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Abstract 
Due to the emergence of highly dynamic multimedia 

applications there is a need for flexible platforms and run-

time scheduling support for embedded systems. Dynamic 

Reconfigurable Hardware (DRHW) is a promising 

candidate to provide this flexibility but, currently, not 

sufficient run-time scheduling support to deal with the 

run-time reconfigurations exists. Moreover, executing at 

run-time a complex scheduling heuristic to provide this 

support may generate an excessive run-time penalty. 

Hence, we have developed a hybrid design/run-time 

prefetch heuristic that schedules the reconfigurations at 

run-time, but carries out the scheduling computations at 

design-time by carefully identifying a set of near-optimal 

schedules that can be selected at run-time. This approach 

provides run-time flexibility with a negligible penalty. 

1. Introduction 

Current multimedia applications, such as digital video 

and 3D games, present highly dynamic and non-

deterministic behavior, and a very variable workload. 

Dealing with this kind of applications involves a complex 

trade-off between carrying out the scheduling 

computation at design-time or at run-time. On the one 

hand, performing the whole scheduling process at design-

time is very ineffective because the scheduler does not 

have enough information and must often assume a 

pessimistic worst-case scenario. On the other hand, very 

stringent timing requirements exist at run-time. Hence the 

scheduler must accomplish its task in a greatly limited 

time-slot applying only simple scheduling policies.  

Hybrid design/run-time scheduling approaches are a very 

effective way to overcome this problem. They split the 

computation into a design-time phase and a run-time 

phase. The design-time phase generates sets of optimal 

(or near-optimal) schedules for certain run-time 

conditions. Later, a run-time scheduler analyses the 

running tasks and the run-time conditions and selects the 

most convenient schedule among them. The hybrid 

approach provides run-time flexibility and, at the same 

time, it generates only a small run-time penalty due to 

scheduler execution because most of the exploration and 

computation is done at design time. A very good example 

of this approach is the TCM [9] (Task Concurrency 

Management) scheduling environment initially developed 

for heterogeneous multiprocessor platforms. However, in 

order to cope with the demanding requirements of current 

multimedia applications, it is very interesting to extend 

the hybrid scheduling approach to emerging platforms 

containing also Dynamically Reconfigurable Hardware 

(DRHW) resources. These resources provide both high 

performance and run-time flexibility because their 

functionality can be updated at run-time to meet the 

variable requirements of the running applications. In 

particular, for embedded systems the amount of resources 

is highly constrained and, at the same time, the number of 

applications that they have to support is constantly 

increasing. In order to meet the performance requirements 

of these applications, specific HW support is often 

required. However, it is infeasible to provide Application 

Specific Integrated Circuits (ASICs) for all them. Using 

the partial reconfiguration capabilities, DRHW resources 

can be shared to provide this HW support for the whole 

set of applications.

We are targeting heterogeneous multiprocessor 

platforms where some of the processing elements are 

DRHW resources which are equivalent to any other 

processing elements. Hence, the scheduler assigns tasks to 

them at run-time according to the computational load of 

the system and its real-time constraints. An example of 

such a platform was presented in [4, 5]. Using an 

InterConnection Network (ICN) model (Figure 1) that 

provides inter-task communication and run-time 

allocation support, an FPGA is turned into a network-on-

chip multiprocessor platform. The basic idea of the ICN 

model is that the DRHW resources are split into a set of 

identical tiles. Each tile is wrapped by a communication 

interface. These tiles are independently reconfigured at 

run-time and can communicate with each other using 

message-passing primitives over a network-on-a-chip. 

The model includes also support for embedded Instruction 
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Set Processors (ISPs) and can be extended to support 

other types of DRHW resources, like coarse-grain arrays. 

This model has been successfully implemented on Virtex, 

and Virtex-II FPGAs [11] coupled with an ISP. 

Figure 1.  ICN model for DRHW.  

