
more than two related variables. A bottleneck node can
not be reduced to a 2-D table. But B’s related variables
still have to be reduced to the name of B, and B could
become the base related variable of up-level tables.

• Step 10 shows the real condition for T to be reduced to
a 2-D table. The evaluation cost threshold is assigned
to the evaluation cost from a 2-D table.

Figure 2 illustrates the reduction progress on a MOSFET

level 1 AST (simplified for clarity). After the reduction, three
tables, A, B and C, are created hierarchically. Table C’s
relative variables are Vds and B, which itself is also a table.

Figure 2(a) AST with evaluation cost.
Assume threshold cost is 100. Sub-tree A and B will be reduced

Figure 2(b) Multi-level table reduction.

B. Code generation of the table lookup model
MCAST model compiler generates C/C++ codes for the

device model based on the reduced AST. When reaching a
table, instead of outputting a block of evaluation codes, a
routine of bilinear interpolation [13] for two dimensional table
lookup is generated. The computation-intensive block of
evaluation codes will also be output but in a separated routine
which will be used later on to fill in the table. Bilinear
interpolation is adopted since it is computation lightly and it is
accurate enough in our process. To locate the four points
surrounding the interpolation point, bi-section search is used.
One should note that the table spaces are not uniformly
separated because dimension variables may change on
logarithmic scale and table looked-up variable from the lower
level may become clustered or sparse in the dimension for the
higher level tables.

C. Evaluation of the table lookup model
The setup routine in a target simulator is modified to fill in

the tables for each instance of the device. Compared to the
iterative load operation, the running time of the one time setup
operation is relatively small [14]. If a circuit to be simulated
does not have many new device instances, MCAST has an
option to allow the tables to be filled by MCAST and the
setup routine in the target simulator only needs to read in the
tables, which saves the time for filling the tables.

During the simulation, the computation-intensive blocks are
replaced by the computation lightly interpolation processes,
therefore, the simulation time is saved.

Huge speedup can be obtained using our proposed
hierarchical multi-dimensional table lookup method. But table
lookup does introduce errors in the calculation. Simulation
result may be wrong if error is not controlled. Beside that, the
non-convergence problem may get worse if the circuit is
sensitive to the inaccurate calculation of the equivalent
conductance (derivative). The additional errors coming from
the table lookup may cause the circuit failed to converge. In
the following section, we introduce an error-oriented method
to control the sizes of the lookup tables.

IV. ERROR CONTROLLED TABLE SIZING
As mentioned in the previous section, the table lookup

model should have several tables. These tables should be
appropriately sized due to the saving requirements of memory
capacity and computation time. The aim is to find a set of
minimized table sizes such that in the worst case the errors of
the interpolated values are less than a given relative error. An
error analysis method [15] is used to set the table sizes.

Beginning with a given maximal allowed relative error
(Emax), a nonlinear multivariable function is represented by
an AST and a given set of intervals for input variables. The
AST representing the nonlinear function is decomposed into
switch nodes and calculation nodes, each of which is either a
double operand operator or a single operand operator, with the
restriction for the choice of operators as {+, -, *, /, ^, log,
exp}.

For the error analysis, the AST needs to be modified
following the rules in Table 2 with an exception that if either
A or B is a constant instead of a variable, the modification is
unnecessary. The purpose of the modification is making the
formal error analysis (will be discussed later) possible.

TABLE 2. AST MODIFICATION RULE FOR ERROR ANALYSIS.

A * B Exp(logA + logB)
A / B Exp(logA – logB)
A ^ B (B is a constant) Exp (B * logA)
A ^ B Exp(exp(logB + log(logA)))

Since the logarithm function is undefined for arguments

that are smaller than or equal to zero. A transformation of a
product of two variables is needed for variables that may have
negative values (Fig. 3). Similar transformation are required
for / as well as ^.

