
A Hybrid Prefetch Scheduling Heuristic to Minimize at Run-Time the

Reconfiguration Overhead of Dynamically Reconfigurable Hardware*

Javier Resano
1
(javier1@dacya.ucm.es), Daniel Mozos

1
, Francky Catthoor

2

1
Department of Computer Architecture (DACYA), Universidad Complutense de Madrid

2
IMEC vzw, Leuven, also Professor at Katholieke Universiteit Leuven, Belgium

Abstract
Due to the emergence of highly dynamic multimedia

applications there is a need for flexible platforms and run-

time scheduling support for embedded systems. Dynamic

Reconfigurable Hardware (DRHW) is a promising

candidate to provide this flexibility but, currently, not

sufficient run-time scheduling support to deal with the

run-time reconfigurations exists. Moreover, executing at

run-time a complex scheduling heuristic to provide this

support may generate an excessive run-time penalty.

Hence, we have developed a hybrid design/run-time

prefetch heuristic that schedules the reconfigurations at

run-time, but carries out the scheduling computations at

design-time by carefully identifying a set of near-optimal

schedules that can be selected at run-time. This approach

provides run-time flexibility with a negligible penalty.

1. Introduction

Current multimedia applications, such as digital video

and 3D games, present highly dynamic and non-

deterministic behavior, and a very variable workload.

Dealing with this kind of applications involves a complex

trade-off between carrying out the scheduling

computation at design-time or at run-time. On the one

hand, performing the whole scheduling process at design-

time is very ineffective because the scheduler does not

have enough information and must often assume a

pessimistic worst-case scenario. On the other hand, very

stringent timing requirements exist at run-time. Hence the

scheduler must accomplish its task in a greatly limited

time-slot applying only simple scheduling policies.

Hybrid design/run-time scheduling approaches are a very

effective way to overcome this problem. They split the

computation into a design-time phase and a run-time

phase. The design-time phase generates sets of optimal

(or near-optimal) schedules for certain run-time

conditions. Later, a run-time scheduler analyses the

running tasks and the run-time conditions and selects the

most convenient schedule among them. The hybrid

approach provides run-time flexibility and, at the same

time, it generates only a small run-time penalty due to

scheduler execution because most of the exploration and

computation is done at design time. A very good example

of this approach is the TCM [9] (Task Concurrency

Management) scheduling environment initially developed

for heterogeneous multiprocessor platforms. However, in

order to cope with the demanding requirements of current

multimedia applications, it is very interesting to extend

the hybrid scheduling approach to emerging platforms

containing also Dynamically Reconfigurable Hardware

(DRHW) resources. These resources provide both high

performance and run-time flexibility because their

functionality can be updated at run-time to meet the

variable requirements of the running applications. In

particular, for embedded systems the amount of resources

is highly constrained and, at the same time, the number of

applications that they have to support is constantly

increasing. In order to meet the performance requirements

of these applications, specific HW support is often

required. However, it is infeasible to provide Application

Specific Integrated Circuits (ASICs) for all them. Using

the partial reconfiguration capabilities, DRHW resources

can be shared to provide this HW support for the whole

set of applications.

We are targeting heterogeneous multiprocessor

platforms where some of the processing elements are

DRHW resources which are equivalent to any other

processing elements. Hence, the scheduler assigns tasks to

them at run-time according to the computational load of

the system and its real-time constraints. An example of

such a platform was presented in [4, 5]. Using an

InterConnection Network (ICN) model (Figure 1) that

provides inter-task communication and run-time

allocation support, an FPGA is turned into a network-on-

chip multiprocessor platform. The basic idea of the ICN

model is that the DRHW resources are split into a set of

identical tiles. Each tile is wrapped by a communication

interface. These tiles are independently reconfigured at

run-time and can communicate with each other using

message-passing primitives over a network-on-a-chip.

