
Model Reuse through Hardware Design Patterns

Fernando Rincón Francisco Moya Jesús Barba
Juan Carlos López

University of Castilla-La Mancha
13071 Ciudad Real, Spain

{Fernando.Rincon, Francisco.Moya, Jesus.Barba, JuanCarlos.Lopez}@uclm.es

Abstract

Increasing reuse opportunities is a well-known problem
for software designers as well as for hardware designers.
Nonetheless, current software and hardware engineering
practices have embraced different approaches to this prob-
lem. Software designs are usually modelled after a set of
proven solutions to recurrent problems called design pat-
terns. This approach differs from the component-based
reuse usually found in hardware designs: design patterns
do not specify unnecessary implementation details.

Several authors have already proposed translating struc-
tural design patterns concepts to hardware design. In this
paper we extend the discussion to behavioural design pat-
terns. Specifically, we describe how the hardware version
of the Iterator can be used to enhance model reuse.

1. Introduction

A significant increase in design productivity is usually
a direct consequence of two key factors: 1) raising the ab-
straction level, and 2) reusing previous designs.

Design reuse is usually achieved using IP-based method-
ologies (hard, firm and soft IP [1]). IP blocks offer closed
solutions and limited flexibility (parameterization or config-
uration). They are usually optimized under some assump-
tions and modifications are either impossible or extremely
tricky, with the exception of some extensible IPs such as
configurable processors which are designed with user mod-
ification in mind. Besides, in most cases these IP blocks are
completely designed at the RT level using an HDL.

Most often system designers would like to reuse be-
havioural level abstractions (algorithms) while IPs usually
just offer implementations of such algorithms under a cer-
tain set of constraints. The solutions proposed to this prob-
lem range from behavioural level modeling to high level
synthesis. Unfortunately, these higher level tools may in-
troduce large overheads in terms of resource allocation and

performance of the final solution.
In this paper we propose a focus shift from component-

level reuse as advocated by IP-based methodologies to
model-level reuse as represented by current software engi-
neering practice. Our point of view improves reusability
at two levels: 1) at the system-level, using pattern oriented
modeling. Most design patterns are not related to a particu-
lar implementation. 2) At the component-level, introducing
a broader sense of genericity than the only currently avail-
able in HDLs, in order to allow generic algorithm descrip-
tions.

There has been a lot of discussion on the technical prob-
lems of component-level reuse, the key goal of most IP-
based methodologies. Some of these problems are still open
to discussion: 1) integration of components in the design
flow, 2) interface compatibility and generation, and 3) cus-
tomization and optimization. The IP designer is faced with
these issues very early in the system design cycle, with the
risk of precluding reusability under unforeseen scenarios.

Published literature proposes partial solutions for each
of the above mentioned issues: 1) IP-based methodologies
ease the integration of third party IPs into the design flow, 2)
interface compatibility is usually handled through standard-
ization [1] and wrapper generation [6], and 3) behavioural
IPs [8] and high-level synthesis provide the ability to adapt
IPs to new scenarios.

Nevertheless, reusing a predefined component may be
the source of area and performance overheads due to ei-
ther interface compatibilization or unnecessary IP features.
The latter is not uncommon since IP reusability is usually
improved by considering several target scenarios. Modifi-
cations of third party IP are either impossible or extremely
tricky. In this paper we propose model reuse in contrast to
component reuse.

Most of current IPs are designed at the RT-level using
a conventional hardware description language. Raising the
level of abstraction would provide two important benefits:
1) models would be easier to modify and maintain, and 2) it
would be possible to reuse the primitive modeling elements

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Figure 1. Design example

(algorithms, data structures, etc.).
In the following sections, first we will present the moti-

vating example showing the limitations of current design
methodologies. Next we will introduce the problem of
model reuse versus component reuse. We will then outline
the solution we propose which is based on a hardware ver-
sion of an existing behavioural software pattern: the Itera-
tor. This will lead to the definition of a basic component
library that will later be used to reengineer the motivating
example. In section 3.4 we will describe implementation
details of this pattern. Some experimental results will be
shown in section 4. Finally, we will present some conclu-
sions and draw future related work.

2. Embracing change

Let us consider the design of a simple real-time im-
age processing application. The whole system would be
composed of the entities shown in figure 1: camera, video
decoder, image processing circuit, VGA coder, and video
monitor.

The image processing circuit would be composed of an
input buffer to acquire the video stream, an image process-
ing algorithm and an output buffer to accommodate the out-
put video stream. For the sake of clarity, we will first con-
sider the case of the simplest possible algorithm: copying
data from the input buffer to the output buffer. Such a
simple algorithm may be implemented as a finite state ma-
chine handling the buffer signals and sequencing the read
and write operations.

