
picoArray technology: the tool’s story

Andrew Duller, Daniel Towner, Gajinder Panesar, Alan Gray, Will Robbins
picoChip Designs Ltd., Riverside Buildings,

108 Walcot Street, Bath BA1 5BG, UK
andy.duller@picochip.com

Abstract

This paper briefly describes the picoArrayTM architec-
ture, and in particular the deterministic internal commu-
nication fabric. The methods that have been developed for
debugging and verifying systems using devices from the
picoArray family are explained. In order to maximize the
computational ability of these devices, hardware debugging
support has been kept to a minimum and the methods and
tools developed to take this into account.

1. Introduction

The wireless communications field is experiencing a pe-
riod of major expansion. This is happening all over the
world and is not dominated by any one region in particu-
lar. In a field in which different standards are fixed for dif-
ferent regions of the world, where standards are in a state
of flux or even where no standards exist, it is very costly to
enter the market with a custom ASIC solution. What is re-
quired is a scalable programmable solution, which can cater
for most, if not all, of these areas. To this end the picoAr-
ray and a rich toolset have been created.

The picoArray is a tiled processor architecture in which
hundreds of processors are connected together using a de-
terministic interconnect [4, 3]. The level of parallelism is
relatively fine grained with each processor having its own
small amount of data and instruction memory. Each pro-
cessor runs a single process in its own memory space and
uses “signals” to synchronise and communicate. Multiple
picoArray devices may be connected together to form sys-
tems containing thousands of processors using peripherals
which effectively extend the on-chip bus structure.

In order to provide a massively parallel, scalable solu-
tion that is commercially viable, it has been necessary to
re-think methods of debug and verification in the follow-
ing areas:

Scale Depending upon the target, systems solutions may
require moderate or massive computational power. To

address this, many picoArray devices may be con-
nected together1, creating systems containing thou-
sands of processors.

Reduced non-essential hardware Specialised hard-
ware for anything other than computation must be jus-
tified and the emphasis should be on system-wide
rather than processor-centric debug hardware. There-
fore conventional support, such as register or mem-
ory trace mechanisms, is not as useful as in a
uni-processor system. In the picoArray, hardware sup-
port for debug has been kept to a minimum in order
to allow more processors to be fitted onto a single de-
vice.

Environment The picoArray devices are designed for use
in embedded environments where there are relatively
few inputs and outputs. In such environments, the
bandwidth available for debugging traffic is limited.
Relatively light weight access is provided to the pi-
coArray via a JTAG interface and the external proces-
sor interface.

Communication and synchronisation Many paral-
lel systems use special purpose libraries (e.g., Posix
threads [2], Message Passing Interface [8]) or lan-
guage support mechanisms (e.g., Java threads [5]) to
handle communication and synchronisation of paral-
lel processes. This is very difficult to justify in an em-
bedded system where memory cost is an area of con-
cern. The picoArray uses a deterministic interconnect
fabric called the picoBus. This behaves like a hand-
shaken FIFO between processes, and is used for
communication and synchronisation. No run-time ar-
bitration of the picoBus is necessary, leading to sim-
pler hardware and removing a possible source of
bugs.

Conventional debuggers are usually designed for a sin-
gle processor, and normally require a reasonable amount
of hardware support. Even debuggers from vendors who

1 Boards with up to 16 devices have been produced.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



claim to support multi-processor systems will require hard-
ware support. More importantly, however, conventional de-
buggers will not scale to systems consisting of hundreds or
thousands of processors.

The approach to debug and verification has been to ex-
ploit the programming paradigm provided by the picoAr-
ray [4, 3] and to create a rich set of tools to aid system-
wide debug and verification. The approach can be divided
into two main aspects: language features and software tools.

The picoArray tools support an input language which is a
combination of VHDL [1], ANSI/ISO C and assembly lan-
guage. Individual processes are written in C and assembler,
while structural VHDL is used to describe how processes
are connected together using signals. Signals are strongly
typed, and have specified bandwidths. They may be syn-
chronous or asynchronous, point-to-point or point-to-multi-
point. Processes are statically created by describing their
number and type in the source files — no runtime creation
of processes is possible. Thus, after a system has been com-
piled, the complete set of processes and their connectivity
is known, which ensures that the system will behave deter-
ministically.