As it is shown in figure 1, with the ICN model an FPGA-

based platform can be considered as a multiprocessor 

system where subtasks are assigned to FPGA tiles instead 

of to ISPs. On top of this model, a multiprocessor 

scheduler (like TCM) can be easily applied. However, the 

run-time flexibility of DRHW often comes at the price of 

a very large reconfiguration overhead. For instance, 

reconfiguring one tenth of a Virtex XC2V6000 FPGA 

requires at least 4 ms. This overhead is not always 

acceptable for highly dynamic applications, since they 

may demand reconfigurations every few milliseconds. 

However, multiprocessor schedulers for embedded 

systems often neglect this overhead. Hence, in order to 

efficiently include DRHW resources, the scheduling flow 

must be extended adding specific support to deal with the 

reconfiguration overhead. 

As it was explained in [6], there are two key-factors to 

reduce this overhead. Firstly, previously loaded subtasks 

must be reused. Thus, if a subtask is executed several 

times in a DRHW resource, it may remain loaded from 

one execution to another and no reconfiguration is 

needed. Secondly, reconfigurations must be scheduled in 

order to hide their latency. However, for highly dynamic 

applications, the reusable subtasks cannot be identified at 

design-time. Hence, which subtasks must be loaded and 

which ones can be reused is only known at run-time. 

Therefore, the reconfiguration schedule must be at least 

partially accomplished at run-time. In [7] we presented a 

reconfiguration scheduling technique fully performed at 

run-time. This technique was able to drastically reduce 

the reconfiguration overhead even for highly dynamic 

applications. However, it was not fully scalable. Hence, 

for large number of reconfigurations, it consumed 

significant time to carry out the schedule. 

 In this paper we present a novel hybrid design-time/run-

time configuration scheduling approach that achieves 

almost as good results as the previous run-time heuristic 

while generating a very limited run-time penalty since it 

carries out all the computation intensive parts of the 

scheduling heuristic at design-time and just some minor 

computations are performed at run-time to tackle the non-

deterministic dynamic behavior.   

The remainder of the paper is organized as follows. The 

next section introduces the related work. Section 3 

explains the reconfiguration-scheduling problem. Section 

4 motivates the need of a hybrid scheduling heuristic. 

Sections 5 and 6 describe the prefetch scheduling design-

time and run-time phases. Section 7 presents the 

experimental results and, finally, section 8 summarizes 

our conclusions. 

2. Related work 

Previously, other research groups have addressed the 

minimization of the reconfiguration overhead. Much of 

these works propose the development of new types of 

architectures, like multi-context FPGAs and especially 

coarse-grain architectures. Thus, several interesting 

coarse-grain platforms that can be reconfigured much 

faster than standard fine-grain architectures have emerged 

recently [1,2]. Nevertheless, the reconfigurable market is 

still being clearly dominated by the FPGAs.   

In [12] a very interesting configuration prefetching 

approach to reduce the reconfiguration overhead for 

FPGAs is presented. This technique attempts to predict 

which task is going to be executed next and load it in 

advance. If the prediction is a success, the reconfiguration 

latency is, at least, partially hidden. Otherwise, an 

erroneous configuration is loaded with the consequent 

penalization. Our prefetching approach presents three 

main advantages compared to this one. First, it allows 

reducing the computational overhead, since all the 

prefetch decisions for a whole graph are taken at once and 

almost all the computation is done at design-time. Second, 

it prevents prediction misses, since our heuristic 

collaborates with a run-time scheduler receiving 

information about the subtasks scheduled in the near 

future. Finally, it reduces the overall execution time of the 

system, since our scheduling heuristic is aware of how its 

prefetch decisions affect the system performance and it 

uses this information to minimize the execution time. 

Other good approaches regarding how to minimize the 

influence of the reconfiguration overhead applying 

scheduling techniques at design-time are found in [3] and 

[8]. However, they do not include any run-time 

component. Therefore, they can only be applied when 

very limited dynamic behavior exists.  

