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Abstract
We investigate a new fault ordering heuristic for test gen-
eration in full-scan circuits. The heuristic is referred to as
the accidental detection index. It associates a value
ADI (f ) with every circuit fault f . The heuristic estimates
the number of faults that will be detected by a test gen-
erated for f . Fault ordering is done such that a fault with
a higher accidental detection index appears earlier in the
ordered fault set and targeted earlier during test genera-
tion. This order is effective for generating compact test
sets, and for obtaining a test set with a steep fault cover-
age curve. Such a test set has several applications. We
present experimental results to demonstrate the effective-
ness of the heuristic.

1. Introduction
Dynamic test compaction procedures for full-scan circuits
[1]-[4] typically attempt to generate test vectors that
detect as many faults as possible. In this way they reduce
the number of test vectors required for detecting all the
detectable circuit faults. Dynamic compaction heuristics
added to a test generation procedure typically increase the
test generation time significantly, to several times the ori-
ginal run time of the test generation procedure without the
dynamic compaction heuristics.

Some of the dynamic test compaction heuristics can
be expected to increase the run time. For example, using
the unspecified values of a test vector to detect secondary
target faults [1] implies that in the worst case, for a circuit
with n faults, there will be O (n ) test generation attempts
for every vector instead of a single attempt when secon-
dary target faults are not used. Other dynamic compaction
heuristics do not increase the worst-case complexity of
test generation. One such heuristic is fault ordering. Under
a fault ordering heuristic, the faults are placed in the set of
target faults F in a certain order, and the test generation
procedure considers the faults in the order they appear in
F . For example, in [2], the fault ordering heuristic uses
maximal sets of independent faults in fanout free regions
[5]. Faults in larger sets are placed at the beginning of F
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to ensure that the first tests generated are necessary for
detecting all the faults.

In this work we investigate a new fault ordering
heuristic. We refer to the heuristic as the accidental
detection index. An accidental detection index is associ-
ated with every circuit fault f , and it estimates the number
of faults that will be detected by a test generated for f .
This has several applications.
(1) For dynamic test compaction, a fault with a higher
accidental detection index should be targeted earlier in
order to ensure that each new test vector added to the test
set detects as many faults as possible. Similar to other
dynamic compaction heuristics, this reduces the final test
set size.
(2) The procedures of [6] and [7] reorder a test set so as to
obtain a fault (or defect) coverage curve which is as steep
as possible. With every additional test, a steeper fault cov-
erage curve has a higher fault coverage. The motivation
for studying this problem is as follows. The reordered test
set is useful if the test set is too large to fit in the tester
memory and it is necessary to remove some tests in order
to avoid multiple loads of the tester memory. Removing
the last tests of a reordered test set with a steeper fault
coverage curve reduces the fault coverage by a smaller
amount. Similarly, removing the last tests of a reordered
test set can be used to reduce the test application time
while minimally reducing the fault coverage. In addition,
with a reordered test set, more defects are expected to be
detected by the earlier tests. Thus, an appropriate reorder-
ing of the test set reduces the time a defective chip is
expected to spend on a tester until the defect is detected.
The method of [6] reorders the test set based on a-
posteriori probabilities for tests in the test set to detect
defective chips. The method of [7] uses the results of n -
detection fault simulation, and does not require any a-
posteriori information. Using the method of [7], tests that
detect larger numbers of faults appear earlier in the reor-
dered test set, satisfying the requirement for a steep fault
coverage curve. If test generation is performed such that
faults with a higher accidental detection index are targeted
earlier, a steeper fault coverage curve is expected even
without reordering the test set. In addition, the test vectors
obtained in this way are expected to be more effective in
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obtaining a steeper fault coverage curve than test vectors
obtained without the accidental detection index heuristic.

In this work we compute the accidental detection
index based on a given set of input vectors U (a small set
of random vectors that detects a certain percentage of the
circuit faults). We order the set of faults including the
faults detected by U . In other words, we do not drop the
faults detected by U from the set of target faults F . This
is done for the following reasons. First, most of the test
generation effort is expended for the detection of hard-to-
detect faults, which are not detected by U . Thus, dropping
the faults detected by U from F is not likely to reduce the
test generation time. Second, a test for a fault with a high
accidental detection index that is detected by U may
accidentally detect a hard-to-detect fault and save the test
generation effort otherwise required to detect it. More
important, random input vectors are not desirable if the
goal is to generate a compact test set or achieve a steep
fault coverage curve. To achieve these goals it is better to
perform test generation considering all the target faults.