Let’s suppose there is a small change in the system.
The input video stream is now fed into a RAM, storing a
whole frame instead of using a sequential access buffer. The
stream copy algorithm does not change at all: we still need
to transfer data from the video source to the video sink. But
the implementation must be radically changed to accomo-
date the new interface requirements of the memory. Now
there is a need to maintain a memory address register point-
ing to the appropriate position in RAM. A similar situation
arises if we change the output buffer to the VGA decoder
into another RAM block.

Pixel format is another kind of critical modification when

trying to reuse a system like the one described. Changing 8-
bit grayscale format into a 24-bit RGB format, for example,
may require non-trivial modifications in the state machine
specification, since obtaining each pixel may require more
than one memory access.

Although it seems feasible to reuse the copy algorithm
in many scenarios, it is not so easy because of the coupling
between algorithms, data structures and hardware interface
handling.

In this paper we propose to decouple algorithms and data
structures by means of a hardware version of a well known
design pattern: the iterator pattern [7]. The main goal of
this pattern is to avoid exposition of the internal implemen-
tation when accessing a data structure. The hardware inter-
face of data structures will only be exposed to iterators and
components which implement those data structures. Both
are either automatically generated or reused. The impact on
the overall design of modifying hardware interfaces is thus
minimized.

3. Model Reuse

Increasing reuse opportunities is a well-known prob-
lem for software designers as it is for hardware design-
ers. Nonetheless current software and hardware engineer-
ing practice embraced different approaches to this problem.
Software designs are usually modeled after a set of proven
solutions to recurrent problems called design patterns. This
approach differs from the component-based reuse usually
found in hardware designs in that the design patterns do not
specify unnecessary implementation details. Therefore, de-
sign patterns allow the reuse of higher level abstractions in a
wide variety of scenarios without the performance overhead
of behavioural IPs.

Several authors have already proposed translating some
of the design patterns concepts to hardware design [6, 12, 4]
but to our knowledge all previously published works are en-
tirely devoted to structural and creational patterns, already
similar to current hardware design practice. In this paper
we introduce behavioural patterns in the domain of hard-
ware design, allowing a more abstract view of the design.

We do not advocate a complete parallelism between soft-
ware and hardware design process. Many of the most suc-
cessful design patterns do not have a hardware counterpart.
Therefore there is a need to develop a hardware version of
a design pattern catalog, similar to what is already available
in software [12]. Similarly, there is a strong need to de-
velop standardized foundation libraries combining the most
successful patterns in an integrated way.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Figure 2. Iterator pattern

3.1 The iterator pattern

The iterator [7] design pattern (figure 2) is already found
in most software foundation libraries. Iterators provide a
way to access the elements of a data store (aggregate object)
without exposing its undelying representation.

The hardware version of entity Iterator defines an inter-
face for accessing and traversing elements, as shown in ta-
ble 2. ConcreteIterator implements the Iterator interface
and keeps track of the current position in the traversal of the
Aggregate. Due to the static nature of hardware some of the
details of the software Iterator are not applicable. For ex-
ample, the Aggregate is not responsible for creating Iterator
objects. Iterators must be instantiated at design time.

3.2 Basic Component Library

In a hardware design, data storage is based on a wide
range of memory technologies. Some require sequential ac-
cess, others are accessed randomly, or even associatively.
Besides, there are lots of algorithms performing common
data manipulation (copy, transform . . .). Others are specific
to an application domain (e.g. pixel-wise filtering, convo-
lution filtering or binary image labelling for image process-
ing applications). All those elements should be packed into
a library of basic components, in a similar way to software
foundation libraries. Designs built over this kind of libraries
are proven to easier to develop and maintain, and less error-
prone.

In the remaining of the current section, we will intro-
duce a proposal of such basic library, inspired on the C++
Standard Template Library [11]. This library is organised
around three kinds of concepts: containers, iterators and al-
gorithms.

3.2.1 Containers

Containers are equivalent to the Aggregate objects in the
Iterator Pattern. They are collections of elements that can be
implemented in a number of physical structures. Containers
are accessed through iterators. Table 1 classifies the basic

Table 1. Common containers
Containers Random Sequential

Input Output Input Output

stack - - F B

queue - - F F

read buffer - - F -

write buffer - - - F

vector ✔ ✔ F, B F, B

assoc. array ✔ ✔ - -

Table 2. Iterator Operations
Operation Meaning Applicability

inc move forward F / F, B

dec move backwards B / F, B

read get the element random / F, B

write put the element random / F, B

index set the current position random

set of containers depending on the type of memory access
required (random or sequential), and the type of traversal
allowed (forward, backards or both).

