
AN IMPROVED FPGA IMPLEMENTATION OF THE MODIFIED HYBRID HIDING

ENCRYPTION ALGORITHM (MHHEA) FOR DATA COMMUNICATION SECURITY

Hala A. Farouk, Magdy Saeb

Arab Academy for Science, Technology & Maritime Transport

School of Engineering, Computer Department

Alexandria, Egypt

E-mail: mail@magdysaeb.net

Abstract

The hybrid hiding encryption algorithm, as its name

implies, embraces concepts from both steganography and
cryptography. In this exertion, an improved micro-

architecture Field Programmable Gate Array (FPGA)

implementation of this algorithm is presented. This design

overcomes the observed limitations of a previously-

designed micro-architecture. These observed limitations

are: no exploitation of the possibility of parallel bit

replacement, and the fact that the input plaintext was

encrypted serially, which caused a dependency between

the throughput and the nature of the used secret key. This

dependency can be viewed by some as vulnerability in the

security of the implemented micro-architecture. The
proposed modified micro-architecture is constructed using

five basic modules. These modules are; the message

cache, the message alignment module, the key cache, the

comparator, and at last the encryption module. In this

work, we provide comprehensive simulation and

implementation results. These are: the timing diagrams,

the post-implementation timing and routing reports, and

finally the floor plan. Moreover, a detailed comparison

with other FPGA implementations is made available and

discussed.

Keywords: FPGA, micro-architecture, data

communication security, encryption, steganography,

cryptography, algorithm.

I. INTRODUCTION

In this work, we present an FPGA-based micro-

architecture implementation of a modified version of the

encryption algorithm entitled “Hybrid Hiding Encryption

Algorithm (HHEA)” [SHAAR03]. In the basic version of

this algorithm, no conventional substitution and translation

operations on the plaintext characters are used. It rather

uses simple plaintext hiding in a random bit string called

the hiding vector. The name “Hybrid” is used to show that

this encryption algorithm has built-in features that are

inherited from data hiding techniques or "Steganography".

As a matter of fact, one can use the micro-architecture for

both steganography and cryptography depending on the

user approach and the proper selection of the key. The

basic version of this algorithm was previously

implemented, as shown in reference [SAEB04a]. However,

this approach did not exploit the possibility of parallel bit

replacement. Furthermore, the input plaintext was

encrypted serially, which caused some dependency

between the throughput and the nature of the key. This

dependency can be viewed by some as vulnerability in the

security of the implemented micro-architecture. Based on

these observations and to eliminate certain types of cipher

attacks, we decided to present a modified algorithm and its

accompanying micro-architecture that overcomes such

limitations. The modified design eliminates the

dependency between the micro-architecture throughput

and the key. It also provides a significant performance

improvement by fully exploiting the inherited parallelism

originated by the algorithm. Moreover, the modified

version escapes the chosen-plaintext attacks. In the next

few sections we discuss the modified algorithm, the

building blocks of the proposed improved micro-

architecture along with details of its operation, the

simulation and implementation results. The details of the

carried out simulations, timing, routing reports and the

floor plan are completely provided in the given appendix.

Moreover, we present a comparison with other

implementations of a selected group of encryption

algorithms [SAEB02], [SAEB02].

II. THE ALGORITHM

In the following few lines, we provide a summary of the

MHHEA algorithm [SHAAR03]. The aim of the algorithm

is hiding a number of bits from plain text message (M)

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

into an N-bit long random vector (V). The locations of the

hidden bits are determined by the key (K).

Algorithm MMHHEA

[Given a plain text message M , key matrix KLx2 , scrambled key matrix

KNLx2 where

 i =0,…., L; L 15

kij 7,6,5,4,3,2,1,0 j =1,2

The aim of the algorithm is hiding a number of bits from plain text

message (M) into a random vector (V) of bits. The locations of the

hidden bits are determined by the key KLx2]

