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Abstract 
 

In this paper, we propose a new method which makes 
transient simulation faster for the circuit including both 
nonlinear and linear elements. First, the method for 
generating the projection matrix with Krylov-subspace 
technique is described. The order of the circuit equation is 
reduced by congruence transformation with the projection 
matrix. Next, we suggest a method which can calculate the 
reduced Jacobian matrix directly in the each 
Newton-Raphson iteration. Since this technique does not 
need to calculate the original size of Jacobian matrix, the 
calculation cost is reduced drastically. Therefore, efficient 
circuit simulation can be achieved. Finally, our method is 
applied to some example circuits and the validity of the 
nonlinear circuit reduction technique is verified. 

1. Introduction 
With the progress of VLSI and PWB technologies, the 

LSIs and PCBs embedded in the electrical articles are 
required to have high-density and high-reliability. 
Therefore, they are designed with smaller devices, higher 
clock speeds, lower power consumption, and more 
integration of analog and digital circuits. As a result, 
interconnect effects such as signal delay, reflection, and 
crosstalk can severely degrade the signal integrity. In order 
to analyze these influences in detail, the method which can 
model interconnects and substrate with lumped elements 
has been widely used for the verification of circuit 
behaviors. However, it leads to increase the order of the 
circuit equation. As a result, conventional circuit simulator, 
such as SPICE, requires so much calculation time. One of 
the methods which reduces the calculation cost is the 
circuit reduction technique. For example, a number of 
model order reduction techniques, such as AWE 
(Asymptotic Waveform Evaluation)[1], PACT(Pole 
Analysis via Congruence Transformations)[2], and PRIMA 
(Passive Reduced-Order Interconnect Macromodeling 
Algorithm)[3], have been proposed. These methods make 
the circuit simulation faster, but, can be applied to only the 
linear networks such as interconnects and need to separate 
the nonlinear subnetworks from the given network[1]-[7]. 

Then nonlinear reduction techniques have been 
proposed[8]-[11]. In these methods, the order of the circuit 
equation is reduced by congruence transformation with the 
projection matrix without dividing nonlinear and linear 
elements. But, the methods[8], [10] can be applied only to 
the circuit which has a capacitor at every node. 

In this paper, we propose a new nonlinear reduction 
technique for the rapid transient simulation of the circuit 
including both nonlinear and linear elements. The main 
idea which reduces the calculation cost drastically is 
generating a reduced Jacobian matrix directly. In order to 
perform accurate analysis, the proposed method remodels 
the projection matrix at each time point in the simulation. 
In our method can generate the projection matrices at low 
calculation cost. 

Finally, our method is applied to some example circuits 
including linear and nonlinear elements and the validity of 
the proposed method is verified. 

2. Generating the Reduced Model 
In general, the modified nodal analysis(MNA) 

formulation of a given network can be represented as 
 

( ) ( ) ( ) 0=+++= tf bxHxGxCx & ,   (1) 

 
where Nℜ∈x  is the unknown variable vector which 
consists of voltages and currents in the circuit, NN×ℜ∈C  
is the matrix which is constructed by capacitances and 
inductances, NN×ℜ∈G  is the matrix which is constructed 
by conductances, ( ) Nℜ∈xH  is the function describing 
the nonlinear characteristics of circuit, ( ) Nt ℜ∈b  is the 
independent source vector, and N is the order of the circuit 
equation. 

In order to generate the projection matrix, (1) is 
transformed by backward Euler method as 
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where t∆  is the step size used in the simulation and xi is 
the unknown vector at the ith time point. From (2), 
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is derived. Next, x(t) is expanded as a Maclaurin series 
with respect to t as 
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where ( ) ( ) L,2,1,0,!0 == kkk

k xa  are the normalized 
time domain derivatives of x and are computed using 
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where bk and hk denote the kth derivatives of b(t) and H(x) 
respectively and a0 is decided by the initial value which is 
obtained in DC analysis. The kth derivative of H(x), hk is 
computed as 
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[8], [10]. From (6), it is clear that i

ka  is needed for 
calculation of i

kh . As an example of the calculation of the 
derivative, consider 
 

( ) )exp(xxH = .     (7) 
 
Expansion of the exponential function gives 
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i
ka  in (5) is given by 
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where ′
+= i

k
ii

k hhh 0 . This means that the left-hand side in 
(9) does not stay constant at each time point in the 
simulation. 

