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Abstract 
 

We present our system-level co-simulation 
environment for mixed domain microsystems. The 
environment provides synchronization and co-
simulation between the Chatoyant MOEMS (Micro-
Electro Mechanical Systems) simulator and 
ModelTech ModelSim. By using shared memory 
IPC (Inter-Process Communication) and PDES 
(Parallel Discrete Event Simulation) techniques, we 
achieve two orders of magnitude speedup over 
standard pipe/socket communication. 
 
I. Introduction 

 
The advent of highly integrated technologies such 

as MEMS (Micro-Electro-Mechanical Systems), 
MOEMS, s, mixed signal systems on a chip (SoC), 
and opto-electronic communication networks, is 
requiring more sophisticated and efficient tools for 
simulating these technologies. It is only through 
system level simulation that efficient design space 
exploration can be performed across both 
architectural and implementation choices.  

There are a multitude of simulation packages for 
specific technology domains at various levels in the 
design abstraction hierarchy including system level 
simulation. However, in general, these simulators are 
not designed to work with others, across domains. To 
address this issue, these simulators must be integrated 
or, at the very least, interfaced together. 
 

II. Application 
 
The Chatoyant mixed-domain simulation 

environment from the University of Pittsburgh 
provides a broad range of models that span analog 
electronics, optics and MEMS devices [1]. Chatoyant 
is built on top of Ptolemy developed at University of 
California, Berkeley, and uses both Discrete Event 
(DE) and Dynamic Data Flow (DDF) simulation 
domains [2]. However, neither Chatoyant nor 
Ptolemy provide library components or features that 
can directly simulate digital design circuits written in 
VHDL. To handle these components, we have chosen 
to use the commercially available ModelSim HDL 

simulator for the components of a particular system 
that require an HDL simulator [3].  

 
Figure 1. Environment for Co-Simulation between 

Chatoyant and ModelSim 

Figure 1 shows the architecture of the co-
simulation environment. The implementation of this 
environment must address two issues: 1. How is 
information exchanged accurately between a digital 
domain simulator with MVL9 (Multi-Value Logic 9-
Level standard) conventions and an analog 
simulator? 2. How is synchronization and data 
exchange performed between these two simulators?  

The first issue can be addressed by the means of 
technology dependent lookup tables, converting 
between symbolic digital values and analog voltages. 

Since both simulators are discrete event simulators, 
the second issue can be solved with parallel discrete 
event simulation (PDES) techniques [4]. There are 
two fundamental synchronization approaches in 
PDES classed either as conservative or optimistic. 
Conservative approaches require all simulators to 
remain synchronized, never simulating to a future 
time until all simulators are ready to proceed. 
Optimistic approaches, on the other hand, allow any 
particular simulator to simulate beyond a certain 
point, without requiring other simulators to be 
synchronized. However, if a past event comes to that 
simulator, relative to its local time, then that 
simulator must “rollback” to a previous safe state. 

 
III. Interface Design Considerations 

 
For the environment developed here, an evaluation 

was performed to choose which PDES approach 
would be the most efficient. Both approaches are 
possible since ModelSim does have check-pointing 
and restoring methods available [3]. However, after 
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considering that the entire co-simulation environment 
will be executing on one machine, with other 
memory and computationally intensive tasks 
executing, we determined that this option would be 
too costly in terms of memory overhead. For the 
system described in Section V, the amount of data 
required for a checkpoint file was on the order of 1 to 
2MB. With typically 10 checkpoint files needed, 
rollback time took between 500ms to 1.5s.  

The conservative approach gives a solution 
requiring less memory. By ensuring that both 
simulators (one being Chatoyant and the other being 
ModelSim) be consistently synchronized this 
becomes a matter of passing event information 
between the simulators. Thus, the only real design 
issue becomes the time synchronization method.  

 
IV. Synchronization Implementation 

 
In order to avoid causality errors between the both 

simulators, the two must use common 
synchronization frequency. The frequency at which 
the simulators synchronize determines the accuracy 
of when, in simulation time, the events occur. For 
example, if a system being simulated uses 1GHz 
clocks then the frequency of synchronization should 
be on the order of picoseconds, to keep the times at 
which events occur in each simulator accurately 
synchronized.  

There are two approaches using Inter-Process 
Communication. The first approach implements a 
null-message passing scheme in PDES via named 
pipes. The drawback with this approach is that there 
is overhead communicating both port and 
synchronization information through the pipes.  

The second approach solves this problem. Instead 
of using named pipes as the primary conduit for 
synchronization, a shared memory system is used to 
maintain information about each port’s state (Figure 
1). Synchronization is checked every synch-period, 
but information is only updated and scheduled when 
necessary using a dirty-bit mechanism. This also 
reduces the port examination and scheduling 
overhead from the first approach. 

 
V. Experimental Results 

 
To test these approaches, a system simulation of an 

optoelectronic crossbar switch was used [5]. This 
system is composed of guided wave optics, and both 
optoelectronic and analog circuits (simulated in 
Chatoyant), and digital hardware (simulated in 
ModelSim). The information flow in the system 
consists of three stages of switches. At each stage, 
optical data streams are detected by photo-diodes, 

amplified in analog circuits, routed by digital 
circuitry, and sent through analog amplifiers to a 
vertical cavity surface emitting laser (VCSEL) array. 
Light is passed between stages by guided wave 
optics. Figure 2 shows the block layout of the system.  

 

 
Figure 2. FIG Test System Block Diagram. Areas 

demarked as Digital Domain execute in ModelSim, 
areas demarked as Analog and Optical are executed 

in  using Chatoyant components. 

The system was simulated for 1.3us of a 1GHz 
clock, on a 2.4GHz 1GB P4. The first approach had a 
runtime of about 481.25 minutes with 1.3 million 
events. This was at 1ps resolution. The second 
approach with the same 1.3us simulation time had a 
runtime of 4.21 minutes with 1.3 million events. This 
equates to a speedup factor of 114.  

 
VI. Conclusion 

 
The experiment above only gives a cursory 

illustration of how the interface performs. Like most 
PDES based systems, runtimes are dependent on the 
system itself and the amount of event traffic at given 
points. However, the preliminary information 
presented here shows a promise of acceptable 
(interactive) runtimes and a useful interface for 
system level simulation.  
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