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Abstract 

The hybrid hiding encryption algorithm, as its name 

implies, embraces concepts from both steganography and 
cryptography. In this exertion, an improved micro-

architecture Field Programmable Gate Array (FPGA) 

implementation of this algorithm is presented. This design 

overcomes the observed limitations of a previously-

designed micro-architecture.  These observed limitations 

are: no exploitation of the possibility of parallel bit 

replacement, and the fact that the input plaintext was 

encrypted serially, which caused a dependency between 

the throughput and the nature of the used secret key. This 

dependency can be viewed by some as vulnerability in the 

security of the implemented micro-architecture. The 
proposed modified micro-architecture is constructed using 

five basic modules. These modules are; the message 

cache, the message alignment module, the key cache, the 

comparator, and at last the encryption module. In this 

work, we provide comprehensive simulation and 

implementation results. These are: the timing diagrams, 

the post-implementation timing and routing reports, and 

finally the floor plan. Moreover, a detailed comparison 

with other FPGA implementations is made available and 

discussed.

Keywords: FPGA, micro-architecture, data 

communication security, encryption, steganography, 

cryptography, algorithm. 

I. INTRODUCTION

In this work, we present an FPGA-based micro-

architecture implementation of a modified version of the 

encryption algorithm entitled “Hybrid Hiding Encryption 

Algorithm (HHEA)” [SHAAR03]. In the basic version of 

this algorithm, no conventional substitution and translation 

operations on the plaintext characters are used. It rather 

uses simple plaintext hiding in a random bit string called 

the hiding vector. The name “Hybrid” is used to show that 

this encryption algorithm has built-in features that are 

inherited from data hiding techniques or "Steganography". 

As a matter of fact, one can use the micro-architecture for 

both steganography and cryptography depending on the 

user approach and the proper selection of the key. The 

basic version of this algorithm was previously 

implemented, as shown in reference [SAEB04a].  However, 

this approach did not exploit the possibility of parallel bit 

replacement. Furthermore, the input plaintext was 

encrypted serially, which caused some dependency 

between the throughput and the nature of the key. This 

dependency can be viewed by some as vulnerability in the 

security of the implemented micro-architecture.  Based on 

these observations and to eliminate certain types of cipher 

attacks, we decided to present a modified algorithm and its 

accompanying micro-architecture that overcomes such 

limitations. The modified design eliminates the 

dependency between the micro-architecture throughput 

and the key. It also provides a significant performance 

improvement by fully exploiting the inherited parallelism 

originated by the algorithm. Moreover, the modified 

version escapes the chosen-plaintext attacks. In the next 

few sections we discuss the modified algorithm, the 

building blocks of the proposed improved micro-

architecture along with details of its operation, the 

simulation and implementation results. The details of the 

carried out simulations, timing, routing reports and the 

floor plan are completely provided in the given appendix. 

Moreover, we present a comparison with other 

implementations of a selected group of encryption 

algorithms [SAEB02], [SAEB02].

II. THE ALGORITHM

In the following few lines, we provide a summary of the 

MHHEA algorithm [SHAAR03]. The aim of the algorithm 

is hiding a number of bits from plain text message (M) 
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into an N-bit long random vector (V). The locations of the 

hidden bits are determined by the key (K). 

Algorithm MMHHEA 

[Given a plain text message M , key matrix KLx2 , scrambled key matrix 

KNLx2 where  

                                                            i =0,…., L; L 15     

kij 7,6,5,4,3,2,1,0               j =1,2 

The aim of the algorithm is hiding a number of bits from plain text 

message (M) into a random vector (V) of bits. The locations of the 

hidden bits are determined by the key KLx2 ] 