The model includes also support for embedded Instruction

* Research supported by the Spanish Government TIC 2002-00160

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Set Processors (ISPs) and can be extended to support

other types of DRHW resources, like coarse-grain arrays.

This model has been successfully implemented on Virtex,

and Virtex-II FPGAs [11] coupled with an ISP.

Figure 1. ICN model for DRHW.

As it is shown in figure 1, with the ICN model an FPGA-

based platform can be considered as a multiprocessor

system where subtasks are assigned to FPGA tiles instead

of to ISPs. On top of this model, a multiprocessor

scheduler (like TCM) can be easily applied. However, the

run-time flexibility of DRHW often comes at the price of

a very large reconfiguration overhead. For instance,

reconfiguring one tenth of a Virtex XC2V6000 FPGA

requires at least 4 ms. This overhead is not always

acceptable for highly dynamic applications, since they

may demand reconfigurations every few milliseconds.

However, multiprocessor schedulers for embedded

systems often neglect this overhead. Hence, in order to

efficiently include DRHW resources, the scheduling flow

must be extended adding specific support to deal with the

reconfiguration overhead.

As it was explained in [6], there are two key-factors to

reduce this overhead. Firstly, previously loaded subtasks

must be reused. Thus, if a subtask is executed several

times in a DRHW resource, it may remain loaded from

one execution to another and no reconfiguration is

needed. Secondly, reconfigurations must be scheduled in

order to hide their latency. However, for highly dynamic

applications, the reusable subtasks cannot be identified at

design-time. Hence, which subtasks must be loaded and

which ones can be reused is only known at run-time.

Therefore, the reconfiguration schedule must be at least

partially accomplished at run-time. In [7] we presented a

reconfiguration scheduling technique fully performed at

run-time. This technique was able to drastically reduce

the reconfiguration overhead even for highly dynamic

applications. However, it was not fully scalable. Hence,

for large number of reconfigurations, it consumed

significant time to carry out the schedule.

 In this paper we present a novel hybrid design-time/run-

time configuration scheduling approach that achieves

almost as good results as the previous run-time heuristic

while generating a very limited run-time penalty since it

carries out all the computation intensive parts of the

scheduling heuristic at design-time and just some minor

computations are performed at run-time to tackle the non-

deterministic dynamic behavior.

The remainder of the paper is organized as follows. The

next section introduces the related work. Section 3

explains the reconfiguration-scheduling problem. Section

4 motivates the need of a hybrid scheduling heuristic.

Sections 5 and 6 describe the prefetch scheduling design-

time and run-time phases. Section 7 presents the

experimental results and, finally, section 8 summarizes

our conclusions.

2. Related work

Previously, other research groups have addressed the

minimization of the reconfiguration overhead. Much of

these works propose the development of new types of

architectures, like multi-context FPGAs and especially

coarse-grain architectures. Thus, several interesting

coarse-grain platforms that can be reconfigured much

faster than standard fine-grain architectures have emerged

recently [1,2]. Nevertheless, the reconfigurable market is

still being clearly dominated by the FPGAs.

In [12] a very interesting configuration prefetching

approach to reduce the reconfiguration overhead for

FPGAs is presented. This technique attempts to predict

which task is going to be executed next and load it in

advance. If the prediction is a success, the reconfiguration

latency is, at least, partially hidden. Otherwise, an

erroneous configuration is loaded with the consequent

penalization. Our prefetching approach presents three

main advantages compared to this one. First, it allows

reducing the computational overhead, since all the

prefetch decisions for a whole graph are taken at once and

almost all the computation is done at design-time. Second,

it prevents prediction misses, since our heuristic

collaborates with a run-time scheduler receiving

information about the subtasks scheduled in the near

future. Finally, it reduces the overall execution time of the

system, since our scheduling heuristic is aware of how its

prefetch decisions affect the system performance and it

uses this information to minimize the execution time.