Input: M, KLx2 , Output: encrypted file

Algorithm Body:

i: =0, m:=0

M[0]: =first digit in M file

while (M[m] EOF) [EOF: End Of File]

i: = i mod L

Generate 16-bit randomly and set them in V Vector

if (Ki,1 Ki,2) then

 z: =Ki,1

 Ki,1: =Ki,2

 Ki,2: =z

// Scramble the hiding location using the high order bits of the hiding

vector

KNi,1:=V[Ki,2+8 down to Ki,1+8] XOR Ki,1

KNi,2:= KNi,1+(Ki,2- Ki,1) mod 8

 if (KNi,1 KNi,2) then

 z: =KNi,1

 KNi,1: =KNi,2

 KNi,2: =z

// Scramble the message bits using the original key

q:=0

 for j= KNi,1 to KNi,2

 q:=q mod 3

 if (M[m] EOF) then do

 V [j]=M[m] XOR Ki,1[q]

 m: =m+1; next m in M file

 q:=q+1

 end do

 next j

Save V in output file

i: =i+1

end while;

End algorithm.

In this algorithm, we have scrambled the location and the

message to overcome constant chosen-plaintext attack.

III. THE MICRO-ARCHITECTURE

In this section we describe the micro-architecture with its

operation details using a finite state machine approach

(FSM). The FSM, shown in Figure 1, illustrates the

conceptual required hardware modules and the elements of

the design of the control unit. The machine operation takes

place through six basic states. These are summarized as

follows. The initial state “Init” holds back the execution of

the successive states until the “Go” signal is triggered and

furthermore resets all hardware modules. In the following

state “LMsg”, the 32-bit input plaintext is buffered for the

other modules to operate on. The key is buffered into

sixteen four-bit pairs of registers in the “LKey” state. The

key is saved in pairs of integers. One part of the key is

XOR-ed with a part of the random vector V as described

in the algorithm. After the scrambling of the key, the new

key points to the locations of the substitution procedure as

depicted in Figure 2. In a previous work [SAEB04a], this

procedure was performed serially where in each cycle one

bit is replaced until the entire range from the left to right

key is covered. However, we aim at designing a modified

architecture that replaces the whole number of bits

determined by the key in parallel rather in serial to

improve the overall performance.

Init
LMsg

LKey

LMsgCache

Circ

Encrypt

Go

Not Go

Key

Cache

Not Filled

Key Cache Full

Not All

Message is

Encrypted

All Message

Cache is

Encrypted

Not EOF

EOF

Figure 1: The finite state machine of the micro-architecture.

........................

Random or Cover

Text

Scrambled

Plaintext

(User Data)

Selection of replaced bits is

determined by secret key after

scrambling of location and data

Figure 2: The substitution procedure.

The location of the replaced bits is determined randomly

based on the generated sub-key. In this respect, two design

alternatives are possible. In the first one, a variable

connection between the register containing the random

hiding vector and the register with the scrambled plaintext

is required. Nevertheless, this approach is rather difficult.

Therefore, in this modified design, the connection is fixed

but the plaintext is rotated to be aligned with the bits that

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

are to be replaced in the hiding vector. An example of the

rotation scheme is illustrated in Figure 3. This leads to a

considerable saving in time as well as the implementation

area. The limited FPGA implementation area places a

barrier on the size of the input plaintext required to be

rotated. This fact has led to the splitting of the 32-bit input

into two 16-bit parts. Each part is taken into a buffer inside

the “Message Alignment” Module at a time during the

“LMsgCache” state.

M0

M1

M2

M3

M4

M5

M6

M7

M8

.

.

M15

C0

C1

C2

C3

C4

C5

C6

C7

2KeyL 5KeyR

Message

Cache

Hiding

Vector

(a) No Alignment

M14

M15

M0

M1

M2

M3

M4

M5

M6

.

.

M13

C0

C1

C2

C3

C4

C5

C6

C7

2KeyL 5KeyR

Message

Cache

Hiding

Vector

(b) Circulate

Message Left by

KeyL-bits

M4

M5

M6

M7

M8

M9

M10

M11

M12

.

.

M3

C0

C1

C2

C3

C4

C5

C6

C7

2 5KeyR

Message

Cache

Hiding

Vector

(c) Circulate

Message Right

by (KeyR+1)-bits

KeyL

Figure 3: Message alignment using circulate left

and circulate right.

The plaintext is subsequently aligned in the “Circ” state.

Afterwards, the encryption or replacement procedure is

performed in “Encrypt” state. These two states are

interleaved in a chain of cycles until the whole 16-bit

plaintext is encrypted. Consequently, the encryption

process takes two clock cycles per one key pair regardless

of the number of bits replaced. The micro-architecture is

subdivided into six modules as shown in Figure 4. In the

following subsections every module is described in details.