Fault ordering was considered earlier in [8]-[10]. In
[8] and [9], fault ordering is done to speed up fault simu-
lation of synchronous sequential circuits by grouping
together faults that cause similar events. Here, we are not
concerned with the events that a fault causes during fault
simulation. In [10], fault ordering is done to support the
generation of compact test sequences for synchronous
sequential circuits by targeting hard-to-detect faults first.
The accidental detection index defined here addresses
more directly the issue of identifying faults whose tests
will detect large numbers of other faults. These may or
may not be hard-to-detect faults. Moreover, for the appli-
cation of steepening the fault coverage curve, we prefer to
place the hard-to-detect faults (the faults not detected by
U ) at the end of the ordered set of faults since their
accidental detection index is unknown and may be low.

The paper is organized as follows. In Section 2 we
define the accidental detection index. In Section 3 we dis-
cuss fault ordering based on the accidental detection
index. In Section 4 we present the results of test genera-
tion using the fault orders of Section 3. We consider the
two applications of dynamic test compaction and genera-
tion of test sets with steep fault coverage curves.

2. Accidental detection index
In this section we define the accidental detection index
ADI (f ) for a fault f and provide a method for estimating
its value.

The accidental detection index of a fault f is
defined so as to capture the number of faults that will be
detected by a test vector generated for f . Except for f , all
the other faults detected by the test vector are detected
accidentally. Since f may have several test vectors, a

conservative definition of the accidental detection index of
a fault f considers the minimum number of faults that will
be detected by a test vector generated for f . It is also pos-
sible to use the average value, where the average is com-
puted over all the test vectors that detect f . We take the
conservative approach and define the accidental detection
index of a fault f as the minimum number of faults that
will be detected by a test generated for f .

Computation of the exact value of the accidental
detection index of a fault f will have a high computa-
tional complexity. In this work, we compute an estimate
for the accidental detection index based on a set of input
vectors U . In our experiments, U is a set of random vec-
tors of limited size N . We discuss the selection of N later.

We denote by F the set of target faults (single
stuck-at faults in our case). We denote by FU the subset of
F detected by U . We compute an accidental detection
index ADI (f ) only for a fault f ∈ FU , i.e., only for faults
detected by U . For a fault f ∈ F −FU that is not detected
by U the accidental detection index is by definition zero,
i.e., ADI (f ) = 0 for f ∈ F −FU . For f ∈ FU , we
include f itself in the count of faults for the accidental
detection index. Therefore, ADI (f ) ≥ 1 for every
f ∈ FU .

In order to compute ADI (f ) for f ∈ FU , we simu-
late the faults in FU under U without fault dropping and
find for every fault f ∈ FU the subset of input vectors
D (f ) ⊆ U that detect f . In addition, we find for every
input vector u ∈ U the number of faults detected by u .
This number is denoted by n det(u ). Instead of fault simu-
lation without fault dropping it is also possible to use n -
detection fault simulation to estimate n det(u ) for every u .

Let D (f ) = {u 1,u 2, . . . ,um }. For every ui ∈ D (f )
we have the number n det(ui ) of faults that will be detected
if ui is generated for detecting f . The minimum value of
n det(ui ) over all ui ∈ D (f ) is an estimate of the
minimum number of faults that will be detected acciden-
tally by a test generated for f . We use this value as the
accidental detection index of f , i.e., we set

ADI (f ) = min{n det(ui ):ui ∈ D (f )} for f ∈ FU .
The following example demonstrates this definition.

We consider the combinational logic of MCNC finite-state
machine benchmark lion . The circuit has four inputs and
40 single stuck-at faults included in the set of target faults
F . We include all the 16 input vectors of the circuit in the
set U . All the faults in F are detected by U and included
in FU . The input vectors in U detect the numbers of
faults shown in Table 1. For every u ∈ U we show in
Table 1 the value of n det(u ). The vector u is given by its
decimal representation.