Then, we propose a technique of approximating i
kh  in 

(5). i
kh  is approximated by 1−i

kh . Consequently, (5) 
becomes as follows 
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Since the left-hand side in (10) is constructed by linear 
elements, the coefficient matrix in the left-hand side is 
constant through the transient simulation and always 
invertible. Therefore, it is noted that computing i

ka  
requires only once LU decomposition of the left-hand side 
matrix in (10). Then, forward/backward substitutions are 
performed at each time point in the simulation. 

The Krylov-subspace K is formed by the derivatives 
computed in (10). 
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where q(«N) is the reduced order which is determined 
arbitrarily. In order to improve the accuracy of reduced 
model, an orthogonal decomposition on K is performed[3]. 
However, orthonormalization of a0 is performed after 
orthonormalization of aq-1. As a result, orthonormalized 
matrix Q is obtained by 
 

qqq ×× ℜ∈ℜ∈= RQQRK ,: dim   (12) 
 
as the projection matrix, where QTQ = Uq and Uq qq×ℜ∈  
is an identity matrix. Using the projection matrix Q, x in 
(1) is transformed by the congruence transformation as 
 

qℜ∈= xxQx ˆ:ˆ .   (13) 
 
Applying the change of variable ( )xx ˆ→  in (1), and 
multiplying by QT from the left-hand side yields 
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where 
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It is clear, from (14) and (15), that the order of the 
reduced model is much less than that of the original system 
and the calculation cost for solving x̂  in (14) is reduced 
drastically. x̂  is solved by the iterative method such as 
Newton-Raphson method. Finally, the solution x in (1) is 
obtained using the congruence transformation given in 
(13)[8]-[10]. 

3. Calculation Method of the Reduced 
Jacobian Matrix 

Here, we describe two calculation methods to derive the 
reduced Jacobian matrix. One is that the reduced Jacobian 
matrix is derived by reducing the original one with 
congruence transformation[8]-[10]. The other, which is the 
proposed method, is that the reduced one is derived 
directly without generating the original order of Jacobian 
matrix.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Comparison of the methods for calculating the reduced Jacobian matrices. 
 
 
3A.  Previous Method 

In the early works[8]-[10], the original Jacobian matrix 
is calculated using 
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where ( ) NN×ℜ∈xJ  is the original Jacobian matrix. 
However, x in (16) is computed by (13) in the 
Newton-Raphson iteration. Next, the reduced Jacobian 
matrix qq×ℜ∈Ĵ  is produced by multiplying the original 
size of Jacobian matrix J by projection matrices QT and 
Q[8]-[11]. 
 

QJQJ T=ˆ .    (17) 
 
In the case of computing the reduced Jacobian matrix using 
(17), the original order of Jacobian matrix must be 
calculated at each Newton-Raphson iteration. Consequently, 
this method is more efficient than the conventional 
SPICE-like method only from the viewpoint of calculation 
linear equation in the Newton-Raphson method. However, 
the simulation cost can be reduced by the double-stepped 
refreshing algorithm and the sparsity of the nonlinear part 
of the Jacobian matrix[10]. As a result, the efficiency of 
circuit simulation is improved more than 10 times. 
 
3B.  Proposed Method  

In this section, we propose a new method which can 
calculate the reduced Jacobian matrix directly in the 
Newton-Raphson iteration. Our method does not require to 
calculate the original size of Jacobian matrix, that is to say, 
the reduced Jacobian matrix is calculated using x̂ . First, 
the nonlinear function vector ( )xQH ˆ  is calculated, where 

xQx ˆ=  in (13), then ( )xH ˆˆ  is computed by multiplying 
( )xQH ˆ  by QT. Therefore, it is possible to calculate the 

reduced Jacobian matrix Ĵ  using only ,ˆ,ˆ GC and ( )tb̂  
without using the original size of C, G, and b(t). Finally, 
the reduced Jacobian matrix can be computed as 
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As a result, the calculation cost is reduced drastically. This 
method can also reduce the CPU time which is spent for 
LU decomposition in solving the linear equation in the 
Newton-Raphson method same as the method 3A. Fig.1 
shows the algorithms for derivation of the reduced 
Jacobian matrices in 3A and 3B. 