3.1 Message Cache
In this module 32-bit of the user plaintext is saved into

two 16-bit registers. This is due to the fact that the

“Message Alignment” module can operate on 16-bit data

only. The reason for this constraint is described in the

previous section.

3.2 Message Alignment
The “Message Alignment” module buffers the 16-bit

plaintext for rotation. In order to accelerate the rotation

process, multiplexers are used for n-bit rotations. Hence,

the circulate operation takes only one clock cycle. In this

module, the plaintext can be rotated left or right. The

motivation behind this rotation procedure is explained in

Figure 3. The module rotates left depending on the smaller

scrambled key value and rotates right based on the larger

key plus one.

Message

AlignmentMessage

Cache

Key

Cache

Address

Increment

Random

Number

Generator

Encryption

Module
Comparator

 // 4 bits

 3bits

//

//

3bits

Large Key

3bits

//

//

3bits

Small Key

 // 8 bits

16 bits

//

// 32 bits

//

16 bits

16 bits

//

Ready

CipherText

PlainText

Keys

+1

 //

 3 bits

Scramble

//

3 bits

//

3 bits

Scramble

 // 8 bits

 // 3bits

 //

 3 bits

Figure 4: The block diagram of the micro-architecture.

3.3 Key Cache
The “Key Cache” module buffers the whole 16 three-bit

key pairs. The key cache is organized as 32 three-bit

registers. Each two registers share the same address to

create key pairs.

3.4 Comparator
The comparator delivers the scrambled key with the

smaller value to the “Message Alignment” module. This

value is needed for the left rotation.

3.5 Encryption Module
The encryption module has a simple architecture of mere

multiplexers that choose between the bits in the hiding

vector and the ones in the scrambled plaintext stream. The

selects of the multiplexers are controlled by the scrambled

key pair. As a result the replacement procedure can be

performed. The output cipher text is 16-bit large and is

generated every two cycles. To simplify the handshaking

protocol between this module and any other

communication module, a ready signal is generated on

every stable output.

3.6 Random Number Generator
The output cipher text should be scrambled as much as

possible; therefore the scrambled plaintext bits are hidden

inside a random string that is called hiding vector. The

“Random Number Generator” module generates this

hiding vector. This module is designed using Linear

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Feedback Shift Register (LFSR) with primitive feedback

polynomial to ensure a maximal-length sequence of

random numbers.

IV. SIMULATION

The simulation of the designed micro-architecture is

performed on the Logic Simulator of the Xilinx

Foundation F2.1i. The first operation performed by the

MHHEA processor is loading the 32-bit plaintext during

the “LMSG” state. Figure 5 depicts this operation. In this

case, the input plaintext is “ABCD1234” and the “LMSG”

state is active. The “LKey” state, shown in Figure 6, is the

successive state to the “LMSG” state. Key pairs are loaded

in parallel since they are pointed to by the same address.

In the following state in Figure 7, namely the

“LMSGCACHE” state, the least significant 16 bits are

placed in the buffer inside the “Message Alignment”

module.

32-bit Plaintext

"LMSG" State

Figure 5: Simulation of 32-bit plaintext loading.

"LKEY" State

Right Key

Left Key

Key Pair

Figure 6: Simulation of key pairs loading.

16-bit Buffer Value Inside the

"Message Alignment "

Moculde

"LMSGCACHE"

State

Figure 7: Simulation of 16-bit message buffer loading.

An example for the rotation and encryption is shown in

Figure 8. The part of the key with the smaller value is, in

this case, equal to zero. The other part is equal to “3”. The

smaller part is XOR-ed with the zero to the third location

in the upper byte of the random vector V, resulting in the

value “2”. Adding this value to the difference between the

two initial key parts, results in the second key part value,

namely “5”. Therefore, rotating the message twice to the

left, renders the message value equal to “2341” after being

“48D0”. The message bits that should be encrypted are

positioned from the second to the fifth location. Thus, the

message is aligned with the replacement locations. Note

that the location zero refers to the least significant bit. The

message bits in this range of locations are equal to the

hexadecimal value zero. The lower byte of the hiding

vector is equal to “06”. Note that in Figure 8, the lower

byte of the hiding vector or the random vector is referred

to as “Coverr7”. The bits from the second to the fifth

location in the random vector are to be replaced by the

message bits in the corresponding locations to produce the

cipher text equal to “CA02”. The message is then rotated

M times to the right, where M is equal to the larger key

value plus one as mentioned before. In this case, M is

equal to six. Hence, the message value “2341” is rotated to

the right six times to become “048D”. In this way, the

least significant bits of the message buffer are always the

bits yet to be encrypted.