3. Scheduling the run-time reconfigurations 

In order to evaluate the hybrid prefetch technique we 

have developed a set of run-time modules and we have 
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integrated them into the TCM scheduling environment [9, 

10] that provides a complete framework for the 

experiments. Our heuristic is not specifically intended for 

TCM, but it can be integrated in other scheduling 

environments as long as they share the hybrid design-

time/run-time approach.  

In TCM an application is described as a set of tasks, 

where each task is represented as a subtask graph, that 

interact dynamically among them. Thus, the non-

deterministic behavior must remain outside the 

boundaries of the tasks. If the behavior of a task depends 

on external data, different versions (graphs) of the same 

task are generated. These versions are called scenarios. In 

TCM the design-time scheduler generates a Pareto curve 

for each scenario of each task. A Pareto curve is a set of 

solutions where each solution is better than all the others 

in at least one of the parameters to optimize (in this case 

execution time and energy consumption). Each solution 

(also called Pareto point) represents an assignment and a 

schedule of the subtasks over the processing elements. 

During the execution, a run-time scheduler [10] is called 

periodically to identify the current scenario for each 

running task and select the most suitable Pareto points, 

i.e., those that consume less energy but still meet all the 

timing constraints of the application.  

Figure 2. Run-time scheduling flow. 

Current TCM schedulers do not take into account the 

reconfiguration overhead of the DRHW resources. We 

have provided support to tackle this specific overhead by 

including a set of modules in the TCM run-time 

scheduling flow as is depicted in Figure 2. After the run-

time scheduler selects its schedule, for each task three 

main decisions are taken sequentially following this initial 

schedule. Firstly, the reuse module identifies which 

subtasks can be reused from a previous iteration. 

Secondly, if some subtasks cannot be reused, the prefetch 

module schedules their loads attempting to minimize the 

execution time overhead. Finally, when a subtask is 

loaded, the replacement module decides to which tile it is 

going to be assigned trying to maximize the percentage of 

reused configurations. The reuse and the replacement 

modules are described in detail in [6, 7]. This paper is 

focused on the novel hybrid prefetch module. The hybrid 

scheduling heuristic attempts to solve the following 

problem:  

Given an initial subtask schedule that neglects the 

reconfiguration latency, we want to update it including 

the needed reconfigurations scheduled in a way that 

minimize the overhead they generate.  

Basically, the scheduler attempts to overlap the latency 

of each reconfiguration with the computation of the 

previous subtasks. If this is possible this reconfiguration 

does not penalize the system performance.  A simple 

example is depicted in Figure 3. In this figure the first 

schedule (a) is the output of a scheduler that neglects the 

loading overhead. The second schedule (b) includes the 

subtask loads, but does not apply any technique to reduce 

their impact, hence all of them introduce a delay. Finally, 

the third schedule (c) applies a configuration prefetch 

technique. Hence, just the first load penalizes the system 

performance. 

Figure 3. Impact of the loads over an initial subtask 
schedule.  L n: load of the subtask n. Ex n:
execution of the subtask n. 

4. Hybrid configuration prefetch heuristic

In order to take advantage of the possibility of reusing 

configurations, the reconfiguration prefetch schedule 

must be generated at run-time. However, the time slot 

assigned to the run-time scheduling process is typically 

very small and the reconfiguration schedule is only a 

small part of it that must be executed many times (once 

for each task). Hence, it must generate good schedules 

very fast or it would not be applicable at run-time.  

In [7] we presented a run-time reconfiguration 

scheduling heuristic based in list scheduling. This 

heuristic generated near optimal schedules, and was able 

to schedule 20 tasks with 14 subtasks on average in less 

than 0.1ms. This heuristic was developed targeting 

FPGAs. Therefore, the overhead generated due to the 

scheduling process was very small compared to the 

reconfiguration latency. However, currently it is also 

possible to include DRHW resources with much smaller 
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reconfiguration overhead (like coarse-grain arrays). In 

these resources the reconfiguration overhead is still 

significant, but not as large as in fine grain. In addition, 

since the reconfiguration overhead of these architectures 

is more affordable, subtasks with less execution time can 

be assigned to them. Hence it is likely that the granularity 

of the subtasks decreases and, as a consequence, the 

number of subtasks assigned to DRHW increases. 