Fig.3. Transformation of variables that may have negative values. Legend: (D)
ideal Diode, only positive values can get through.
(L) Log (-) Minus (+) Add (E) Exp

After the modifications and the transformations, the

operators like {*, /, ^} will be eliminated from the AST. This
modified AST has been isolated as several sub-trees. As
mentioned before, each sub-tree is replaced by a two
dimensional table. For each of these sub-trees, the error driven
sizing algorithm, which consisting of two major steps, is
performed to set up an appropriate size of the table. Each of
the two steps is a recursive processing along the modified
AST.

• First, the intervals of the function and all of the
intermediate variables are calculated bottom up rippling
from the leaves of the AST. Since the modified AST
contains just plus, minus nodes or one incoming node, the
intervals are calculated as follows: When a node has one
incoming node, its interval is the operation result upon
the child’s interval. The interval of a plus node is a sum
of the intervals of its two children. The interval of a
minus node e.g. x1-x2 is (x1min-x2max, x1max-x2min).

• Second, the relative error for each node is calculated top-
down staring with the maximal allowed error of the root
of the tree and rippling down to the leaf nodes. The error
of any node is given by the following equations [15]:

()

()

(Log) ;
1;
1;

,1

(Exp) ;
,max

1ln

maxmax

minmin

maxmin





<
>

=−=

+
=

±

xx
xx

xxe

and
xx

e
e

m
e

mx

y
x

y

For a plus or minus node y to its children x1 and x2:

()
()
()
()










⋅+⋅=











⋅+⋅=

max2min2

max1min1
2

max1min1

max2min2
1

,max
,min

)(1
2

,max
,min

)(1
2

xx
xx

ysign
e

e

xx
xx

ysign
e

e

y
x

y
x

In this way, all of the nodes will get their largest possible
relative errors, which will ensure that in the worst case
the overall error will be restricted in the given maximal
relative error.

After obtaining the interval and relative error of the variable

in the table lookup sub-tree, its table size is simply set to be
the interval divided by the relative error.

V. EXPERIMENTAL RESULTS
As an example, MOSFET level 3 model [16] has been

implemented by MCAST, linked and built in the open source
circuit simulator, Berkeley’s SPICE3f5, to compare with
human optimized codes (existing built-in device model codes
in SPICE3f5). Some notions are used in the comparisons:
“Built-in” model is the one manually implemented in
SPICE3f5, “Non-optimized” model is the one automatically
generated by MCAST but without any optimizations, “Table
lookup” model is the one automatically generated by MCAST

with optimizations, including table lookup. The accuracy and
efficiency of the generated table lookup model are
demonstrated by the simulation results.

A. Accuracy
The automatic generated table lookup model of the level 3

model from MCAST is very accurate. Figure 4 shows the
comparison of the I-V curves. The automatic generated model
without table lookup yields exactly the same results from the
manually implemented built-in model of level 3 in SPICE3f5.
The simulation results also show that the table lookup model
is accurate: the errors are constrained below 2% of the built-in
model.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5
x 10-4

I ds

Vds

Vgs=3.4v

Vgs=2.8v

---- manual model +/- 2%
^^^^ MCAST w/o tablelookup
-*-*- tablelookup model

Fig. 4. Accuracy comparison: I-V curves.
Figure 5 shows the transient simulation results of one of our

benchmark circuits – power amplifier. The result with table
loop up matches well that with analytic evaluation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-9

-20

-15

-10

-5

0

5

10

15

P
ow

er
A

m
p

Time

manual model
tablelookup

Fig. 5 Accuracy comparison: transient analysis.

B. Performance
Figure 6 shows a comparison among different model

implementations, including table lookup model, Built-in
model and Non-optimized model, of different devices, such as
diode, MOSFET level 1 and level 3. The experiment is circuit-
independent and only the model evaluation times are
compared and normalized. In pure comparison of the

evaluation costs of the different models, the table lookup
model is at least three times faster than the built-in model and
20-40 times faster than the non-optimized model.