Figure 8: Simulation of encryption process.

V. IMPLEMENTATION RESULTS

We have used Spartan II FPGA family to implement our

design. A comparison between our micro-architecture and

other encryption micro-architectures is performed through

Figure 9 in Appendix A. This comparison demonstrates

the dominance of the discussed algorithm and our

proposed micro-architecture. This is based on the data

throughput and the consumed area. The functional density

is computed by the following equation:

CLB)(inArea

Mbps)(inThroughput
DensityFuntional ,

Random Vector

V=CA06

Key Part with the

Greater Value K
i,2

=3

M Value after Left

Rotation= ML

Second Part of the Key

KN
i,2

=KN
i,1

+(K
i,2

-K
i,1

)=2+(3-0)=5

"Encr" State

M Value after Right Rotation

 Cipher Text

V[15:6] || (ML[5:2] xor K
i,1

) || V[1:0]

Ready Signal

Key Part with the

Smaller Value K
i,1

=0

"Circ" State

Scrambled Part of the Key

KN
i,1

=K
i,1

xor V[K
i,2

+8:K
i,1

+8]

 =000
b
xor 010

b
= 2

d

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

The term CLB is the abbreviation for “Configurable Logic

Block”. In appendix B we provide a summary of the

timing reports. These reports were taken for a 32-bit block

plaintext and a cipher text of 16 bits. The details of these

reports are as shown in Appendix A. Moreover, the floor

plan of the design is also provided.

VI. SUMMARY AND CONCLUSION

Steganography and cryptography are the essential

elements of today’s data communication security.

Cryptography is used to scramble the data, whereas

steganography is used to hide the data. The MHHEA

algorithm bridges the gap between these two elements of

data security. In this work, we have introduced a micro-

architecture that is based on this algorithm for packet-level

encryption. The special features of this micro-architecture

can be summarized as follows:

A construction that effortlessly allows the user’s

data block to be varied. Subsequently, the register

size holding this block can be optimized

depending on the implementation technology and

the communication channel data rate.

A design that allows the size of the hiding vector

registers to be varied. Accordingly, a variable

level of data security can be obtained. Increasing

the register size leads to a higher security level.

Moreover, it extends the key space with added

security. The higher order byte is employed to

scramble the hiding locations. Moreover, the

message is scrambled using one of the key

integers. This approach eliminates chosen-plain

text attacks using a constant value.

A parallel bit replacement approach that

improves the overall throughput, and overcomes

the security limitations encountered by a

dependency between the throughput and the

nature of the key.

The micro-architecture throughput is of the order

of 106 Mbps which is quite satisfactory for most

of today’s high speed networks.

With a slight modification of the selected key,

one can use the micro-architecture for sequential-

type steganography. Moreover, if the random

vector is loaded with multimedia cover data, one

can immediately realize that the micro-

architecture is used for hiding as well as

scrambling data.

This micro-architecture allows the user to choose

between steganography and encryption by

selecting the appropriate input without any

changes to the hardware. Consequently, we have

bridged the gap between cryptography and

steganography.

This micro-architecture can also be combined

with the Steganographic Shuffler (STS), shown in

[SAEB04b], for shuffled-type steganography.

As shown in Table 1 and Figure 9, the micro-

architecture provides a clear advantage when

compared with other implementations. It holds

the highest functional density, if we exclude the

YAEA algorithm. Without a doubt, different

algorithms have different degrees of security.

However, we have demonstrated that with proper

adaptation of the algorithm to hardware

implementations, one can arrive at higher degrees

of functional density and overall better

performance.

The complementary nature between Cryptography and

Steganography is illustrated in this work with a modified

micro-architecture that can be used for both techniques.

Based on the given comparison, we have demonstrated

that the proposed micro-architecture shows clear

performance dominance, if we exclude the variations in

security levels, in data security applications of today’s

high speed networks.