3.2.2 Iterators

Table 2 shows the set of operations allowed for each type
of iterator (forward, backwards or bidirectional). All iter-
ators keep track of their current position in the traversal of
the container. They are also able to read and/or write the
element at that position. Forward iterators include an addi-
tional operation to advance the current position. Backward
iterators include the possibility to move backwards. Ran-
dom iterators can set arbitrary positions through the index
operation. Although the iterator provides a common inter-
face for any container, it must have a deep knowledge of the
internals of the container. For that reason a concrete iterator
must exist for each type of container in the library.

3.2.3 Algorithms

The basic components library should also include a set of
commonly used algoritms. Every one should use the inter-
face provided by iterators to access data in the containers.
This would guarantee reusability of the algorithm, despite
of the container chosen for a certain implementation. It is
out of the scope of this paper to delimit the set of algorithms

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Figure 3. Model of the example

that should be included in the basic library. For illustration
purposes we have just selected two simple ones: copying
data from a source to a destination, and an image blur filter.

3.3 The Example Revisited

Lets apply the iterator pattern to the example described
in section 2. Figure 3 shows the resulting model. Now
data acquisition from the video decoder has been modelled
as a read buffer container (rbuffer), while the output video
stream is fed into a write buffer container (wbuffer). Ac-
cess to rbuffer and wbuffer containers is abstracted through
rbuffer it and wbuffer it iterators respectively. Therefore,
the video processing algorithm avoids direct manipulation
of the containers. As seen in figure 3, containers are imple-
mented over FIFO structures (note rbuffer and wbuffer fifo
suffixes) that accomodate the data stream. The copy algo-
rithm is almost trivial: an endless loop that sequences read
and write operations and iterator forwarding for both con-
tainers. All these operations can be performed in parallel in
a hardware implementation. Note that the simplicity of the
algorithm does not affect the validity of our approach, that
can be generalized to any other video processing algorithm.

Lest’s suppose that the system must be modified for a
new configuration, where both input and output streams are
fed into two separate static RAMs. This change does not
really affect the model, since the specific aggregates remain
the same (wbuffer and rbuffer). Therefore, the other ele-
ments in the model are not affected either, and no modifica-
tions are needed. The only difference is that the aggregates
must be implemented over static RAM instead of on-chip
fifos. This implementation can be automatically generated
as described in section 3.4, so this kind of modifications re-
quires no design effort.

It would also be possible to modify the pixel data repre-
sentation (from 8-bit grayscale to 24-bit RGB, for example).
Here two different alternatives arise depending on the RAM
data bus size: 1) For a 24-bit data bus, we should only re-
generate the implementations of the elements using the 24-
bit data pixel as the base type. 2) For an 8-bit data bus, we
should also modify the iterator code to perform three con-
secutive container reads/writes to get/set the whole pixel. In

any case, all this scenarios can be considered by the auto-
matic code generator, thus requiring no designer interven-
tion.

3.4. Pattern Implementation

Most design patterns are naturally described using the
object-oriented (OO) paradigm . While there exist several
hardware description languages with a limited support of
OO concepts (e.g. SUAVE [3], SystemC [2]), synthesis
tools that are able to generate a final implementation from a
hardware OO model are not mature at all, despite this is an
active research area [9].

On the other side, traditional hardware description lan-
guages, such as Verilog or VHDL, do not support some of
the necessary abstractions. Direct translation of the pro-
posed pattern would require at least: inheritance support, a
broader sense of genericity, and support for partial template
specialization.

Our solution is based on the concept of metaprogram-
ming [10]. An automatic code generator produces cus-
tomized versions of containers and iterators from a code
template. The template includes information on the avail-
able operations, shared resources and parameterized code
fragments. The result is a set of efficient VHDL compo-
nents, ready to be synthesized. Algorithms can be also de-
scribed through metamodels, although they have not been
considered in this paper and are left as future work. The
code generator must also be able to implement communi-
cation mechanisms for complex data types whose sizes do
not match that of the ports between components (such as
the modification of the pixel format discussed in 3.3). It is
also the responsible for including only those resources that
are really used by the selected operations.

Metaprogramming provides a number of additional ben-
efits. It allows automatic generation of arbitration logic
for shared physical resources (e.g. RAM). It also pro-
vides transparent selection of the communication protocol
between components. Here transparecy refers to the model,
not to the designer that must select the right values for the
different parameters considered in the metamodel.