However, the complexity of our previous full run-time 

approach was N*Log(N), where N is the number of 

subtasks that must be loaded. Therefore the time needed 

to generate the schedule increases with the number of 

subtasks. For instance, increasing the size of the subtask 

graph by a factor of 32 was leading to a 192-increase 

factor in the scheduling execution time. Hence, this initial 

prefetch module was not fully scalable. For this reason, 

we have developed a new hybrid prefetch heuristic 

aiming to keep the good results obtained by the previous 

one and, at the same time, to generate almost no run-time 

overhead. In this heuristic the computations are split 

between a design-time phase and a run-time phase. Thus, 

all the computational intensive parts have been moved to 

design-time (therefore they do not generate any run-time 

overhead) and just some minor parts are still executed at 

run-time. The basic idea of this heuristic is that the 

design-time phase generates an optimal schedule of the 

reconfigurations under certain assumptions for all the 

possible subtask schedules selected by the TCM design-

time scheduler. Later, when one of them is executed the 

run-time phase will guarantee that the initial assumption 

is true before starting its execution. 

5. Design-time phase 

An efficient prefetch technique may succeed hiding most 

of the reconfigurations (in [7] assuming that there was no 

reuse, which is the worst possible case, our heuristic was 

able to hide at least 75% of them). But for certain 

subtasks, it may fail meeting its objective because there is 

not always enough available time to schedule all the loads 

in advance (e.g. subtask 1 of Figure 3). The objective of 

the design-time phase of the hybrid heuristic is to identify 

which are those subtasks whose loading latency cannot be 

hidden. The hybrid heuristic is based on the definition of 

a subset of Critical Subtasks (CS). We define the CS 

subset for a given subtask graph that has been scheduled 

neglecting the reconfiguration overhead and a given 

scheduling heuristic that attempts to reduce this overhead, 

as the minimal subset of subtasks of the graph assigned to 

DRHW that fulfills the following property:  

If all the subtasks that belong to the CS subset can be 

reused, whereas all the remaining subtasks must be 

loaded, the scheduling heuristic will totally hide the 

latency of these loads. And therefore, they will not 

generate any time overhead. 

This definition is valid for any scheduling heuristic that 

attempts to hide the reconfiguration overhead. In our case 

we apply a branch&bound algorithm that always finds the 

optimal solution and for large graphs we keep the 

heuristic presented in [7] since it generates near optimal 

schedules in an affordable time.  

Figure 4 depicts the steps followed to identify the critical 

subtasks of a graph.  The process starts executing the 

prefetch scheduling heuristic assuming that none of the 

subtasks assigned to DRHW can be reused (hence, all of 

them must be loaded). Afterwards, all the subtasks that 

generate any delay due to its reconfiguration are detected 

and the one with greatest weight is included in the CS 

subset. These weights represent how critical is the 

execution of each subtask. They are assigned computing 

the longest path (in terms of execution time) from the 

beginning of the execution of the subtask to the end of the 

execution of the whole graph with an As-Late-As-

Possible (ALAP) schedule. Hence the subtasks in the 

critical path always have greater weight than the others. 

The process continues assuming that all the subtasks 

assigned to the CS subset are reused until the prefetch 

heuristic hides the reconfiguration latencies of all the 

remaining subtasks assigned to DRHW. When this 

process finishes, the last schedule computed by the 

prefetch heuristic is stored. This schedule is the input of 

the run-time phase. In this schedule it is assumed that all 

the subtasks from the CS subset are reused, whereas the 

remaining subtasks assigned to DRHW must be loaded. 

This assumption means, by definition of the CS subset, 

that this schedule hides the latency of all these loads. 

Hence the reconfiguration overhead is 0. 

Figure 4. Pseudo code for the critical subtasks 
selection. compute_penalty(CS) assumes that CS 
subtasks are reused. 