Input: M, KLx2 , Output: encrypted file 

Algorithm Body: 

i: =0, m:=0 

M[0]: =first digit in M file 

while (M[m]  EOF) [EOF: End Of File] 

i: = i mod L 

Generate 16-bit randomly and set them in V Vector 

if (Ki,1  Ki,2 ) then      

                       z: =Ki,1

                       Ki,1: =Ki,2

                       Ki,2: =z 

// Scramble the hiding location using the high order bits of the hiding 

vector 

KNi,1:=V[Ki,2+8 down to Ki,1+8] XOR Ki,1 

KNi,2:= KNi,1+(Ki,2- Ki,1) mod 8 

     if (KNi,1  KNi,2 ) then     

                       z: =KNi,1

                       KNi,1: =KNi,2

                       KNi,2: =z 

// Scramble the message bits using the original key 

q:=0   

  for j= KNi,1 to KNi,2

     q:=q mod 3 

      if (M[m]  EOF) then do 

             V [j]=M[m] XOR Ki,1[q]

              m: =m+1; next m in M file 

     q:=q+1 

  end do  

  next j 

Save V in output file 

i: =i+1 

end while;

End algorithm.  

In this algorithm, we have scrambled the location and the 

message to overcome constant chosen-plaintext attack. 

III. THE MICRO-ARCHITECTURE

In this section we describe the micro-architecture with its 

operation details using a finite state machine approach 

(FSM). The FSM, shown in Figure 1, illustrates the 

conceptual required hardware modules and the elements of 

the design of the control unit. The machine operation takes 

place through six basic states. These are summarized as 

follows. The initial state “Init” holds back the execution of 

the successive states until the “Go” signal is triggered and 

furthermore resets all hardware modules. In the following 

state “LMsg”, the 32-bit input plaintext is buffered for the 

other modules to operate on. The key is buffered into 

sixteen four-bit pairs of registers in the “LKey” state. The 

key is saved in pairs of integers. One part of the key is 

XOR-ed with a part of the random vector V as described 

in the algorithm. After the scrambling of the key, the new 

key points to the locations of the substitution procedure as 

depicted in Figure 2. In a previous work [SAEB04a], this 

procedure was performed serially where in each cycle one 

bit is replaced until the entire range from the left to right 

key is covered. However, we aim at designing a modified 

architecture that replaces the whole number of bits 

determined by the key in parallel rather in serial to 

improve the overall performance.  

Init
LMsg

LKey

LMsgCache

Circ

Encrypt

Go

Not Go

Key

Cache

Not Filled

Key Cache Full

Not All

Message is

Encrypted

All Message

Cache is

Encrypted

Not EOF

EOF

Figure 1: The finite state machine of the micro-architecture. 

........................

Random or Cover

Text

Scrambled

Plaintext

(User Data)

Selection of replaced bits is

determined by secret key after

scrambling of location and data

Figure 2: The substitution procedure. 

The location of the replaced bits is determined randomly 

based on the generated sub-key. In this respect, two design 

alternatives are possible. In the first one, a variable 

connection between the register containing the random 

hiding vector and the register with the scrambled plaintext 

is required. Nevertheless, this approach is rather difficult. 

Therefore, in this modified design, the connection is fixed 

but the plaintext is rotated to be aligned with the bits that 
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are to be replaced in the hiding vector. An example of the 

rotation scheme is illustrated in Figure 3. This leads to a 

considerable saving in time as well as the implementation 

area. The limited FPGA implementation area places a 

barrier on the size of the input plaintext required to be 

rotated. This fact has led to the splitting of the 32-bit input 

into two 16-bit parts. Each part is taken into a buffer inside 

the “Message Alignment” Module at a time during the 

“LMsgCache” state. 
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Figure 3: Message alignment using circulate left

and circulate right. 

The plaintext is subsequently aligned in the “Circ” state. 

Afterwards, the encryption or replacement procedure is 

performed in “Encrypt” state. These two states are 

interleaved in a chain of cycles until the whole 16-bit 

plaintext is encrypted. Consequently, the encryption 

process takes two clock cycles per one key pair regardless 

of the number of bits replaced. The micro-architecture is 

subdivided into six modules as shown in Figure 4. In the 

following subsections every module is described in details. 

