
An Application of Parallel Discrete Event Simulation Algorithms to
Mixed Domain System Simulation

D. K. Reed1 S. P. Levitan1 J. Boles1 J. A. Martinez1 D. M. Chiarulli2

Univ. of Pittsburgh, Departments of Electrical Engineering1 & Computer Science2

Abstract

We present our system-level co-simulation
environment for mixed domain microsystems. The
environment provides synchronization and co-
simulation between the Chatoyant MOEMS (Micro-
Electro Mechanical Systems) simulator and
ModelTech ModelSim. By using shared memory
IPC (Inter-Process Communication) and PDES
(Parallel Discrete Event Simulation) techniques, we
achieve two orders of magnitude speedup over
standard pipe/socket communication.

I. Introduction

The advent of highly integrated technologies such

as MEMS (Micro-Electro-Mechanical Systems),
MOEMS, s, mixed signal systems on a chip (SoC),
and opto-electronic communication networks, is
requiring more sophisticated and efficient tools for
simulating these technologies. It is only through
system level simulation that efficient design space
exploration can be performed across both
architectural and implementation choices.

There are a multitude of simulation packages for
specific technology domains at various levels in the
design abstraction hierarchy including system level
simulation. However, in general, these simulators are
not designed to work with others, across domains. To
address this issue, these simulators must be integrated
or, at the very least, interfaced together.

II. Application

The Chatoyant mixed-domain simulation

environment from the University of Pittsburgh
provides a broad range of models that span analog
electronics, optics and MEMS devices [1]. Chatoyant
is built on top of Ptolemy developed at University of
California, Berkeley, and uses both Discrete Event
(DE) and Dynamic Data Flow (DDF) simulation
domains [2]. However, neither Chatoyant nor
Ptolemy provide library components or features that
can directly simulate digital design circuits written in
VHDL. To handle these components, we have chosen
to use the commercially available ModelSim HDL

simulator for the components of a particular system
that require an HDL simulator [3].

Figure 1. Environment for Co-Simulation between

Chatoyant and ModelSim

Figure 1 shows the architecture of the co-
simulation environment. The implementation of this
environment must address two issues: 1. How is
information exchanged accurately between a digital
domain simulator with MVL9 (Multi-Value Logic 9-
Level standard) conventions and an analog
simulator? 2. How is synchronization and data
exchange performed between these two simulators?

The first issue can be addressed by the means of
technology dependent lookup tables, converting
between symbolic digital values and analog voltages.

Since both simulators are discrete event simulators,
the second issue can be solved with parallel discrete
event simulation (PDES) techniques [4]. There are
two fundamental synchronization approaches in
PDES classed either as conservative or optimistic.
Conservative approaches require all simulators to
remain synchronized, never simulating to a future
time until all simulators are ready to proceed.
Optimistic approaches, on the other hand, allow any
particular simulator to simulate beyond a certain
point, without requiring other simulators to be
synchronized. However, if a past event comes to that
simulator, relative to its local time, then that
simulator must “rollback” to a previous safe state.

III. Interface Design Considerations

For the environment developed here, an evaluation

was performed to choose which PDES approach
would be the most efficient. Both approaches are
possible since ModelSim does have check-pointing
and restoring methods available [3]. However, after

1530-1591/04 $20.00 (c) 2004 IEEE

considering that the entire co-simulation environment
will be executing on one machine, with other
memory and computationally intensive tasks
executing, we determined that this option would be
too costly in terms of memory overhead. For the
system described in Section V, the amount of data
required for a checkpoint file was on the order of 1 to
2MB. With typically 10 checkpoint files needed,
rollback time took between 500ms to 1.5s.

The conservative approach gives a solution
requiring less memory. By ensuring that both
simulators (one being Chatoyant and the other being
ModelSim) be consistently synchronized this
becomes a matter of passing event information
between the simulators. Thus, the only real design
issue becomes the time synchronization method.

IV. Synchronization Implementation

In order to avoid causality errors between the both

simulators, the two must use common
synchronization frequency. The frequency at which
the simulators synchronize determines the accuracy
of when, in simulation time, the events occur. For
example, if a system being simulated uses 1GHz
clocks then the frequency of synchronization should
be on the order of picoseconds, to keep the times at
which events occur in each simulator accurately
synchronized.

There are two approaches using Inter-Process
Communication. The first approach implements a
null-message passing scheme in PDES via named
pipes. The drawback with this approach is that there
is overhead communicating both port and
synchronization information through the pipes.

The second approach solves this problem. Instead
of using named pipes as the primary conduit for
synchronization, a shared memory system is used to
maintain information about each port’s state (Figure
1). Synchronization is checked every synch-period,
but information is only updated and scheduled when
necessary using a dirty-bit mechanism. This also
reduces the port examination and scheduling
overhead from the first approach.

V. Experimental Results

To test these approaches, a system simulation of an

optoelectronic crossbar switch was used [5]. This
system is composed of guided wave optics, and both
optoelectronic and analog circuits (simulated in
Chatoyant), and digital hardware (simulated in
ModelSim). The information flow in the system
consists of three stages of switches. At each stage,
optical data streams are detected by photo-diodes,

amplified in analog circuits, routed by digital
circuitry, and sent through analog amplifiers to a
vertical cavity surface emitting laser (VCSEL) array.
Light is passed between stages by guided wave
optics. Figure 2 shows the block layout of the system.

Figure 2. FIG Test System Block Diagram. Areas

demarked as Digital Domain execute in ModelSim,
areas demarked as Analog and Optical are executed

in using Chatoyant components.

The system was simulated for 1.3us of a 1GHz
clock, on a 2.4GHz 1GB P4. The first approach had a
runtime of about 481.25 minutes with 1.3 million
events. This was at 1ps resolution. The second
approach with the same 1.3us simulation time had a
runtime of 4.21 minutes with 1.3 million events. This
equates to a speedup factor of 114.

VI. Conclusion

The experiment above only gives a cursory

illustration of how the interface performs. Like most
PDES based systems, runtimes are dependent on the
system itself and the amount of event traffic at given
points. However, the preliminary information
presented here shows a promise of acceptable
(interactive) runtimes and a useful interface for
system level simulation.

References
[1] S.P. Levitan, et.al, , IEEE Trans. On CAD of ICs and
Systems, vol. 22, no. 2, February 2003.
[2] J. Buck, et.al, Int. J. Comput. Simul., vol.4 pp 155-182,
1994.
[3] ModelSim SE FLI, Version 5.7g. 2003
[4] Banerjee, Prithbiraj. Parallel Algorithms for VLSI
Computer-Aided Design. Prentice Hall. 1994.
[5] Donald M. Chiarulli, et.al., Optics in Computing, OSA
Technical Digest (Optical Society of America, Washington
DC, 2001), pp. 125-127.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