Next, we consider several of the faults of lion and
compute for them the accidental detection index ADI (f ).
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Table 1: Input vectors of lion

u 0 1 2 3 4 5 6 7����������������������������������������������
n det(u ) 11 11 13 13 12 11 11 15��

�

u 8 9 10 11 12 13 14 15����������������������������������������������
n det(u ) 11 11 8 7 11 14 8 8��

�

The fault f 0 is detected by the set of input vectors
D (f 0) = {9, 10, 11, 12, 13, 14, 15}. The smallest value of
n det(u ), where u ∈ D (f 0), is obtained for u = 11, and it
is equal to 7. This value implies that in the worst case, a
test generated for f 0 will detect seven faults. The best
case is if u = 13 is generated and detects 14 faults. How-
ever, we use the smallest value as the accidental detection
index and set ADI (f 0) = 7.

The fault f 2 is detected by the set of input vectors
D (f 2) = {4, 7, 13}. The smallest value of n det(u ) is
obtained for u = 4, and it is equal to 12. This value
implies that in the worst case, a test generated for f 2 will
detect 12 faults. We obtain ADI (f 2) = 12.

The fault f 15 is detected by the set of input vectors
D (f 15) = {10, 14, 15}. All three input vectors have the
same value of n det(u ), equal to eight. Therefore,
ADI (f 15) = 8.

3. Ordering the set of target faults
The accidental detection index is incorporated into the test
generation process by ordering the set of target faults
before test generation starts. We describe two pairs of
fault orders based on the accidental detection index in this
section. The first order in every pair is more suitable for
the application of steepening the fault coverage curve.
The second order in every pair is more suitable for
dynamic test compaction. We also describe two orders
that will be used later for comparison purposes.

From the definition of the accidental detection
index, a test for a fault with a higher accidental detection
index will detect more faults accidentally than a test for a
fault with a lower accidental detection index. Conse-
quently, it is expected that the test generation process will
be improved if the faults are ordered by decreasing value
of ADI (f ) such that faults with higher accidental detec-
tion indices appear earlier. We denote by
Fdecr = <f 1,f 2, . . . ,f n > the set of faults F reordered such
that ADI (f i ) > ADI (f j ) for every 1 ≤ i < j ≤ n .

We note that, in this work, the accidental detection
indices are computed based on a set of input vectors U
that may not detect all the circuit faults. A fault f that is
not detected by U is assigned ADI (f ) = 0. We can treat
the faults with ADI (f ) = 0 in one of two ways. Since we
cannot obtain a higher estimate of ADI (f ) from U , we
can assume that the ability of a test for f to accidentally
detect other faults is low and keep f at the end of the fault

set. This is the approach taken in defining Fdecr . A dif-
ferent approach is to place faults with ADI (f ) = 0 at the
beginning of the fault set since they are hard-to-detect,
and they are not likely to be accidentally detected by tests
for other faults. Consequently, it may be advantageous to
target them first. To accommodate this view we define an
ordered fault set, denoted by F 0decr , that includes the
faults with zero accidental detection indices first, followed
by the remaining faults in order of decreasing accidental
detection index. The only difference between Fdecr and
F 0decr is that in Fdecr the faults with ADI (f ) = 0 appear at
the end, while in F 0decr they appear at the beginning.

We point out that some of the faults with
ADI (f ) = 0 may be undetectable. For undetectable faults,
their placement in the ordered fault set will not affect the
test set size or the steepness of the fault coverage curve.
Thus, we do not expect a difference between Fdecr and
F 0decr when the limited set of input vectors U detects all
the detectable circuit faults. When detectable faults have
ADI (f ) = 0, we expect Fdecr to yield a steeper fault cov-
erage curve than F 0decr since it follows more closely the
accidental detection indices. We expect F 0decr to yield a
smaller test set since it first generates tests for the faults
that are not likely to be accidentally detected by tests for
other faults. Depending on the application, either Fdecr or
F 0decr should be used.

A dynamic ordering procedure will update the
values of n det(u ) and ADI (f ) as faults are included in the
ordered fault set. This will imitate the detection of faults
by the test generation procedure when it considers the
ordered fault set. We denote the resulting ordered fault
sets by Fdynm and F 0dynm (since values of n det(u ) and
ADI (f ) are updated dynamically during the ordering pro-
cess). We demonstrate the construction of Fdynm next by
considering MCNC finite-state machine benchmark lion .
The values of n det(u ) for this circuit are shown in Table 1.