4. Examples 
To verify the efficiency of proposed method, we have 

simulated the transient response of the nonlinear circuit 
shown in Fig.2[12], where the order of the circuit equation 
is 50. To compare the efficiency of circuit simulation, this 
circuit has been simulated by SPICE-like method, previous 
circuit reduction method(3A), and the proposed 
method(3B). However, generating the projection matrix in 
(3A) and (3B) is only once in this simulation and 
SPICE-like method does not use sparse techniques. Fig.3 
and Fig.4 show the voltage waveforms at the nodes V1 and 
V50. They show the excellent agreement between transient 
responses obtained by the conventional method and the 
circuit reduction method. Table1 shows the comparison 
results of simulation costs, and indicates that the proposed 
method(3B) is more efficient than the previous method 
(3A). Especially, it seems that the previous method(3A) 
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[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

QJQT  
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does not have the much advantage for the circuit including 
a number of nonlinear elements. On the other hand, 
although the interconnects are not contained and many 
nonlinear elements are included in this example circuit, the 
proposed method can achieve the efficient circuit 
simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Example nonlinear circuit. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.3 Transient response of V1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4 Transient response of V50. 

 
 
 

Table1 Comparison of simulation costs. 
 Size Time[sec]

Conventional transient analysis 50 147.412
Circuit reduction method (3A) 4 137.688

Proposed method (3B) 4 3.215 

Next, we have simulated the transient response of an 
interconnect which is terminated with CMOS inverter as 
shown in Fig.5[6]. The interconnet is modeled by 30 
lumped RLC sections, Rtotal=1.56[Ω], Ltotal=13.77[nH], 
and Ctotal=3.74[pF]. MOS transistor is modeled by 
Shichman-Hodges MOS model shown in Fig.6. Here, 4 
capacitors in Fig.6, which are parasitic elements, are 
assumed to be constant. To compare the efficiency of 
circuit simulation, this circuit has been simulated by 
SPICE-like method and the proposed method (3B). Fig.7 
and Fig.8 show the voltage waveforms at the nodes V1 and 
Vout. They show the excellent agreement between transient 
responses obtained by the conventional method and the 
proposed method with reduction to the very small order. 
Furthermore, Fig.7 represents that the circuit reduction 
technique can estimate accurately the effects of signal 
delay, reflection, and ringing. Table2 shows the comparison 
results of simulation costs. Here, SPICE-like method does 
not use sparse techniques. 
 
 
 
 
 
 

 
Fig.5 Interconnect terminated with CMOS inverter. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 Shichman-Hodges nMOS model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 Transient response of V1. 
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Fig.8 Transient response of Vout. 
 
 
 

Table2 Comparison of simulation costs. 
 Size Time[sec]

Conventional transient analysis 96 653.850
Proposed method (3B) 3 8.262 

 
 

Finally, we have simulated the transient response of 5 
inverter chain circuit shown in Fig.9. MOS transistor is 
also modeled by Shichman-Hodges MOS model. To 
compare the efficiency of circuit simulation, this circuit has 
been simulated by SPICE-like method and the proposed 
method (3B). Fig.10, Fig.11, and Fig.12 show the voltage 
waveforms at each node. They show the excellent 
agreement between transient responses obtained by the 
conventional method and the proposed method. Although 
this example circuit has relatively many nonlinear elements, 
the proposed method can achieve the accurate circuit 
simulation. Table3 shows the comparison results of 
simulation costs. 
 
 
 
 
 
 
 
 
 

Fig.9 CMOS inverter chain. 
 
 
 

Table3 Comparison of simulation costs. 
 Size Time[sec]

Conventional transient analysis 26 7.761 
Proposed method (3B) 5 3.565 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10 Transient responses of V1 and V2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 Transient responses of V3 and V4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.12 Transient response of Vout. 
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5. Conclusions 
In this paper, we propose the modified nonlinear circuit 

reduction technique based on congruence transformation. 
Since this method does not require to calculate the original 
order of Jacobian matrix, the calculation cost is reduced 
drastically. As a result, it has been shown that the 
efficiency and the accuracy of the proposed method are 
very well. It is expected that the efficiency of the proposed 
method increases for larger circuits. 
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