Other good approaches regarding how to minimize the

influence of the reconfiguration overhead applying

scheduling techniques at design-time are found in [3] and

[8]. However, they do not include any run-time

component. Therefore, they can only be applied when

very limited dynamic behavior exists.

3. Scheduling the run-time reconfigurations

In order to evaluate the hybrid prefetch technique we

have developed a set of run-time modules and we have

DRHW tile

Communication

Interface

ICN router

DRHW tile

Communication

Interface

ICN router

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

integrated them into the TCM scheduling environment [9,

10] that provides a complete framework for the

experiments. Our heuristic is not specifically intended for

TCM, but it can be integrated in other scheduling

environments as long as they share the hybrid design-

time/run-time approach.

In TCM an application is described as a set of tasks,

where each task is represented as a subtask graph, that

interact dynamically among them. Thus, the non-

deterministic behavior must remain outside the

boundaries of the tasks. If the behavior of a task depends

on external data, different versions (graphs) of the same

task are generated. These versions are called scenarios. In

TCM the design-time scheduler generates a Pareto curve

for each scenario of each task. A Pareto curve is a set of

solutions where each solution is better than all the others

in at least one of the parameters to optimize (in this case

execution time and energy consumption). Each solution

(also called Pareto point) represents an assignment and a

schedule of the subtasks over the processing elements.

During the execution, a run-time scheduler [10] is called

periodically to identify the current scenario for each

running task and select the most suitable Pareto points,

i.e., those that consume less energy but still meet all the

timing constraints of the application.

Figure 2. Run-time scheduling flow.

Current TCM schedulers do not take into account the

reconfiguration overhead of the DRHW resources. We

have provided support to tackle this specific overhead by

including a set of modules in the TCM run-time

scheduling flow as is depicted in Figure 2. After the run-

time scheduler selects its schedule, for each task three

main decisions are taken sequentially following this initial

schedule. Firstly, the reuse module identifies which

subtasks can be reused from a previous iteration.

Secondly, if some subtasks cannot be reused, the prefetch

module schedules their loads attempting to minimize the

execution time overhead. Finally, when a subtask is

loaded, the replacement module decides to which tile it is

going to be assigned trying to maximize the percentage of

reused configurations. The reuse and the replacement

modules are described in detail in [6, 7]. This paper is

focused on the novel hybrid prefetch module. The hybrid

scheduling heuristic attempts to solve the following

problem:

Given an initial subtask schedule that neglects the

reconfiguration latency, we want to update it including

the needed reconfigurations scheduled in a way that

minimize the overhead they generate.

Basically, the scheduler attempts to overlap the latency

of each reconfiguration with the computation of the

previous subtasks. If this is possible this reconfiguration

does not penalize the system performance. A simple

example is depicted in Figure 3. In this figure the first

schedule (a) is the output of a scheduler that neglects the

loading overhead. The second schedule (b) includes the

subtask loads, but does not apply any technique to reduce

their impact, hence all of them introduce a delay. Finally,

the third schedule (c) applies a configuration prefetch

technique. Hence, just the first load penalizes the system

performance.

Figure 3. Impact of the loads over an initial subtask
schedule. L n: load of the subtask n. Ex n:
execution of the subtask n.

4. Hybrid configuration prefetch heuristic

In order to take advantage of the possibility of reusing

configurations, the reconfiguration prefetch schedule

must be generated at run-time. However, the time slot

assigned to the run-time scheduling process is typically

very small and the reconfiguration schedule is only a

small part of it that must be executed many times (once

for each task). Hence, it must generate good schedules

very fast or it would not be applicable at run-time.