As outlined in section 3.2, containers may be mapped to
several physical devices. All of them can be implemented in
any kind of RAM memory, while stacks can also be imple-
mented over FIFO cores, or queues and read/write buffers
can also mapped over LIFOs (these cores are commonly
found in FPGA designs).Some targets provide the most ef-
ficient implementation (such as a queue over a FIFO core),
while others may lower the overall system cost (such as the
same queue over an external RAM).

Metaprogramming defers until the last moment the se-
lection of the proper implementation of a container, depend-
ing on the requirements of the application. However, this

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

entity rbuffer_fifo is
port (
-- methods
m_empty : in std_logic;
m_size : in std_logic;
m_pop : in std_logic;
-- params
data : out std_logic_vector(7 downto 0);
done : out std_logic;

-- implementation interface
p_empty : in std_logic;
p_read : out std_logic;
p_data : in std_logic_vector(7 downto 0)
);

end rbuffer_fifo;

Figure 4. Read buffer over a FIFO device

selection may be based on previous characterization of the
design space. For example, in this paper, we characterized
all the physical devices available in the target platform (the
XSB-300E prototype board from XESS). We obtained in-
formation about data access times for every container, area,
power comsumption Since components are generated
automatically, it is feasible to generate versions of each one
for every physical target and range of configuration parame-
ters. This characterization of the design space would delimit
the region of interest given a certain set of constraints.

Only specific classes have a physical counterpart, when
mapping the abstract model of the design pattern over the
implementation. Each one becomes a VHDL entity and
an architecture. Abstract classes do only exist inside the
domain of the model, and are used to define a common
functional interface. The physical interface (that of the
VHDL entity), includes not only the functional interface,
but also an extra implementation interface, that includes,
among others, all the ports to interface the physical devices.
The physical entity of a container inmplemented over a
static RAM, for example, will include a port for each opera-
tion and each parameter from the functional interface (read,
empty . . .), in addition to all the ports related to the SRAM
interface (p addr, p data . . .). The VHDL architecture of
the container will define the logic to perform the mapping.

Figures 4 and 5 show the entities implementing the con-
tainer rbuffer used in the example in section 3.3. The first
one belongs to the implementation over a FIFO, while the
second one includes only the differences (the implementa-
tion interface) with respect to the first.

The VHDL architecture is simply a wrapper of the FIFO
core in the first case, and hardly includes any logic. In the
second case, the architecture encloses a little finite state ma-
chine that controls memory access, as well as a few regis-
ters to store the begin and end pointers of the queue (imple-
mented as a circular buffer) over the static RAM.

Iterators are also generated from their own metamodel.

...

-- physical interface
p_addr : out std_logic_vector(15 downto 0);

p_data : in std_logic_vector(7 downto 0);

req : out std_logic;
ack : in std_logic
);

end rbuffer_sram;

Figure 5. Read buffer over an SRAM device

One iterator metamodel must be defined for each kind of
container. The metamodel is the responsible for providing
the necessary functionality, depending on the type of traver-
sal and on whether it is an input or an ouput iterator. The
iterators used in the previous example don’t include much
functionality since they are extremely simple. In fact they
are no more than a wrapper that renames some signals and
provides the common interface already mentioned.

The implementation of the copy algorithm is really sim-
ple, since it only has to activate the inc and read operations
for the input iterator, and the inc and write operations for the
output iterator. The data is also connected from the input to
the output.

4. Experimental Results

The numbers in table 3 show the results of the imple-
mentation of three design examples using the Iterator pat-
tern. As a target platform we use the XSB-300E board
from XESS. Each cell shows the results corresponding to
the pattern-based versus the custom implementation. The
first two rows correspond to the example revisited in sec-
tion 3.3. The third example is a little bit different. In this
case, we have implemented a blur filter that processes an
image coming from the video decoder and sends it to a VGA
coder. The rbuffer container, instead of a simple FIFO has
been mapped over a special one. It is a 3-line buffer struc-
tured to provide 3 pixels in a column for each access. This
makes the convolution product in the blur algorithm very
simple and quite efficient since ideally a new filtered pixel
can be generated at each clock cycle.

It is clear from the results in the table, that there is a neg-
ligible overhead for the pattern-based implementation. The
use of the pattern affects only the structure of the model, but
does not necessarily imply extra logic. This is for example
the case of the iterators, which are only wrappers that will
be dissolved at the time of synthesizing the design. In the
above examples, ad-hoc solutions contain almost the same
physical components (FIFOs, algorithm FSM . . .).