The most common software tool for debugging is the
symbolic debugger, which allows the programmer’s origi-
nal source code to be displayed, along with the contents of
source variables, on a per-process basis. The use of sym-
bolic debugging is commonplace, so will not be considered
further in this paper. The additional mechanisms that have
been developed are the following:

design browser This allows both static and dynamic anal-
ysis of a user’s design. The overall structure of a sys-
tem can be graphically displayed in a number of ways.
This allows the user to verify that the overall system
has been connected in the way that was intended and to
visualise and navigate through a complex design which
may have been coded by many people. In addition, dy-
namic analysis can be performed and it can be used to
visualise problems such as those associated with data
throughput and deadlock.

simulation The cycle accurate simulator allows all of the
processor’s internal state to be viewed, including as-
pects that the real hardware does not allow access to.
Typically the user would start their development here
and then migrate to hardware.

scripting The debugger can be programmed using Tcl/Tk.
This allows the user to build on the basic system pro-
vided by the standard debugger.

probes These are processes which can be inserted into a
user’s design during debugging, to enable complex
real-time analysis.

file I/O Data can be streamed in to and out of a system us-
ing files.

Switch

Processor

Example signal path

Figure 1. picoArray Interconnect

The remainder of this paper gives an overview of picoAr-
ray devices, a brief description of each debug mechanism,
and then shows how the debug and verification tools might
be used over the lifetime of a design, from initial compo-
nent to integrated system.

2. The picoArray Concept

2.1. The picoArray Architecture

The latest device - PC102 is based around the picoAr-
ray tiled processor architecture in which over 300 proces-
sors (3-way VLIW, Harvard architecture with local mem-
ory), and 14 co-processors (Function Accelerator Units or
FAUs) are interconnected by a 32-bit picoBus and pro-
grammable switches.

The term Array Element (AE) is used to describe ei-
ther processors or co-processors (i.e. there are 322 AEs in
the array). There are three processor variants which share
the same basic structure: Standard AE (STAN), Control AE
(CTRL) and Memory AE (MEM). The memory configura-
tion and number of communications ports varies between
AE types.

2.2. Inter-processor Communications

Within the picoArray core, AEs are organised in a two
dimensional grid, and communicate over a network of 32-
bit buses (the picoBus) and programmable bus switches.
AEs are connected to the picoBus by ports. The ports act
as nodes on the picoBus and provide a simple interface to
the bus based on put and get instructions.

The inter-processor communication protocol is based on
a time division multiplexing (TDM) scheme, where data
transfers between processor ports occur during time slots
scheduled automatically by the tools and controlled using
the bus switches. The bus switch programming and the

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



scheduling of data transfers is fixed at compile time and re-
quires no run-time arbitration. Figure 1 shows an example in
which the switches have been set to form two different sig-
nals between processors. Signals may be point-to-point or
point-to-multi-point. In the latter case, the data transfer will
not take place until all the processor ports involved in the
transfer are ready. The total internal data bandwidth for the
signals is 3.3 Tera-bits per second 2.

The default signal transfer mode is synchronous; data is
not transfered until both the sender and receiver ports are
ready for the transfer. If either is ready before the other then
the transfer will be retried during the next available time
slot. If, during a put instruction, no buffer space is available
then the processor will sleep (hence reducing power con-
sumption) until space becomes available. In the same way,
if during a get instruction there is no data available in the
buffers then the processor will also sleep. This protocol en-
sures that no data can be lost.

There is also an asynchronous signal mode where trans-
fer of data is not handshaken and in consequence data can
be lost by being overwritten in the buffers without being
read.

2.3. External Communications

The picoArray has three methods of external communi-
cations. They are:

• External Processor Interface (EPI),

• Inter-picoArray Interface (IPI),

• Asynchronous Data Interface (ADI).

These can all be connected to the picoBus and can be ac-
cessed using signals. The EPI can be used to configure pi-
coArray devices and can be used by debugging tools for in-
put and output of (2.5 Giga-bits per second) information.

The IPI is used to connect picoArray devices together
and can be viewed as a way of extending the picoBus across
devices.

The ADI is used for exchanging data with high band-
width (5 Giga-bits per second) external asynchronous data
streams.

Each device has a single EPI and four interfaces each of
which can be configured as either an IPI or an ADI.