In [7] we presented a run-time reconfiguration

scheduling heuristic based in list scheduling. This

heuristic generated near optimal schedules, and was able

to schedule 20 tasks with 14 subtasks on average in less

than 0.1ms. This heuristic was developed targeting

FPGAs. Therefore, the overhead generated due to the

scheduling process was very small compared to the

reconfiguration latency. However, currently it is also

possible to include DRHW resources with much smaller

TCM Run-Time Scheduler
Platform

Description

Running Tasks Information

Initialization phase

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

-Pareto curve of each

task

-Real-time constraints

Initial schedule that

neglects the

reconfiguration

overhead

TCM Run-Time Scheduler
Platform

Description

Running Tasks Information

Initialization phase

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

For each task do:

Reuse Module

Prefetch Module

Replacement Module

Final Schedule

-Pareto curve of each

task

-Real-time constraints

Initial schedule that

neglects the

reconfiguration

overhead

Subtask graph

1

3

4

2
DRHW tile2

DRHW tile1

DRHW tile3

DRHW tile2

DRHW tile1

DRHW tile3

c) applying prefetchb) without prefetch

L 2 Ex 2

L 4 Ex 4

L 3 Ex 3

L 1 Ex 1

L 2 Ex 2

L 4 Ex 4

L 3 Ex 3

L 1 Ex 1

L 2

L 1 Ex 1

L 2

L 1 Ex 1

Ex 1

Ex 2

Ex 3

Ex 4

a) without overhead

Ex 2

L 3 Ex 3L 3 Ex 3

Ex 4Ex 4L 4

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

reconfiguration overhead (like coarse-grain arrays). In

these resources the reconfiguration overhead is still

significant, but not as large as in fine grain. In addition,

since the reconfiguration overhead of these architectures

is more affordable, subtasks with less execution time can

be assigned to them. Hence it is likely that the granularity

of the subtasks decreases and, as a consequence, the

number of subtasks assigned to DRHW increases.

However, the complexity of our previous full run-time

approach was N*Log(N), where N is the number of

subtasks that must be loaded. Therefore the time needed

to generate the schedule increases with the number of

subtasks. For instance, increasing the size of the subtask

graph by a factor of 32 was leading to a 192-increase

factor in the scheduling execution time. Hence, this initial

prefetch module was not fully scalable. For this reason,

we have developed a new hybrid prefetch heuristic

aiming to keep the good results obtained by the previous

one and, at the same time, to generate almost no run-time

overhead. In this heuristic the computations are split

between a design-time phase and a run-time phase. Thus,

all the computational intensive parts have been moved to

design-time (therefore they do not generate any run-time

overhead) and just some minor parts are still executed at

run-time. The basic idea of this heuristic is that the

design-time phase generates an optimal schedule of the

reconfigurations under certain assumptions for all the

possible subtask schedules selected by the TCM design-

time scheduler. Later, when one of them is executed the

run-time phase will guarantee that the initial assumption

is true before starting its execution.

5. Design-time phase

An efficient prefetch technique may succeed hiding most

of the reconfigurations (in [7] assuming that there was no

reuse, which is the worst possible case, our heuristic was

able to hide at least 75% of them). But for certain

subtasks, it may fail meeting its objective because there is

not always enough available time to schedule all the loads

in advance (e.g. subtask 1 of Figure 3). The objective of

the design-time phase of the hybrid heuristic is to identify

which are those subtasks whose loading latency cannot be

hidden. The hybrid heuristic is based on the definition of

a subset of Critical Subtasks (CS). We define the CS

subset for a given subtask graph that has been scheduled

neglecting the reconfiguration overhead and a given

scheduling heuristic that attempts to reduce this overhead,

as the minimal subset of subtasks of the graph assigned to

DRHW that fulfills the following property:

If all the subtasks that belong to the CS subset can be

reused, whereas all the remaining subtasks must be

loaded, the scheduling heuristic will totally hide the

latency of these loads. And therefore, they will not

generate any time overhead.

This definition is valid for any scheduling heuristic that

attempts to hide the reconfiguration overhead. In our case

we apply a branch&bound algorithm that always finds the

optimal solution and for large graphs we keep the

heuristic presented in [7] since it generates near optimal

schedules in an affordable time.