3.1 Message Cache 
In this module 32-bit of the user plaintext is saved into 

two 16-bit registers. This is due to the fact that the 

“Message Alignment” module can operate on 16-bit data 

only. The reason for this constraint is described in the 

previous section. 

3.2 Message Alignment 
The “Message Alignment” module buffers the 16-bit 

plaintext for rotation. In order to accelerate the rotation 

process, multiplexers are used for n-bit rotations. Hence, 

the circulate operation takes only one clock cycle. In this 

module, the plaintext can be rotated left or right. The 

motivation behind this rotation procedure is explained in 

Figure 3. The module rotates left depending on the smaller 

scrambled key value and rotates right based on the larger 

key plus one.  
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Figure 4: The block diagram of the micro-architecture. 

3.3 Key Cache 
The “Key Cache” module buffers the whole 16 three-bit 

key pairs. The key cache is organized as 32 three-bit 

registers. Each two registers share the same address to 

create key pairs. 

3.4 Comparator 
The comparator delivers the scrambled key with the 

smaller value to the “Message Alignment” module. This 

value is needed for the left rotation. 

3.5 Encryption Module 
The encryption module has a simple architecture of mere 

multiplexers that choose between the bits in the hiding 

vector and the ones in the scrambled plaintext stream. The 

selects of the multiplexers are controlled by the scrambled 

key pair. As a result the replacement procedure can be 

performed. The output cipher text is 16-bit large and is 

generated every two cycles. To simplify the handshaking 

protocol between this module and any other 

communication module, a ready signal is generated on 

every stable output. 

3.6 Random Number Generator 
The output cipher text should be scrambled as much as 

possible; therefore the scrambled plaintext bits are hidden 

inside a random string that is called hiding vector. The 

“Random Number Generator” module generates this 

hiding vector. This module is designed using Linear 
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Feedback Shift Register (LFSR) with primitive feedback 

polynomial to ensure a maximal-length sequence of 

random numbers. 

IV. SIMULATION

The simulation of the designed micro-architecture is 

performed on the Logic Simulator of the Xilinx 

Foundation F2.1i.  The first operation performed by the 

MHHEA processor is loading the 32-bit plaintext during 

the “LMSG” state. Figure 5 depicts this operation. In this 

case, the input plaintext is “ABCD1234” and the “LMSG” 

state is active. The “LKey” state, shown in Figure 6, is the 

successive state to the “LMSG” state. Key pairs are loaded 

in parallel since they are pointed to by the same address. 

In the following state in Figure 7, namely the 

“LMSGCACHE” state, the least significant 16 bits are 

placed in the buffer inside the “Message Alignment” 

module.  

32-bit Plaintext

"LMSG" State

Figure 5: Simulation of 32-bit plaintext loading. 

"LKEY" State

Right Key

Left Key

Key Pair

Figure 6: Simulation of key pairs loading. 

16-bit Buffer Value Inside the

"Message Alignment "

Moculde

"LMSGCACHE"

State

Figure 7: Simulation of 16-bit message buffer loading. 

An example for the rotation and encryption is shown in 

Figure 8. The part of the key with the smaller value is, in 

this case, equal to zero. The other part is equal to “3”. The 

smaller part is XOR-ed with the zero to the third location 

in the upper byte of the random vector V, resulting in the 

value “2”. Adding this value to the difference between the 

two initial key parts, results in the second key part value, 

namely “5”. Therefore, rotating the message twice to the 

left, renders the message value equal to “2341” after being 

“48D0”. The message bits that should be encrypted are 

positioned from the second to the fifth location. Thus, the 

message is aligned with the replacement locations. Note 

that the location zero refers to the least significant bit. The 

message bits in this range of locations are equal to the 

hexadecimal value zero. The lower byte of the hiding 

vector is equal to “06”.  Note that in Figure 8, the lower 

byte of the hiding vector or the random vector is referred 

to as “Coverr7”. The bits from the second to the fifth 

location in the random vector are to be replaced by the 

message bits in the corresponding locations to produce the 

cipher text equal to “CA02”. The message is then rotated 

M times to the right, where M is equal to the larger key 

value plus one as mentioned before. In this case, M is 

equal to six. Hence, the message value “2341” is rotated to 

the right six times to become “048D”. In this way, the 

least significant bits of the message buffer are always the 

bits yet to be encrypted.  