3. picoArray Debug and Analysis

3.1. Language Features

The language features aid verification and integration
through three main features: strong type checking, fixed
process creation, and bandwidth allocation.

2 322 processors x 2 buses x 32-bits x 160MHz clock

Strong type checking is used to ensure that whenever
data is communicated from one process to another, the data
will be interpreted by both producer and consumer in the
same way. Types are selected from a library of built-in
types, or by the user defining their own types. Types used
in communication are limited to 32-bits, which is the maxi-
mum size which may be transferred in a single communica-
tion over the picoBus. At the structural level, processes will
be defined with ports of specific types, and they will be con-
nected with signals which must match the port types. Within
a process, any data which is put or get from a port must be of
the correct type. For processes written in C, this is achieved
by synthesising the available types using C encoding rules
(e.g., using typedef’s, union’s, and struct’s), and hence tying
in to the C compiler’s type system. Thus, end-to-end com-
munication of data can only occur when all processes and
signals agree on the type format. This facilitates integration
of independently developed components since any discrep-
ancies in type formats will be detected at compile time.

The structural VHDL used to define a system requires
the number of processes, and their interconnections, to be
fixed at compile time. During compilation, the tools will al-
locate each process to its own processor and schedule the
signals connecting the processes on to the picoBus inter-
connection fabric. Because of this compile-time scheduling,
non-deterministic runtime effects such as process schedul-
ing or bus contention have been eliminated. This makes it
easier to integrate systems. If problems are found, it also
makes the reproduction of the problems, their debugging
and the verification of their fixes easier.

In addition to specifying fixed signals connecting pro-
cesses, the signals are also allocated bandwidth. This is
achieved using a language notation which allows the fre-
quency of communication over the signal to be specified.
Processes requiring high signal bandwidths will use high
frequencies (e.g., every 4 cycles), while processes requiring
low bandwidth will use low frequencies (e.g., every 1024
cycles).

3.2. Design Browser

The design browser is a tool which allows the user’s log-
ical design to be viewed graphically and can be used both
during simulation and when executing a design on hard-
ware. The following different graphical views are possible:

• hierarchical,

• flat within a given scope,

• as the strongly connected components (SCC).

The hierarchical view mirrors the structural hierarchy
that was created by the user and allows each level of this hi-
erarchy to be explored. An example of this is shown in fig-
ure 2.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Figure 2. Design browser hierarchical display

There are times when the user wishes to see more of a de-
sign than is permitted by the hierarchy display, and the “flat”
display provides this. If displayed from the root of the de-
sign the entire design is displayed at once. In addition, by
displaying from a scope other than the root, subtrees of the
design can be viewed. The major difference between this
and the hierarchy display is that from a given scope all of
the leaf instances are displayed at once.

The final view comes from thinking of a design as a di-
rected graph and then producing a single level of hierarchy
by identifying the strongly connected components (SCC).
Each of these components can be viewed on their own. An
example of this is shown in figure 3. The importance of the
SCC view is that from the root level the graph becomes
acyclic (a directed acyclic graph) and this gives advantages
when trying to debug a system which has deadlock, live-
lock or data throughput problems, because it separates out
the parts of the design that contain feedback from those that
are simply pipeline processing.

In addition to these static features the design browser can
provide dynamic information about the each instance in a
design, for example whether it is processing or waiting for
a communications operation. An example of this display is
shown in figure 3 where the boxes are coloured green for
processing and red for waiting on communications.

3.3. Simulation

The cycle accurate simulation system allows users to
build, test and verify their entire design before moving to
the hardware. The user is able to extract the state of the sys-
tem (on a cycle-by-cycle basis) in order to check against the
behaviour on hardware. Importantly, the same simulation
system was used to provide a “golden reference” during the
design and verification of the PC101 and PC102 chips.

The same source-level debugging interface exists on the
hardware as on the simulator, enabling the user to migrate

Figure 3. Design browser strongly connected
component display

from one environment to the another without making any
changes to their design or their test-benches.