1 2 3
S1

S2
S3

1 3.55

38

1 4.22

29

1
5.11

19.8

0
5

10
15
20
25
30
35
40

C
o
s
t

Fig. 6 Normalized model evaluation cost. (1) Table lookup model. (2) Built-in
model. (3) Non-optimized model. (S1) Diode model. (S2) MOSFET Level 1
model. (S3) MOSFET Level 3 model.

We also compared the performances in transient analysis.

Eight analog and digital benchmark circuits, including Power
Amplifier and 8-bit Adder, etc., are used to demonstrate the
speed-up results of the table lookup model of the MOSFET
model of level 3 versus the built-in model (Fig. 7). We use the
device loading time per iteration here for comparison to
ignore the convergence effect. The performance of the built-in
model is normalized to one. For most of the benchmark
circuit, the speed-up is more than two times.

2.182651891

3.080463419

2.339092293

2.723726977

2.448283701 2.4

1.761234882

2.113672922

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8

1.Oneshot 2.INV 3.NAND 4.NOR 5.AOI22 6.OAI22 7.Adder 8.PowerAmp

Fig. 7 Speed-up of the table lookup model compared to the built-in model over
eight benchmark circuits.

C. Table Sizing
To find out the relationship between the accuracy and the

memory requirement, a simple CMOS inverter was tested. We
swept the capacity of all tables per instance of the device
(MOSFET level 3 NMOS transistor) from 500 points to
20,000 points and collected the overall errors of one of the
major variables, e.g., Ids of the pull-down transistor.

Figure 8 indicates that when the table size is small,
accuracy is almost proportional to the capacity of the tables
(errors are small). Accuracy can be easily improved by
extending the table sizes. This corresponds to region 1.

But when the capacity of all tables exceeds a limit point,
e.g. 4,000 points in this test case, the gain of accuracy is very
limited and accuracy will not be improved by increasing the
size of the tables. This corresponds to region 2.

The break point will change depending on the type of
function that is being tabled. It is higher for function with
complex behavior than for simple function. Fortunately, by
setting the overall error allowed to be 2% for the major
evaluation variables, the proposed table sizing method usually
can find the appropriate sizes for all tables.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104

0

2

4

6

8

10

12

O
ve

ra
ll

E
rro

r %

Memory (total points of all tables)

Region 1 Region 1 Region 2

break point

Fig. 8 Error Vs Memory.

VI. CONCLUSION
We have presented a systematic and automatic method for

generating hierarchical multi-dimensional table lookup models
for model-compiler-based precise circuit simulation. Any
compact device and behavioral model described using high-
level languages VHDL-AMS and Verilog-A(MS) can be used.
The proposed method is based on an Abstract Syntax Tree
representation of behavioral model equations for any devices
with arbitrarily number of terminals. A method capable of
generating lookup tables subject to a given accuracy
requirement but with the minimal amount of memory for
storing the data table has been developed.

The proposed method has been implemented in our
compact model compiler MCAST and targeted the SPICE3
simulator. Experiment results on a set of standard test circuits
have demonstrated that the generated table lookup models are
accurate with the error in the range of 1-2%, but at least three
times faster than human optimized built-in models, and 30-40
times faster than automatic generated models without
optimizations. Furthermore, the proposed error-controlled
automatic table sizing method yields nearly minimal table
sizes.

REFERENCES
[1] K. Kundert, “Automatic Model Compilation – An Idea Whose

Time Has Come”, The Designer’s Guide, May 2002.
http://www.designers-guide.com/Opinion/modcomp.pdf

[2] B. Wan, B. P. Hu, L. Zhou and C.-J.Richard Shi, “MCAST: An
Abstract-Syntax-Tree based Model Compiler for Circuit

Simulation”, Proc. IEEE Custom Integrated Circuit Conference,
pp. 249-252, Sept. 2003.

[3] S. Liu, K.C.Hsu, P.Subramaniam, “ADMIT-ADVICE Modeling
Interface Tool”, Proc. IEEE Custom Integrated Circuits
Conference, pp. 6.6/1-6.6/4, May 1988.