Figure 8: Simulation of encryption process. 

V. IMPLEMENTATION RESULTS

We have used Spartan II FPGA family to implement our 

design. A comparison between our micro-architecture and 

other encryption micro-architectures is performed through 

Figure 9 in Appendix A. This comparison demonstrates 

the dominance of the discussed algorithm and our 

proposed micro-architecture. This is based on the data 

throughput and the consumed area. The functional density 

is computed by the following equation: 
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The term CLB is the abbreviation for “Configurable Logic 

Block”. In appendix B we provide a summary of the 

timing reports. These reports were taken for a 32-bit block 

plaintext and a cipher text of 16 bits.  The details of these 

reports are as shown in Appendix A. Moreover, the floor 

plan of the design is also provided. 

VI. SUMMARY AND CONCLUSION

Steganography and cryptography are the essential 

elements of today’s data communication security. 

Cryptography is used to scramble the data, whereas 

steganography is used to hide the data. The MHHEA 

algorithm bridges the gap between these two elements of 

data security. In this work, we have introduced a micro-

architecture that is based on this algorithm for packet-level 

encryption. The special features of this micro-architecture 

can be summarized as follows: 

A construction that effortlessly allows the user’s 

data block to be varied. Subsequently, the register 

size holding this block can be optimized 

depending on the implementation technology and 

the communication channel data rate. 

A design that allows the size of the hiding vector 

registers to be varied. Accordingly, a variable 

level of data security can be obtained. Increasing 

the register size leads to a higher security level. 

Moreover, it extends the key space with added 

security. The higher order byte is employed to 

scramble the hiding locations. Moreover, the 

message is scrambled using one of the key 

integers. This approach eliminates chosen-plain 

text attacks using a constant value.  

A parallel bit replacement approach that 

improves the overall throughput, and overcomes 

the security limitations encountered by a 

dependency between the throughput and the 

nature of the key.  

The micro-architecture throughput is of the order 

of 106 Mbps which is quite satisfactory for most 

of today’s high speed networks.  

With a slight modification of the selected key, 

one can use the micro-architecture for sequential-

type steganography.  Moreover, if the random 

vector is loaded with multimedia cover data, one 

can immediately realize that the micro-

architecture is used for hiding as well as 

scrambling data. 

This micro-architecture allows the user to choose 

between steganography and encryption by 

selecting the appropriate input without any 

changes to the hardware. Consequently, we have 

bridged the gap between cryptography and 

steganography.  

This micro-architecture can also be combined 

with the Steganographic Shuffler (STS), shown in 

[SAEB04b], for shuffled-type steganography. 

As shown in Table 1 and Figure 9, the micro-

architecture provides a clear advantage when 

compared with other implementations. It holds 

the highest functional density, if we exclude the 

YAEA algorithm. Without a doubt, different 

algorithms have different degrees of security. 

However, we have demonstrated that with proper 

adaptation of the algorithm to hardware 

implementations, one can arrive at higher degrees 

of functional density and overall better 

performance. 

The complementary nature between Cryptography and 

Steganography is illustrated in this work with a modified 

micro-architecture that can be used for both techniques. 

Based on the given comparison, we have demonstrated 

that the proposed micro-architecture shows clear 

performance dominance, if we exclude the variations in 

security levels, in data security applications of today’s 

high speed networks. 

VII. REFERENCES

[SHAAR03] M. Shaar, M. Saeb, U. Badawi, “A Hybrid 

Hiding Encryption Algorithm (MHHEA) for Data 

Communication Security,” 2003 Midwest Conference on 

Computers Circuits & Systems, Cairo, Egypt, 2003. 

[SAEB04a] M. Saeb, M. El-Shennawy, M. Shaar, “An 

FPGA Implementation of the Hybrid Hiding Encryption 

Algorithm (MHHEA) for Data Communication Security,” 

ICICT2004 Conference, Cairo, Egypt, 2004. 