3.4. Scripting

While debugging large parallel systems, operations such
as viewing the source code or variable values of individ-
ual processes become too low level; this is analogous to
debugging a compiled process by inspecting its raw ma-
chine code and register values. For large parallel systems
it is more convenient to be able to abstract the debugger
to provide a higher, system-level interface. Such an inter-
face allows the details of individual processes to be hidden,
and replaced by system-specific displays. Clearly, it is im-
possible to provide interfaces for every possible system, so
instead the debugger can be programmed using Tcl/Tk [7].
This allows the users to create their own system-specific in-
terfaces, built on top of the debugger.

3.5. FileIO

When testing and debugging it is common to wish to use
disk files in order to inject data into a system or to record
intermediate results. This is achieved by providing an AE
template which interfaces to the picoBus in the usual way
using signals but which is also “connected” to a Unix file.
The advantage of this method is that the same user’s code
can be used whether the system is running as a simulation or
on hardware. The FileIO AE has two different implementa-
tions, one for simulation and one for hardware. In a simula-
tion the connection to the file is simple, since the simulation
simply consists of a piece of compiled C++. In hardware,
the memory of the AE is used to buffer the data and when
required the AE requests the debugger to either empty its
memory (for an output FileIO) or fill it (for an input FileIO).

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Probe Probe

@x @y

@x @y

Figure 4. Probe insertion

3.6. Probes

Probes are special purpose processes inserted into the
user’s design by utilising unused processors. Probes can be
connected to one or more signals, and can non-intrusively
monitor all traffic which passes over the signals, as shown
in figure 4. They do this by using the bus interconnect’s abil-
ity to create 1-to-many connections. For example, suppose
two processes in a system were connected by a 1-to-1 sig-
nal. If a probe is inserted during debugging to monitor that
signal, the debug tools will change the 1-to-1 signal into a
1-to-many signal, with the probe acting as an extra destina-
tion. The original processes are unaffected by this change
(both in terms of latency and bandwidth), but the probe is
now able to monitor all communication over that signal.

Probes are implemented as processes, and so can run at
full hardware speed. This enables probes to be used to de-
bug systems in real-time. One use for probes is to allow
real-time signal traces to be performed. Other uses include
signal assertions, and on-chip analysis of data being pro-
cessed.

Signal assertion probes can be used to check that the data
passing over a signal conforms to some compile-time spec-
ified property. For example, all signals in picoArray devices
have pre-allocated bandwidth. A signal assertion probe
could be attached to a signal to record the bandwidth actu-
ally used, thus allowing signals with over-allocated band-
width to be detected.

Probes can be used to perform on-chip analysis of signal
data, rather than having to transport the data off-chip (e.g.,
using traces) for later analysis. For example, during the de-
velopment of an in-house base station, a probe was created
which performed Bit-Error Rate (BER) computation on sig-
nals. These BER probes could be used to monitor the per-
formance of the base station’s Viterbi decoder’s in real-time,
under different system loads.

4. A Method for Design and Debug

This section describes a typical process for creating a pi-
coArray based application.

4.1. System Decomposition

Typically, this is done by hierarchically breaking down
the problem into components consisting of processes con-
nected by signals. Experience has shown that components
generally contain a few tens of processes, however the num-
ber of processes required does not have to be specified at
this stage. The boundaries of these components will also
have signals defined and will eventually be connected to
other parts of the system. Knowledge of the real-time sys-
tem being developed is used to specify signal properties,
such as maximum bandwidth and signal type. The proper-
ties can be checked during integration using signal asser-
tions, which are described in section 4.3.

4.2. Component Coding

Two approaches can be taken, the choice being dictated
by the complexity of the component.

For small components in which the division into AEs can
be determined easily these AEs can be coded using C or as-
sembler and connected using appropriate signals.

For larger components it may be preferable to initially
produce a functional representation using C. This can be
simulated even when the code size exceeds the memory
for any AE, and allows functional testing of this compo-
nent prior to its division into individual AEs.

Whichever approach is used the code can be tested by
creating test harnesses using FileIO (see section 3.5) to
mimic the external components. The symbolic debugger
and its attendant tools can be used to find bugs within the
AEs.

The migration of the code to hardware is eased by the
fact that the same FileIO test harnesses produced for sim-
ulation can be used for verification. This highlights a huge
advantage of this approach, since testing on hardware can
be performed at a very early stage. This means that compo-
nents can be tested for minutes or hours of real time, which
would be impossible using simulation.

