
Hardware support for arbitrarily complex loop structures in
embedded applications

Nikolaos Kavvadias and Spiridon Nikolaidis
Section of Electronics and Computers, Department of Physics

Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
{nkavv@skiathos.physics.auth.gr}

Abstract
In this paper, the program control unit of an

embedded RISC processor is enhanced with a novel zero-
overhead loop controller (ZOLC) supporting arbitrary
loop structures with multiple-entry/exit nodes. The ZOLC
has been incorporated to an open RISC processor core
to evaluate the performance of the proposed unit for
alternative configurations of the selected processor. It is
proven that speed improvements of 8.4% to 48.2% are
feasible for the used benchmarks.

1 Introduction
Last years, the embedded processor market is

dominated by new 32-bit RISC architectures (ARM,
MIPS32), and embedded DSPs (Motorola 56300, ST120,
TMS320C54x) featuring architectural and power
consumption characteristics suitable to portable
platforms. Some of these new features provide better
means for the execution of loops, by surpassing the
significant overhead of the loop overhead instruction
pattern which consists of the required instructions to
initiate a new iteration of the loop.

Generally, looping cycle overheads are confronted by
using branch-decrement instructions, zero-overhead
loops or customized units for more complex loop nests
[1], [2]. For the XiRisc processor [1], branch-decrement
instructions can be configured prior synthesis. For the
DSP56300 supporting up to 7 nesting levels there is a 5-
cycle overhead applied even to the innermost loops. Also,
a single-cycle multiple-index update unit for perfect loop
nests has been described in [2]. Its main advantage is that
successive last iterations of nested loops are performed in
a single cycle. In contrast to our approach, only perfect
loop nests are supported and the area requirements grow
proportionally to the considered number of loops.

In our approach, a ZOLC method is introduced that
eliminates the loop overheads and can be applied to an

arbitrary combination of loops. The initialization of
ZOLC presents only a very small cycle overhead since it
occurs outside of loop nests. The unit has been
incorporated to the XiRisc 32-bit processor [1], which is
distributed as a VHDL soft-core.

2 Incorporating ZOLC to a programmable
processor
A block diagram indicating how the proposed ZOLC

architecture is incorporated in the control path of a
typical RISC processor is shown in Fig. 1. The purpose
of ZOLC is to provide a proper candidate program
counter (PC) target address to the PC decoding unit for
each substituted looping operation. The instruction
decoder, the PC decoding unit and the general-purpose
register file communicate with the ZOLC hardware.
ZOLC is composed from the task selection unit, which
determines the appropriate next PC value when execution
resides in a loop structure, the loop parameter tables
where the loop bound values are kept and the index
calculation unit.

Two modes of operation are distinguished for the
ZOLC. In “initialization” mode, the ZOLC storage
resources are initialized with the known loop bound
values and the loop structure encoding by a special
instruction sequence. In “active” mode, the ZOLC: a)
determines the following task, b) issues a new target PC
value and a set of candidate exit values for the case of
multiple-exit loops to PC decode, c) loop indices are
updated and written back to the integer register file. The
task sequencing information (tasks are defined as
control-flow graph regions among loop boundaries) is
stored in a LUT within the task selection unit. On
completion of a task, a task end signal is issued from PC
decode, and an entry is selected from the LUT to address
the succeeding task and the loop parameter blocks, based
on which task has completed and the current loop status.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

3 Performance Evaluation of ZOLC
We have implemented three different configurations

of a ZOLC engine. ZOLCfull refers to a ZOLC
supporting 32 task switching entries, and 8-loop structure
with up to 4 entries/exits/entries per loop. ZOLClite lacks
support for multiple-entry/exit and uZOLC, is usable for
single loops. Along with the three variations of ZOLC,
two instances of the XiRisc processor family are invoked,
the unmodified core noted as XRdefault, and XRhrdwil
employing branch-decrement instructions.

It was found for uZOLC, ZOLClite and ZOLCfull, that
the requirements in storage resources are 30, 258 and
642 storage bytes and in combinational area 298, 4056,
and 4428 equivalent gates, respectively. The processor
cycle time is not affected due to ZOLC and corresponds
to about 170MHz on a 0.13 � m ASIC process. The

relative cycle measurements of Fig. 2 for comparing
ZOLClite against two XiRisc configurations have been
acquired for a set of 12 benchmark applications, collected
from the XiRisc validation suite [1], and software
implementations of motion estimation kernels. The use of
branch-decrement instructions provides a cycle reduction
of up to 27.5% and about 11.1% in average, while
incorporating the ZOLC unit is responsible for
improvements of up to 48.2% and about 26.2% in
average.

4 Conclusion
In this paper, a zero-overhead loop controller is

introduced and incorporated to the XiRisc processor. The
presented architecture is able to execute structured
algorithms for an arbitrary combination of loops, with no
cycle overheads incurred for task switching. For a
representative benchmark suite, execution time
improvements up to 48% are reported against alternative
XiRisc configurations.

References
[1] F. Campi, R. Canegallo, and R. Guerrieri, “IP-reusable

32-bit VLIW RISC core,” Proc. of the 27th European
Solid-State Circuits Conf., Sep. 2001, pp. 456-459.

[2] D. Talla, L.K. John, and D. Burger, “Bottlenecks in
multimedia processing with SIMD style extensions and
architectural enhancements,” IEEE Trans. Comp., Vol. 52,
No. 8, pp. 1015-1032, Aug. 2003.

Figure 1. Incorporating the ZOLC architecture to programmable RISC processors

Figure 2. Cycle performance results for the
examined applications

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