Initially, Fdynm = φ. The highest accidental detec-
tion index is obtained for f 22 with D (f 22) = {7} and
ADI (f 22) = 15. We therefore include f 22 in Fdynm first to
obtain Fdynm = <f 22>. The value of n det(7) for input vec-
tor 7 can now be reduced by one, since f 22 does not need
to be considered further. In general, we do not attempt to
estimate which other faults will be detected by a test for a
fault f , since this depends on the particular test generated
for f . We only assume that f will be dropped from the set
of target faults after it is considered, and we update the
values of n det(u ) for every u ∈ D (f ). Following this we
also update the value of ADI ( f̂ ) for every f̂ ∈ F −Fdynm .

The highest accidental detection index for lion is
now obtained for f 18 with D (f 18) = {7, 13} and
ADI (f 18) = 14. We include f 18 in Fdynm to obtain
Fdynm = <f 22,f 18>. The values of n det(7) and n det(13) for
input vectors 7 and 13 are reduced by one since f 18 does
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not need to be considered further.
The highest accidental detection index is now

obtained for f 14 with D (f 14) = {2} and ADI (f 14) = 13.
We include f 14 in Fdynm to obtain Fdynm = <f 22,f 18,f 14>.
The value of n det(2) is reduced by one since f 14 does not
need to be considered further.

The highest accidental detection index is now
obtained for f 21 with D (f 21) = {7, 13} and
ADI (f 21) = 13. Here it is important to note that the origi-
nal value of ADI (f 21) was 14, since n det(7) was originally
15 and n det(13) was originally 14. However, after f 22 was
entered into Fdynm , n det(7) was reduced to 14, and after
f 18 was entered into Fdynm both values were reduced to
13, resulting in ADI (f 21) = 13. We include f 21 in Fdynm

to obtain Fdynm = <f 22,f 18,f 14,f 21>. The values of
n det(7) and n det(13) are reduced by one.

Continuing in the same manner, we obtain an
ordered fault set that takes into account the changes in
ADI (f ) as faults are considered during test generation.

If the circuit has faults with ADI (f ) = 0, we include
them in Fdynm at the end following the same process. We
also define an ordered fault set F 0dynm , that includes the
faults with ADI (f ) = 0 first. We then follow the procedure
demonstrated above to determine the order of the remain-
ing faults in F 0dynm . Similar to the case of Fdecr and
F 0decr , when detectable faults have ADI (f ) = 0, we
expect Fdynm to yield a steeper fault coverage curve than
F 0dynm since it follows more closely the accidental detec-
tion indices. We expect F 0dynm to yield a smaller test set
since it first generates tests for the faults that are not likely
to be accidentally detected.

For comparison purposes we also define the ordered
fault set Forig , where the faults are listed in their original
order (given as part of the circuit description). In addi-
tion, we define the ordered fault set Fincr 0 where the faults
with ADI (f ) > 0 are ordered by increasing accidental
detection index, and the faults with ADI (f ) = 0 are placed
at the end. This fault order is expected to yield the worst
results in terms of test set size. We confirm this point
experimentally as another indication of the effectiveness
of the accidental detection index.

4. Experimental results
In this section we present experimental results of test gen-
eration with different fault orders. The test generation
procedure we use does not include any dynamic compac-
tion heuristics. We denote an ordered fault set by Ford .
This can be Forig , Fincr 0, Fdecr , F 0decr , Fdynm , or F 0dynm .
We denote the test set computed for Ford by Tord .

The circuits we consider are the combinational logic
of ISCAS-89 and ITC-99 benchmarks. For ISCAS-89
benchmarks we consider irredundant versions of their
combinational logic, referred to as ircirc where circ is the

original circuit name.
The set of input vectors U for the computation of

the accidental detection indices consists of N random
input vectors, where N is selected as follows. We initially
include in U 10,000 random input vectors. This is
sufficient for achieving a high fault coverage for all the
circuits considered. We simulate U with fault dropping
until all the vectors are simulated, or until approximately
90% of the circuit faults are detected. If this happens after
N vectors are simulated, we keep in U only the first N
vectors. This ensures that accidental detection indices are
computed for a sufficiently large percentage of the faults.
At the same time, it typically does not take a large number
of input vectors to reach 90% fault coverage in the circuits
considered. Consequently, the accidental detection index
can be computed efficiently. The process can be speeded
up further by removing from consideration vectors in U
that do not detect any new faults during fault simulation
with fault dropping of U .