The saa2vga examples represent two different points of

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Table 3. Design experiments.
Design FFs LUTs block clk

RAM MHz

saa2vga 1 147/147 169/168 2/2 98/98

saa2vga 2 69/69 127/127 0/0 96/96

blur 3145/3145 4170/4169 2/2 98/98

the design space. The first one (the FIFO implementation)
provides maximum performance at the highest cost. The
SRAM implementation is much smaller, but performance
will depend on memory access times.

5. Conclusions and Future Work

The use of IPs has proven to be a very effective way
of managing the ever growing complexity of SoCs. How-
ever, system integration is only a part of the design prob-
lem. Higher level design methodologies, where solutions
are considered in the domain of the problem without being
conditioned by the implementation must be provided. This
is recently attracting the interest of the research community
to some of the most successful paradigms used in software
design, such as OO Programming, UML and design pat-
terns.

The application of such technologies is not straightfor-
ward, due to the important differences between both do-
mains, but some contributions have been done to the use
of UML for system level design[5, 13], or the synthesis
from an object-oriented specification [9]. Also some papers
have already considered the applicability of design patterns
to hardware design. However, the fact that design patterns
are based on the object-oriented paradigm, and the lack of a
mature technology for OO-synthesis, makes that only struc-
tural patterns are considered, since they are easily mapped
over a hardware description language.

In this paper we propose the use of a well known soft-
ware design pattern (the Iterator) to provide a way to de-
couple algorithms from the underlying data structures. This
would make algorithms more generic and thus provide more
opportunities for later reuse. Unlike previous proposed
hardware design patterns, the iterator is behavioural, and
requires a higher level of abstractions that the one provided
by HDLs.This have been solved through the use of metapro-
graming. Also a basic components library based in this pat-
tern has been proposed. This library provides eficient phys-
ical implementations for sequential and random data struc-
tures. The deliberate simplicity of the examples shown in
the paper proves the flexibility and low overhead provided
by this modelling approach.

Along the paper, we raised a number of questions that
must be addressed. There is a need to develop a hardware
version of a design pattern catalog, similar to what is al-
ready available in software. Specific application domains
such as video image processing demand specific libraries
including common algorithms (convolution filters, image
labelling . . .). and specialized iterators. A hardware ab-
straction layer should be considered for the development of
the metamodels.

References

[1] Vsi alliance architecture document. VSI Alliance, 1.0 edi-
tion, 1997.

[2] G. Arnout. Systemc standard. In Design Automation Con-
ference, pages 563–577, Jun 2000.

[3] P. Ashenden. Object-oriented extensions to vhdl. In Int.
Conference on Chip Design Automation (ICDA 2000), Bei-
jing, China, August 2000.

[4] P. Astrm, S. Johansson, and P. Nilsson. Design patterns for
hardware datapath library design. In Swedish System-on-
Chip Conference, 2001.

[5] R. Chen, M. Sgroi, L. Lavagno, G. Martin, A. Sangiovanni-
Vincentelli, and J. Rabaey. Embedded system design using
uml and platforms. In Forum on Specification and Design
Languages (FDL), Marseille, France, September 2002.

[6] R. Damasevicius, G. Majauskas, and V. Stuikys. Application
of design patterns for hardware design. In Design Automa-
tion Conference, Jun 2003.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1995.

[8] S. Pillement, D. Chillet, and O. Sentieys. Behavioral ip
specification and integration framework for high-level de-
sign reuse. In International Symposium on Quality Elec-
tronic Design (ISQED), 2002.

[9] C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhn, and
W. Rosenstiel. Object-oriented modeling and synthesis of
systemc specifications. In Asia South Pacific Design Au-
tomation Conference (ASPDAC), pages 238 – 243, Yoko-
hama, Japan, 2004.

[10] T. Sheard. Accomplishments and research challenges in
metaprogramming. In 2nd InternationalWorkshop on Se-
mantics, Application, and Implementation of Program Gen-
eration (SAIG), Lecture Notes in Computer Science, pages
2–44. Springer Verlag, 2001.

[11] A. Stepanov and M. Lee. The standard template library.
Hewlett Packard Laboratories, 1501 Page Mill Road, Palo
Alto, CA 94304, October 1995.

[12] N. Yoshida. Design patterns applied to object-oriented soc
design. In 10th Workshop on Synthesis and System Integra-
tion of Mixed Technologies (SASIMI 2001), Nara, Japan, Oct
2001.

[13] Q. Zhu, A. Matsuda, S. Kuwamura, T. Nakata, and M. Shoji.
An object-oriented design process for system-on-chip us-
ing uml. In International Symposium on System Synthesis
(ISSS), pages 249–254, Kyoto, Japan, September 2002.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