Figure 4 depicts the steps followed to identify the critical

subtasks of a graph. The process starts executing the

prefetch scheduling heuristic assuming that none of the

subtasks assigned to DRHW can be reused (hence, all of

them must be loaded). Afterwards, all the subtasks that

generate any delay due to its reconfiguration are detected

and the one with greatest weight is included in the CS

subset. These weights represent how critical is the

execution of each subtask. They are assigned computing

the longest path (in terms of execution time) from the

beginning of the execution of the subtask to the end of the

execution of the whole graph with an As-Late-As-

Possible (ALAP) schedule. Hence the subtasks in the

critical path always have greater weight than the others.

The process continues assuming that all the subtasks

assigned to the CS subset are reused until the prefetch

heuristic hides the reconfiguration latencies of all the

remaining subtasks assigned to DRHW. When this

process finishes, the last schedule computed by the

prefetch heuristic is stored. This schedule is the input of

the run-time phase. In this schedule it is assumed that all

the subtasks from the CS subset are reused, whereas the

remaining subtasks assigned to DRHW must be loaded.

This assumption means, by definition of the CS subset,

that this schedule hides the latency of all these loads.

Hence the reconfiguration overhead is 0.

Figure 4. Pseudo code for the critical subtasks
selection. compute_penalty(CS) assumes that CS
subtasks are reused.

6. Run-time phase

The design-time schedules assume that all the nodes that

belong to the CS are always loaded. However, if there are

not enough DRHW resources this is not always true. The

task of the run-time phase of the hybrid heuristic is to

guarantee that all the subtasks from a CS subset are

For each schedule do
1. CS := ;

2. While (compute_penalty(CS) 0) do

S:= subtasks that generate delays;

S1:= MAX_weight(S);

Add_subtask(S1, CS);

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

loaded before starting the execution of the corresponding

design-time schedule. This is called initialization phase.

The loading order during this phase is also decided at

design-time according to the subtask weights (the subtask

with the greatest weight is loaded first), hence the run-

time phase must only identify which subtasks from the CS

subset must be loaded.

The design-time schedule assumes that all the subtasks

assigned to DRHW that do not belong to the CS subset

are going to be loaded. However, if some of them can be

reused it is an unnecessary waste of energy to load them

again. Hence, the run-time prefetch module will cancel

those loads without modifying the rest of the schedule.

The only task done so far during the run-time phase of the

hybrid heuristic is to identify which subtasks can be

reused and which must be loaded. However, the reuse

module already does this task. Hence, the prefetch hybrid

heuristic is not generating any run-time overhead.

Up to now the prefetch heuristic has been always applied

inside the boundaries of a task. The reason is that the

actual sequence of tasks executed is only known at run-

time. Therefore it is not possible to do inter-task

optimizations at design-time. However, they can be

performed at run-time if enough information is available.

In the TCM environment the TCM run-time generates as

output a sequence of scheduled tasks which can be used

to apply inter-task optimizations. Using again the idea of

critical subtasks, we have found a way to reduce the

reconfiguration overhead introducing an inter-task

optimization technique to our hybrid heuristic. Basically,

for each task the run-time prefetch module uses the final

idle period of the reconfiguration circuitry to carry out the

initialization phase of the subsequent task. If this is

possible, this task will not generate any overhead due to

its reconfigurations. Figure 5 illustrates how the example

introduced in Figure 3 is scheduled using the hybrid

prefetch heuristic. In the picture, b.1 is the initialization

phase, where the subtask 1 (that is the only CS) is loaded.

If subtask 1 could be reused b.1 would not be needed. b.2

is the design-time schedule where the load of subtask 3

has been removed because it was reused. And b.3 is the

final time-slot when the reconfiguration circuitry was idle.

This time is used to prefetch one critical subtask from the

subsequent task.

Figure 5. a) Schedule computed at design-time.

b) Final schedule.