VII. REFERENCES

[SHAAR03] M. Shaar, M. Saeb, U. Badawi, “A Hybrid

Hiding Encryption Algorithm (MHHEA) for Data

Communication Security,” 2003 Midwest Conference on

Computers Circuits & Systems, Cairo, Egypt, 2003.

[SAEB04a] M. Saeb, M. El-Shennawy, M. Shaar, “An

FPGA Implementation of the Hybrid Hiding Encryption

Algorithm (MHHEA) for Data Communication Security,”

ICICT2004 Conference, Cairo, Egypt, 2004.

[SAEB02] M. Saeb, A. Zewail, A. Seif, “A Micro-

architecture Implementation of YAEA Encryption Algorithm

Utilizing VHDL and FPGA Technology,” 3rd International

Conference on Electrical Engineering, ICEENG, Military

Technical College, Egypt, 2002.

[TRIM00] S. Trimberger, R. Pang, A. Singh, “A 12

Gbps DES Encryptor/Decryptor Core in FPGA,” Lecture Notes

on Computer Science, pp. 156-163, Springer-Verlag, 2000.

[GOOD00] J. Goodman, A. Chandrakasan, “An Energy -

Efficient Reconfigurable Public- Key Cryptography Processor

Architecture,” Lecture Notes on Computer Science, pp. 175-190,

Springer-Verlag, 2000.

[DAND00] Dandalis, V. K. Prasanna, J.D. P. Rolin, “A

Comparative Study of Performance of AES Final Candidates

Using FPGAs,” A. Lecture Notes on Computer Science, pp. 125-

140, Springer-Verlag, 2000.

[PATT00] C. Patterson, “A Dynamic FPGA

Implementation of the Serpent Block Cipher,” Lecture Notes on

Computer Science, pp. 141-155, Springer-Verlag, 2000.

[SAEB04b] M. Saeb, H. Farouk, “Design and

Implementation of a Secret Key Steganographic Micro-

Architecture Employing FPGA,” DATE2004, Designer Forum

C-Lab, Paris, France, 2004.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Acknowledgement
The authors would like to thank the reviewers for their

numerous and helpful comments. The close scrutiny and

constructive observations have greatly improved the final

version of this paper.

APPENDIX A

The following table [SAEB02], [SAEB02], [TRIM00],

[GOOD00], [DAND00], [PATT00] and accompanying chart

provide a comparison of some of the algorithms’ FPGA

implementations. We propose a figure-of-merit that is

equal to the throughput divided by the area consumed in

realizing this architecture. A chart is given below that

demonstrates this figure-of-merit for some of the cited

algorithms.

Table 1: A comparison between FPGA implementations
of various algorithms.

Algorithm

Throughput in Mbps

(Taken as reciprocal of

minimum period times the

expected output number of

information bits)

Area

in

CLB

Functional

Density

Mbps/ CLB

YAEA

(XC4005xL)
129.1 149 0.866

HHEA

[MARW04]
15.8 144 0.110

MHHEA

[Modified]
95.532 168 0.569

0

0.2

0.4

0.6

0.8

1

Functional

Density

YEAE HHEA MHHEA

Algorithm

Functional Density (F)

F= Throughput in Mbps/Area in CLBs

Figure 9: The figure-of-merit of various FPGA implementations.

Implementation reports

In this appendix, we provide the details of the implementation

reports as they were made available by the Xilinx CAD software.

Design Information

 Target Device : xc2s100

 Target Package : tq144

 Target Speed : -06

 Mapper Version : spartan2 -- C.22

Design Summary

 Number of Slices : 337 out of 1200 28%

 Slice Flip Flops : 205

 4 input LUTs : 393

 Number of bonded IOBs : 57 out of 92 61%

 Number of TBUFs : 206 out of 1280 16%

 Total equivalent gate count for design : 5051

 Additional JTAG gate count for IOBs : 2784

Timing Summary

 Minimum period : 41.871ns

 Maximum frequency : 23.883MHz

 Maximum net delay : 6.770ns

The Floor Plan

 The floor plan is shown in Figure 10.

Figure 10: The floor plan.

APPENDIX B

Figure 11: The circuit diagram for the entire design.

Figure 12: The circuit diagram for the key cache.

Figure 13: The circuit diagram for the eight-pair key cache from
inside.

Figure 14: The circuit diagram for the encryption module.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