6. Run-time phase 

The design-time schedules assume that all the nodes that 

belong to the CS are always loaded. However, if there are 

not enough DRHW resources this is not always true. The 

task of the run-time phase of the hybrid heuristic is to 

guarantee that all the subtasks from a CS subset are 

For each schedule do
1. CS := ;

2. While (compute_penalty(CS) 0) do

S:= subtasks that generate delays;

S1:= MAX_weight(S);  

Add_subtask(S1, CS); 
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loaded before starting the execution of the corresponding 

design-time schedule.  This is called initialization phase. 

The loading order during this phase is also decided at 

design-time according to the subtask weights (the subtask 

with the greatest weight is loaded first), hence the run-

time phase must only identify which subtasks from the CS 

subset must be loaded.  

The design-time schedule assumes that all the subtasks 

assigned to DRHW that do not belong to the CS subset 

are going to be loaded. However, if some of them can be 

reused it is an unnecessary waste of energy to load them 

again. Hence, the run-time prefetch module will cancel 

those loads without modifying the rest of the schedule. 

The only task done so far during the run-time phase of the 

hybrid heuristic is to identify which subtasks can be 

reused and which must be loaded. However, the reuse 

module already does this task.  Hence, the prefetch hybrid 

heuristic is not generating any run-time overhead.  

Up to now the prefetch heuristic has been always applied 

inside the boundaries of a task. The reason is that the 

actual sequence of tasks executed is only known at run-

time. Therefore it is not possible to do inter-task 

optimizations at design-time. However, they can be 

performed at run-time if enough information is available. 

In the TCM environment the TCM run-time generates as 

output a sequence of scheduled tasks which can be used 

to apply inter-task optimizations. Using again the idea of 

critical subtasks, we have found a way to reduce the 

reconfiguration overhead introducing an inter-task 

optimization technique to our hybrid heuristic. Basically, 

for each task the run-time prefetch module uses the final 

idle period of the reconfiguration circuitry to carry out the 

initialization phase of the subsequent task. If this is 

possible, this task will not generate any overhead due to 

its reconfigurations. Figure 5 illustrates how the example 

introduced in Figure 3 is scheduled using the hybrid 

prefetch heuristic. In the picture, b.1 is the initialization 

phase, where the subtask 1 (that is the only CS) is loaded. 

If subtask 1 could be reused b.1 would not be needed. b.2

is the design-time schedule where the load of subtask 3 

has been removed because it was reused. And b.3 is the 

final time-slot when the reconfiguration circuitry was idle. 

This time is used to prefetch one critical subtask from the 

subsequent task.  

Figure 5. a) Schedule computed at design-time.     

b) Final schedule.  

7. Experimental results 

In order to compare our current approach with the 

approach presented in [7] we have applied our techniques 

to the same set of multimedia tasks. These tasks are a 

sequential and a parallel version of the JPEG decoder, an 

MPEG encoder, and a Pattern Recognition application 

that applies the Hough transform over a matrix of pixels 

in order to look for geometrical figures. In table 1 the 

features of these tasks are presented. “Ideal ex. time” is 

the execution time of the application when there is no 

reconfiguration overhead. “Overhead” is the percentage 

of the initial execution time that is added when the entire 

set of subtasks must be loaded on to the DRHW. Finally, 

”Prefetch” is the same overhead after applying an optimal 

prefetch heuristic. For the MPEG encoder there are three 

different scenarios corresponding to the decoding of B, P, 

and I frames (the table includes the average data). The 

appropriate scenario is selected at run-time following the 

sequence of frames. We have simulated 1000 iterations of 

the execution of this set of applications for different 

number of DRHW tiles assuming that the reconfiguration 

latency is 4 ms. In order to introduce unpredictable 

behavior, the applications executed during each iteration 

vary randomly. The simulation has been carried out five 

times with different prefetching approaches. The fist one 

did not include any prefetch module. In this case the 

reconfiguration overhead is 23%. In the second execution 

an optimal prefetch module is applied at design-time 

(hence it is not possible to reuse previously loaded 

subtasks since at design-time there is not enough 

information available). With this module the overhead is 

reduced to 7%. 