7. Experimental results

In order to compare our current approach with the

approach presented in [7] we have applied our techniques

to the same set of multimedia tasks. These tasks are a

sequential and a parallel version of the JPEG decoder, an

MPEG encoder, and a Pattern Recognition application

that applies the Hough transform over a matrix of pixels

in order to look for geometrical figures. In table 1 the

features of these tasks are presented. “Ideal ex. time” is

the execution time of the application when there is no

reconfiguration overhead. “Overhead” is the percentage

of the initial execution time that is added when the entire

set of subtasks must be loaded on to the DRHW. Finally,

”Prefetch” is the same overhead after applying an optimal

prefetch heuristic. For the MPEG encoder there are three

different scenarios corresponding to the decoding of B, P,

and I frames (the table includes the average data). The

appropriate scenario is selected at run-time following the

sequence of frames. We have simulated 1000 iterations of

the execution of this set of applications for different

number of DRHW tiles assuming that the reconfiguration

latency is 4 ms. In order to introduce unpredictable

behavior, the applications executed during each iteration

vary randomly. The simulation has been carried out five

times with different prefetching approaches. The fist one

did not include any prefetch module. In this case the

reconfiguration overhead is 23%. In the second execution

an optimal prefetch module is applied at design-time

(hence it is not possible to reuse previously loaded

subtasks since at design-time there is not enough

information available). With this module the overhead is

reduced to 7%.

Table1. Set of multimedia benchmarks.

Set of Task Sub-tasks Ideal ex time Overhead Prefetch

Pattern Rec. 6 94 ms +17% +4%

JPEG dec. 4 81 ms +20% +5%

Parallel JPEG 8 57 ms +35% +7%

MPEG encoder 5 33 ms +56% +18%

The results of the three remaining simulations are

depicted in Fig 6. In this figure run-time are the results

obtained applying the run-time heuristic from [7] with our

modules that support subtask reuse. In this case, with less

than 20% of the subtasks reused (for 8 tiles) the overhead

is reduced to 3%. run-time+inter-task are the results when

the run-time schedule is improved using the inter-task

optimization presented in section 6 and hybrid are the

results with the hybrid heuristic. In these two cases the

overhead is at most 1.3%, hence at least 95% of the

original overhead is hidden. It must be remarked that

hybrid and run-time+inter-task present very similar

results (of course, the run-time approach generates

DRHW tile2

DRHW tile1

DRHW tile3

DRHW tile2

DRHW tile1

DRHW tile3

a) design-time

Ex 4Ex 1

L 4

Ex 4

L 2

Ex 1

Reconfiguration

circuitry

L 1

Ex 4Ex 1

L 4

Ex 4

L 2

Ex 1

L 3

Ex 2

Ex 3

Ex 2

Ex 3

b) run-time

b.1 b.2 b.3

L 5

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

slightly better results). However the first approach is fully

carried out at run-time, whereas the second one performs

all the scheduling computations at design-time and only

identifies the reusable subtasks at run-time.

Figure 6 Reconfiguration overhead for the 4 tasks
depicted in table 1 running with dynamic behavior.

A coherent reason exists for these nice results. The

hybrid heuristic generates at design-time an optimal

schedule for the non-critical subtasks. Hence no run-time

approach can improve this part. The critical subtasks can

still generate an important overhead, but by definition,

they will generate also overhead even when applying the

prefetch schedule at run-time. Of course, in this case the

run-time heuristic may hide it partially. However, the

inter-task optimization allows hiding most of the loads of

the critical subtasks. As a result our hybrid heuristic

clearly outperforms the one presented in [7].

Figure 7. Reconfiguration overhead for a Pocket
GL 3D rendering application.