4.3. Small Scale Integration

As components are completed they can be integrated.
The strong typing, bandwidth allocation, and fixed pro-
cess creation ensure that components developed by differ-
ent people will fit together properly. Signal assertions can
be written to encode properties (such as signal value or min-
imum throughput) of the signals, and these can be checked
during integration using assertion probes.

If integration fails (components fail to communicate
properly), then this is caused by problems between compo-
nents, rather than within a component (since the component

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



has been verified in isolation, has static processes, fixed lo-
cal signals, etc.). The suite of system-wide tools (probes,
design browser, etc.) can be used to identify the problem.

4.4. Large Scale Integration and Testing

This phase of development can only really be done on
the hardware. At this stage all of the FileIO will have been
replaced by real components.

It is important to be able to monitor aspects of perfor-
mance in real-time and this can be done using customised
probes which monitor various signals and compare data
throughput against predetermined limits. In addition, it is
possible to monitor the behaviour of the system when pro-
cessing real-world data, and to inject data by using the EPI.
The results of the monitoring can be displayed using cus-
tom GUI’s which the user can easily develop.

4.5. Comparison with Traditional Techniques

The power of the overall approach described here is that
once a component has been written and tested, it can be as-
sumed to work from that point on. Other parallel systems
can behave like this for individual components, but then fail
to work during integration or, even worse, during customer
use. Possible integration problems include:

• priority inversion (e.g., Mars Pathfinder [6]).

• rogue processes corrupting shared memory

• overflowing message queues

• scheduling failures (e.g., improperly bounded or ex-
cessively large critical sections).

• multi-processor bus contention causing non-
deterministic communication delays

• incoherency of multi-processor caches

Some or all of these problems will afflict other types of
parallel systems, from multi-threaded programs containing
just two processes through to large scale multi-processors.
These problems are difficult to track down because they
defy logical analysis, may behave non-deterministically,
may only fail very infrequently, or may disappear when de-
bug code is inserted to find the problem. Even if the cause
of the problem is found, it is often difficult to write veri-
fication to prevent the bug recurring, because of the need
to verify the entire system, not just the component or inter-
face which causes the problem. In the worst case, verifica-
tion may not be possible because it is not apparent why a fix
actually works!

This solution avoids these types of problem in integra-
tion. Individual components which have been properly ver-
ified in isolation will behave in the same way when inte-
grated into a complete system. The system behaves deter-

ministically, so if problems are found, they can be repro-
duced, isolated, fixed, and verified. The overall develop-
ment of systems is more predictable (timescales, etc.), since
development isn’t held up by strange problems which can’t
be found until integration.

5. Conclusion

In order to address its target markets in wireless commu-
nications, a family of code compatible devices has been cre-
ated (currently PC101 and PC102) using the picoArray con-
cept that provides the large computation power required by
these applications. To ensure the largest possible computa-
tional resource, and recognising that system-wide debug is a
major problem in multi-processor designs, a rethink of how
to apply debugging was necessary. Therefore it was neces-
sary to shift the debug burden from the hardware to the ex-
tensible software tools. The tools provide a way of debug-
ging both single processors and more importantly the large
multiprocessor systems possible on a picoArray, or indeed
an array of picoArray devices. Experience has shown that
using these tools it is possible to construct large working
systems (currently in excess of 1000 processors).

References

[1] P. Ashenden. The Designer’s Guide to VHDL. Morgan Kauf-
mann, ISBN 1-55860-270-4, 1996.

[2] D. R. Butenhof. Programming with POSIX Threads. July
1997.

[3] P. Claydon. A Massively Parallel Array Processor. In Embed-
ded Processor Forum, 2003.

[4] A. Duller, G. Panesar, and D. Towner. Parallel Processing
— the picoChip way! In J. Broenink and G. Hilderink, ed-
itors, Communicating Processing Architectures 2003, pages
125–138, 2003.

[5] S. M. Inc. Threads: Doing two or more tasks at once.
http://java.sun.com/docs/books/tutorial/essential/threads/index.html.

[6] M. Jones. What really happened on Mars?
http://research.microsoft.com/ mbj/Mars Pathfinder/-
Mars Pathfinder.html, 1997.

[7] J. K. Ousterhout. Tcl and the Tk Toolkit. May 1994.
[8] P. Pacheco. Parallel Programming with MPI. November 1996.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 