[4] A.T.Yang, and S.M.Kang, “iSMILE: A Novel Circuit
Simulation Program with emphasis on New Device Model
Development”, Proc. IEEE 26th Design Automation Conference,
pp. 630-633, June 1989.

[5] L. Lemaitre, C. McAndrew, and S. Hamm, “ADMS-Automatic
Device Model Synthesizer”, Proc. IEEE Custom Integrated
Circuits Conference, pp. 27-30, May 2002.

[6] R. V. H. Booth, “An Extensible Compact Model Description
Language and Compiler”, Proc. IEEE/ACM BMAS, pp. 39-44,
Oct. 2001.

[7] Hal Carter, “Modeling and Simulating Semiconductor Devices
Using VHDL-AMS”, Proc. IEEE/ACM BMAS, pp. 22-27, Oct.
2000.

[8] A. Rofougaran and A. A.Abidi, “A Table Lookup FET Model
for Accurate Analog Circuit Simulation,” IEEE Trans.
Computer-Aided Design, vol. 12, pp. 324-335, Feb. 1993.

[9] M.G. Graham and J.J. Paulos, ”Interpolation of MOSFET Table
Data In Width, Length, and Temperature”, IEEE Trans.
Computer-Aided Design, vol. 12, pp. 1880-1884, Dec. 1993.

[10] T. Shima, Ts. Sugawara, S. Moriyama and H. Yamada, “Three-
Dimensional Table Look-Up MOSFET Model for Precise Circuit
Simulation”, IEEE J. Solid-State Circuits CS-17, 3, pp. 449-454,
1982.

[11] T. Shima, H. Yamada and R.L.M. Dang, “Table Look-Up
MOSFET Modeling System Using a 2-D Device Simulator and
Monotonic Piecewise Cubic Interpolation”, IEEE
Trans.Computer-Aided Design CAD-2, 2, pp. 121-126, 1983.

[12] B. R. Chawla, et al. “MOTIS-An MOS Timing Simulator”,
IEEE Trans. Circuits and Systems, Dec. 1975.

[13] H.W. Press, Numerical Receipt in C, Cambridge University
Press, 1993.

[14] L. W. Nagel, SPICE2 – A computer program to simulate
semiconductor circuits, Univ. of California, Berkeley, ERL
Memo ERL-M520, May 1975.

[15] D.M.W. Leenaerts, W.M.G. van Bokhoven, Piecewise Linear
Modeling and Analysis, Kluwer Academic Publishers, 1998

[16] HSPICE manual, Avanti! Corp. 1999.
[17] Y. Cheng and C. Hu, MOSFET Modeling & BSIM3 User’s

Guide, Kluwer Academic Publisher, 1999.
[18] MAST/Saber User Manual, Analogy Inc.
[19] H. A. Mantooth, http://mixedsignal.eleg.uark.edu/paragon.html
[20] W. J. McCalla, Fundamentals of Computer-Aided Circuit

Simulation, Kluwer Academic Publishers, 1988.
[21] V. Litovsky and M. Zwolinsky, VLSI Circuit Simulation and

Optimization, Chapman & Hall, 1997.
[22] Vlach, Jiri and Singhal, Computer Methods for Circuit Analysis

and Design, Van Nostrand Reinhodl, 1994.
[23] Coleman, Thomas F. and Varma, The Efficient Computation of

Sparse Jacobian Matricies Using Automatic Differentiation,
Cornel Theory Center Technical Report CTC95TR225, 1996.

[24] A. Griewank, et. Al. “ADOL-C, A Package for Automatic
Differentiation of Algorithms Written in C/C++”, ACM
Transaction In Mathematics Software, 1990.

[25] T. L. Quarles, Analysis of Performance and Convergence Issues
for Circuit Simulation, U. C. Berkeley, Memorandum No.
UCB/ERL M89/42, April 1989.

http://www.designers-guide.com/Opinion/modcomp.pdf
http://mixedsignal.eleg.uark.edu/paragon.html

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