We have also tested our hybrid heuristic with a highly

dynamic 3D rendering application. This application is

composed of 6 dynamic tasks that have in total 10

subtasks. For each task several scenarios can be selected

at run-time. The amount of scenarios depends on the

dynamism of the task. Thus, task 5 has four scenarios,

whereas task 4 has ten. In total there are 40 different

scenarios. However, due to the inter-task dependencies, at

run-time just 20 feasible combinations exist, which are

called inter-task scenarios. The run-time scheduler does

the selection among the inter-task scenarios. The average

execution time of a subtask in this application is 5.7ms,

which is comparable with the 4ms needed to load a

subtask onto a DRHW tile. This execution time heavily

varies, going from 0.2 ms to 30ms. In this experiment

62% of the subtasks are critical. However, as it is seen in

the Figure 7 the hybrid heuristic still generates almost as

good results as the fully run-time approach. In this case,

the reconfiguration overhead was initially 71% of the

ideal execution time. Applying an optimal configuration

prefetch technique at design-time it is reduced to 25%.

Finally, with the hybrid heuristic the overhead is reduced

to 5% for five tiles and less than 2% for eight tiles.

Hence, at least 93% of the initial overhead is hidden.

8. Conclusions

The reconfiguration overhead of DRHW resources can

drastically degrade the system performance if no active

scheduling policies are applied. In addition, when dealing

with dynamic applications, this problem must be tackled

at run-time, when the time-slot for the scheduling process

is heavily constrained. We have overcome this restriction

by developing a hybrid scheduling heuristic that selects at

run-time a schedule almost as good as a pure run-time

approach while generating a negligible overhead since all

the computation intensive parts of the scheduling process

are carried out at design-time. In addition, we have

improved our results by applying a simple run-time inter-

task optimization technique that leads to very significant

reconfiguration overhead reductions. In our experiments

our hybrid heuristic has eliminated from 93% to 100% of

the initial execution time overhead.

References
[1] www.ipflex.com

[2] www.elixent.com

[3] Maestre, R. et al, "Configuration Management in Multi-

Context Reconfigurable Systems", ISSS'00, pp. 107-113, 2000.

[4] Marescaux, T. et al., "Interconnection Network enable Fine-

Grain Dynamic Multi-Tasking on FPGAs", FPL'02, pp. 795-

805, 2002.

[5] Mignolet, J-Y. et al. “Infrastructure for Design and

Management of Relocatable Tasks in a Heterogeneous

Reconfigurable System-on-Chip” DATE'03, pp. 986-991, 2003.

[6] Resano, J. et al. “Specific scheduling support to minimize

the reconfiguration overhead of dynamically reconfigurable

hardware”. DAC’04, pp. 119 – 124, 2004.

[7] Resano, J. et al. “A hybrid design-time/run-time scheduling

flow to minimise the reconfiguration overhead of

FPGAs”. Journal on Microprocessors and Microarchitectures.

Elsevier publishers. Volume 28, Issues 5-6, pp. 291-301, 2004.

[8] Shang, Li et al., "Hw/Sw Co-synthesis of Low Power Real-

Time Distributed Embedded Systems with Dynamically

Reconfigurable FPGAs", ASP-DAC'02, pp. 345-360, 2002.

[9] Yang, P. et al., "Energy-Aware Runtime Scheduling for

Embedded-Multiprocessors SOCs", IEEE Design&Test of

Computers, pp. 46-58, 2001.

[10] Yang, P. et al "Pareto-Optimization-Based Run-Time Task

Scheduling for Embedded Systems". ISSS'03, pp 120-125. 2003.

[11] www.xilinx.com

[12] Zhiyuan Li, “Configuration management techniques for

reconfigurable computing” Ph.D. thesis, 2002.

0

1

2

3

4

8 9 10 11 12 13 14 15 16

run-time

run-time+inter-task

hybrid

Overhead

(%)

Number of DRHW tiles

0

5

10

15

20

5 6 7 8 9 10

R un-tim e

R un-tim e + inte r- ta s k

H ybr id

Overhead

(%)

Number of DRHW tiles

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