The accidental detection indices are shown in Table
4. The results relevant to dynamic test compaction are
reported in Table 5. Run times are reported in Table 6. In
Figure 1 and Table 7 we provide results for the applica-
tion of steepening the fault coverage curve.

Table 4: Accidental detection index

ADI
circuit inp vec min max ratio�������������������������������������������
irs208 19 370 11 31 2.82
irs298 17 109 19 61 3.21
irs344 24 37 42 71 1.69
irs382 24 82 10 76 7.60
irs400 24 74 24 101 4.21
irs420 35 3523 16 56 3.50
irs510 25 87 31 66 2.13
irs526 24 190 27 102 3.78
irs641 54 192 50 85 1.70
irs820 23 1328 4 41 10.25
irs953 45 2030 60 136 2.27
irs1196 32 1211 36 117 3.25
irs5378 214 358 753 973 1.29
irs13207 699 3110 2113 2668 1.26�
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In Table 4, after the circuit name we show the
number of inputs, and the number of random input vectors
included in U . Under column ADI we show the value of
ADI min = min{ADI (f ):f ∈ FU }, the value of ADI max =
max{ADI (f ):f ∈ FU }, and the ratio ADI max/ADI min. For
the faults left undetected by U , the accidental detection
index is zero by definition. The minimum and maximum
accidental detection indices are computed considering
only detected faults.

It can be seen from Table 4 that the differences
between the smallest and the largest accidental detection
indices are significant. Therefore, the accidental detection
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Table 5: Test generation

tests
circuit orig dynm 0dynm incr0���������������������������������������
irs208 42 33 34 41
irs298 43 36 37 43
irs344 28 26 25 31
irs382 42 45 35 47
irs400 37 37 35 44
irs420 70 62 60 71
irs510 65 67 66 74
irs526 75 74 64 86
irs641 74 66 59 77
irs820 149 130 125 179
irs953 110 106 99 120
irs1196 179 162 153 209
irs5378 254 240 224 -
irs13207 411 397 342 -���������������������������������������
average 112.8 105.8 97.0 -�
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index is expected to make a difference in the test set size
and in the steepness of the fault coverage curve if used as
a fault ordering heuristic.

In Table 5 we show the results of test generation
using Forig , Fdynm , F 0dynm and Fincr 0. We consider Forig

and Fincr 0 (for some of the circuits) for comparison pur-
poses. We do not consider Fdecr and F 0decr since Fdynm

and F 0dynm proved to be better. We show the test set sizes
for the different ordered fault sets under columns orig ,
dynm , 0dynm and incr 0, respectively.

From Table 5 it can be seen that both Fdynm and
F 0dynm reduce the test set size compared to using Forig .
Using Fincr 0 increases the test set size. This supports the
effectiveness of the accidental detection index and the
ordering of faults by decreasing values of the index.
Using F 0dynm results in the smallest test sets overall. This
is due to the fact that hard-to-detect faults (faults with
ADI (f ) = 0) are placed first in F 0dynm . We expect Fdynm

to provide a steeper fault coverage curve if the faults with
ADI (f ) = 0 do not have high accidental detection indices.
The results reported later address this point.

Next, we report the effect of fault ordering on the
run times of test generation as follows. Let the test gen-
eration time for an ordered fault set Ford be RTord . We
report the relative run times RTord /RTorig for Forig , Fdynm

and F 0dynm in Table 6.
From Table 6 it can be seen that the test generation

time for Fdynm is between 0.45 and 2.21 times the run time
for Forig , while for F 0dynm it is between 0.53 and 1.96
times the run time for Forig . The average run times are
1.14 and 0.98 of the run time for Forig , respectively. In
many cases the run time for Fdynm and F 0dynm is reduced
compared to that obtained for Forig . This is an advantage
compared to other dynamic compaction heuristics [1]-[4]
that typically increase the run time significantly.