[SAEB02] M. Saeb, A. Zewail, A. Seif, “A Micro-

architecture Implementation of YAEA Encryption Algorithm 

Utilizing VHDL and FPGA Technology,” 3rd International 

Conference on Electrical Engineering, ICEENG, Military 

Technical College, Egypt, 2002. 

[TRIM00] S. Trimberger, R. Pang, A. Singh, “A 12 

Gbps DES Encryptor/Decryptor Core in FPGA,” Lecture Notes 

on Computer Science, pp. 156-163, Springer-Verlag, 2000. 

[GOOD00] J. Goodman, A. Chandrakasan, “An Energy -

Efficient Reconfigurable Public- Key Cryptography Processor 

Architecture,” Lecture Notes on Computer Science, pp. 175-190, 

Springer-Verlag, 2000. 

[DAND00] Dandalis, V. K. Prasanna, J.D. P. Rolin, “A 

Comparative Study of Performance of AES Final Candidates 

Using FPGAs,” A. Lecture Notes on Computer Science, pp. 125-

140, Springer-Verlag, 2000. 

[PATT00] C. Patterson, “A Dynamic FPGA 

Implementation of the Serpent Block Cipher,” Lecture Notes on 

Computer Science, pp. 141-155, Springer-Verlag, 2000. 

[SAEB04b] M. Saeb, H. Farouk, “Design and 

Implementation of a Secret Key Steganographic Micro-

Architecture Employing FPGA,” DATE2004, Designer Forum 

C-Lab, Paris, France, 2004. 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



Acknowledgement 
The authors would like to thank the reviewers for their 

numerous and helpful comments. The close scrutiny and 

constructive observations have greatly improved the final 

version of this paper. 

APPENDIX A

The following table [SAEB02], [SAEB02], [TRIM00],

[GOOD00], [DAND00], [PATT00] and accompanying chart 

provide a comparison of some of the algorithms’ FPGA 

implementations. We propose a figure-of-merit that is 

equal to the throughput divided by the area consumed in 

realizing this architecture. A chart is given below that 

demonstrates this figure-of-merit for some of the cited 

algorithms.  

Table 1:  A comparison between FPGA implementations                                                       
of various algorithms. 

Algorithm 

Throughput in Mbps 

(Taken as reciprocal of 

minimum period times the 

expected output number of 

information bits) 

Area 

in

CLB 

Functional

Density 

Mbps/ CLB 

YAEA 

(XC4005xL) 
129.1 149 0.866 

HHEA 

[MARW04] 
15.8 144 0.110 

MHHEA 

[Modified ] 
95.532 168 0.569 

0
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F= Throughput in Mbps/Area in CLBs

Figure 9: The figure-of-merit of various FPGA implementations. 

Implementation reports 

In this appendix, we provide the details of the implementation 

reports as they were made available by the Xilinx CAD software. 

Design Information 

 Target Device : xc2s100 

 Target Package : tq144 

 Target Speed : -06 

 Mapper Version : spartan2 -- C.22 

Design Summary 

 Number of Slices : 337 out of 1200 28% 

 Slice Flip Flops : 205 

 4 input LUTs : 393 

 Number of bonded IOBs : 57 out of 92  61% 

 Number of TBUFs : 206 out of 1280    16% 

 Total equivalent gate count for design : 5051 

 Additional JTAG gate count for IOBs : 2784 

Timing Summary 

 Minimum period : 41.871ns 

 Maximum frequency : 23.883MHz 

 Maximum net delay : 6.770ns 

The Floor Plan 

 The floor plan is shown in Figure 10.

Figure 10: The floor plan. 

APPENDIX B

Figure 11: The circuit diagram for the entire design. 

Figure 12: The circuit diagram for the key cache. 

Figure 13: The circuit diagram for the eight-pair key cache from 
inside. 

Figure 14: The circuit diagram for the encryption module. 
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