Table1. Set of multimedia benchmarks. 

Set of Task Sub-tasks Ideal ex time Overhead Prefetch

Pattern Rec. 6 94 ms +17% +4% 

JPEG dec. 4 81 ms +20% +5% 

Parallel JPEG 8 57 ms +35% +7% 

MPEG encoder 5 33 ms +56% +18%

The results of the three remaining simulations are 

depicted in Fig 6. In this figure run-time are the results 

obtained applying the run-time heuristic from [7] with our 

modules that support subtask reuse. In this case, with less 

than 20% of the subtasks reused (for 8 tiles) the overhead 

is reduced to 3%. run-time+inter-task are the results when 

the run-time schedule is improved using the inter-task 

optimization presented in section 6 and hybrid are the 

results with the hybrid heuristic. In these two cases the 

overhead is at most 1.3%, hence at least 95% of the 

original overhead is hidden. It must be remarked that 

hybrid and run-time+inter-task present very similar 

results (of course, the run-time approach generates 
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slightly better results). However the first approach is fully 

carried out at run-time, whereas the second one performs 

all the scheduling computations at design-time and only 

identifies the reusable subtasks at run-time.  

Figure 6 Reconfiguration overhead for the 4 tasks 
depicted in table 1 running with dynamic behavior. 

A coherent reason exists for these nice results. The 

hybrid heuristic generates at design-time an optimal 

schedule for the non-critical subtasks. Hence no run-time 

approach can improve this part. The critical subtasks can 

still generate an important overhead, but by definition, 

they will generate also overhead even when applying the 

prefetch schedule at run-time.  Of course, in this case the 

run-time heuristic may hide it partially. However, the 

inter-task optimization allows hiding most of the loads of 

the critical subtasks. As a result our hybrid heuristic 

clearly outperforms the one presented in [7].  

Figure 7. Reconfiguration overhead for a Pocket 
GL 3D rendering application. 

We have also tested our hybrid heuristic with a highly 

dynamic 3D rendering application. This application is 

composed of 6 dynamic tasks that have in total 10 

subtasks. For each task several scenarios can be selected 

at run-time. The amount of scenarios depends on the 

dynamism of the task. Thus, task 5 has four scenarios, 

whereas task 4 has ten. In total there are 40 different 

scenarios. However, due to the inter-task dependencies, at 

run-time just 20 feasible combinations exist, which are 

called inter-task scenarios. The run-time scheduler does 

the selection among the inter-task scenarios. The average 

execution time of a subtask in this application is 5.7ms, 

which is comparable with the 4ms needed to load a 

subtask onto a DRHW tile. This execution time heavily 

varies, going from 0.2 ms to 30ms. In this experiment 

62% of the subtasks are critical. However, as it is seen in 

the Figure 7 the hybrid heuristic still generates almost as 

good results as the fully run-time approach. In this case, 

the reconfiguration overhead was initially 71% of the 

ideal execution time. Applying an optimal configuration 

prefetch technique at design-time it is reduced to 25%. 

Finally, with the hybrid heuristic the overhead is reduced 

to 5% for five tiles and less than 2% for eight tiles. 

Hence, at least 93% of the initial overhead is hidden. 

8. Conclusions 

The reconfiguration overhead of DRHW resources can 

drastically degrade the system performance if no active 

scheduling policies are applied. In addition, when dealing 

with dynamic applications, this problem must be tackled 

at run-time, when the time-slot for the scheduling process 

is heavily constrained. We have overcome this restriction 

by developing a hybrid scheduling heuristic that selects at 

run-time a schedule almost as good as a pure run-time 

approach while generating a negligible overhead since all 

the computation intensive parts of the scheduling process 

are carried out at design-time. In addition, we have 

improved our results by applying a simple run-time inter-

task optimization technique that leads to very significant 

reconfiguration overhead reductions. In our experiments 

our hybrid heuristic has eliminated from 93% to 100% of 

the initial execution time overhead. 
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