Table 6: Relative run times

t.gen
circuit orig dynm 0dynm������������������������������
irs208 1.00 1.18 0.76
irs420 1.00 1.88 1.10
irs510 1.00 1.06 0.77
irs641 1.00 0.96 1.27
irs820 1.00 0.68 0.73
irs953 1.00 1.03 0.93
irs1196 1.00 2.21 1.96
irs5378 1.00 0.45 0.53
irs13207 1.00 0.83 0.78������������������������������
average 1.00 1.14 0.98��
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To demonstrate the effect of fault ordering on the
steepness of the fault coverage curve, we plot the increase
in fault coverage as the number of test vectors increases
during test generation for irs 420. We use the three
ordered fault sets, Forig (for which the data points are
given by o ’s), Fdynm (for which the data points are given
by d ’s) and F 0dynm (for which the data points are given by
z ’s). The curve obtained for irs 420 is shown in Figure 1.
The x-axis is the number of tests as a percentage of the
largest test set size. The y-axis is the fault coverage.
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Figure 1: Fault coverage curve for irs420
In order to provide results for additional circuits in a

concise way we compute the expected value of the
number of tests that need to be applied in order to detect a
faulty chip. This parameter is related to the steepness of
the fault coverage curve as follows. With a steeper curve,
the average number of tests it takes to detect a fault is
lower. As a result, faults (and defects) are detected earlier
during the test application process.
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Let Tord = <tord 1,tord 2, . . . ,tordk
ord

>. Let the number

of faults detected by <tord 1,tord 2, . . . ,tordi > be nord (i ) (the
values of nord (i ) are used for plotting the fault coverage
curve in Figure 1). We have nord (1) faults detected after
the application of a single test, nord (2)−nord (1) faults
detected after the application of two tests, and so on. By
defining nord (0) = 0, we have that nord (i )−nord (i −1) faults
are detected after the application of i tests, for 1 ≤ i ≤ k .
The average number of tests that need to be applied for a
fault to be detected is defined as

AVEord =
nord (kord )

Σi =1

k
ord i .[nord (i )−nord (i −1)]

���������������������� .

In Table 7 we report the values of AVEord normal-
ized to AVEorig , i.e., we show the values of
AVEord /AVEorig for Forig , Fdynm and F 0dynm . A lower
value in Table 7 implies a steeper fault coverage curve,
where a fault is expected to be detected earlier during the
test application process.

Table 7: Steepness of fault coverage curves

AVEord
circuit orig dynm 0dynm��������������������������������
irs208 1.000 0.644 0.833
irs298 1.000 0.796 0.870
irs344 1.000 1.023 0.853
irs382 1.000 1.081 0.918
irs400 1.000 0.963 0.973
irs420 1.000 0.614 0.894
irs510 1.000 0.834 0.895
irs526 1.000 0.964 0.957
irs641 1.000 0.830 0.807
irs820 1.000 0.825 0.875
irs953 1.000 0.998 1.191
irs1196 1.000 0.790 0.868
irs5378 1.000 0.865 0.873
irs13207 1.000 0.960 0.767��������������������������������
average 1.000 0.870 0.898�
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From Figure 1 and Table 7 it can be seen that in
most of the cases considered, the fault coverage curve
obtained for Fdynm is steeper than the other two even
though the size of the test set obtained for F 0dynm is
smaller. The curve for irs 420 demonstrates a case where
placing the faults with ADI (f ) = 0 (the faults that are
undetected by U ) at the beginning of F 0dynm causes fewer
accidental detections to be obtained for the first few test
vectors than when these faults are placed at the end as in
Fdynm , or when they are placed arbitrarily as in Forig . The
last row of Table 7 shows that, on the average, the
expected value of the number of tests applied before a
faulty chip is detected is reduced by 13% when the
ordered fault set Fdynm is used.

5. Concluding remarks
We defined the accidental detection index ADI (f ) of a
fault f as the minimum number of faults that will be
detected by a test generated for f . We provided a method
for computing an estimate of the accidental detection
index based on the results of simulating a set of input vec-
tors U . We used the accidental detection index to order
the set of target faults before starting test generation.
Fault ordering was done such that a fault with a higher
accidental detection index appeared earlier in the ordered
fault set. The ordered fault set was shown to be effective
for dynamic test compaction, and for obtaining a test set
with a steep fault coverage curve. For the application of
dynamic test compaction it was shown that it is better to
place faults with ADI (f ) = 0 at the beginning of the
ordered set of faults, and order the remaining faults by
decreasing accidental detection index. For the application
of steepening the fault coverage curve it was shown that it
is better to order all the faults by decreasing accidental
detection index, placing faults with ADI (f ) = 0 at the end
of the ordered set.
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