
Automatic Insertion of Low Power Annotations in RTL for Pipelined Microprocessors

Vinod Viswanath, � Jacob A. Abraham Warren A. Hunt, Jr.

Computer Engineering Research Center Department of Computer Sciences

University of Texas at Austin University of Texas at Austin

vinod,jaa@cerc.utexas.edu hunt@cs.utexas.edu

Abstract

We propose instruction-driven slicing, a new technique for

annotating microprocessor descriptions at the Register Trans-

fer Level (RTL) in order to achieve lower power dissipation.

Our technique automatically annotates existing RTL code to

optimize the circuit for lowering power dissipated by switch-

ing activity. Our technique can be applied at the architectural

level as well, achieving similar power gains. We demonstrate

our technique on architectural and RTL models of a 32-bit

OpenRISC processor (OR1200), showing power gains for the

SPEC2000 benchmarks.

1. Introduction

We propose a new technique for low power microprocessor

design, a fine-grained clock gating scheme implemented at the

RTL or the architectural level which utilizes the program struc-

ture of the model. Our algorithm automatically identifies fine-

grained blocks of circuit which are not used on any given cy-

cle during the execution of a particular instruction, and shuts

them down. This scheme of slicing the circuit based on the in-

struction being executed is termed instruction-driven slicing.

All prior approaches towards analyzing and optimizing RTL

and architectural models for lower power dissipation suffer

from modeling the power dissipation for very specific hard-

ware structures. Besides, they do not make use of the program

structure or the dataflow information (statically or dynamically)

available at the architecture and RT-levels.

1.1. Contributions of this work

We propose an algorithm to statically reduce switching

power dissipation of a microprocessor. For any given instruc-

tion, when it is decoded, we have sufficient information to rec-

ognize what resources are required to execute that instruction.

We introduce the concept of an instruction-driven slice. An

instruction-driven slice of a microprocessor design, is all the

relevant circuitry of the design (a slice of the RTL program) re-

quired to take the life cycle of the instruction to completion (de-

code, execute, writeback etc.).

� This material is based upon work supported by the Defence Advance Re-
search Projects Agency (DARPA) under Contract NBCH30390004.

The primary idea is that, given a microprocessor design, de-

pending on the instruction, we identify the instruction-driven

slice, and shut off the rest of the circuitry. This might include

gating out fine-grained parts of various processor blocks de-

pending on the instruction, or gating out the floating point

execution units during integer ALU execution, or gating out

the memory units during ALU operation, or turning off certain

FSMs in various control blocks because the instruction-driven

slice provides exact value constraints on their inputs, and so on.

One way of implementing this idea is to add the instruction-

driven slice identification and turning off operations to the RTL

code as annotations. At the netlist level, we do not have suffi-

cient information to identify an instruction-driven slice. The ad-

vantage of annotating the RTL is that the circuitry relevant to

perform these tasks is automatically generated by the synthe-

sis tool along with the rest of the netlist.

We have implemented this on OR1200, a Verilog implemen-

tation of the OpenRISC [8] architecture. This technique and

the same annotations can also be inserted at the architectural

level. We have implemented an architectural model of the same

OR1200 processor and simulated it with and without the anno-

tations in the SimpleScalar tool set [3] and estimated the power

dissipation using SimWattch [7].

1.2. Prior work

In VLSI circuits that use well-designed logic-gates, switch-

ing activity power accounts for a substantial amount of total

power dissipation (sometimes close to 90% [5]). Over the years,

a host of optimization methods at various levels of circuit ab-

straction have been implemented to reduce switching activity

power dissipation. We direct the interested reader to [9] for a

survey of many of these optimizations. In the rest of this article,

we will concentrate on minimizing switching activity power at

the RTL and higher (architectural) levels of abstraction.

An important aspect of optimizing power at the RT-level is to

first develop a framework for analyzing the power dissipation at

an architectural level. The traditional way has been to translate

the given high level architecture description to gates (netlists)

and then use reasonably accurate low-level power analysis en-

gines. This method is infeasible if we want to evaluate a large

number of design choices. Brooks et. al in [2] present a frame-

work for analyzing power dissipation at the architecture level.

 

3-9810801-0-6/DATE06 © 2006 EDAA 

 



We use this framework to estimate the efficacy of our optimiza-

tions at the architectural level.

Most initial work in optimization for low power at the RT-

level is focussed on power analysis and reduction in caches

[16], [21]. This is chiefly because embedded microprocessors,

historically the reason for low power design, used to devote

nearly 40% of their power budget to caches. Besides, caches

are regular structures and are more easily modeled than other

circuits. Other attempts include power reduction by reducing

needless speculation in branch predictors [6], gated clocks in

integer ALUs [1], etc.

Inserting annotations using instruction-driven slicing is ex-

plained in detail in Section 2. Our overall methodology and in-

tegrated tool flow is detailed in Section 3. We also give an algo-

rithm for automatically inserting the annotations into the RTL

code. Section 4 explains instruction-driven slicing in the RTL as

well as the architectural models of OR1200, a pipelined imple-

mentation of OpenRISC. Results from running SPECINT2000

benchmarks on these models and some comparison metrics are

also presented. Some conclusions and future directions are dis-

cussed in Section 5.

2. Instruction-Driven Slicing

Program slicing has been well studied in the context of soft-

ware engineering [11], programming languages [18], and more

recently, in the context of slicing hardware description lan-

guages [10], [20]. We define a new notion of program slicing

for microprocessor descriptions, viz., slicing based on the in-

struction which is being executed. Given a microprocessor de-

sign and an instruction, instruction-driven slicing identifies a

slice of the abstract program graph of the microprocessor de-

sign corresponding to all the relevant circuitry needed to exe-

cute that instruction.

The cone of influence of a variable in a program is the set of

all program statements which depend on the variable. Any hard-

ware design written in Verilog (at the RT-level) can be thought

of as a control flow graph, henceforth referred to as program

graph. Traditional program slicing on a variable can be thought

of as reducing the program to retain only the slice of the pro-

gram graph which is within the cone of influence of the vari-

able. Instruction-driven slicing on the other hand, identifies the

slice of the program graph which is within the cone of influ-

ence of an instruction. The cone of influence of an instruction

is the slice of the microprocessor circuitry required to execute

that instruction from start to finish. In terms of the RTL pro-

gram graph, it is a slice of the program which is in the cone of

influence of the semantics of an instruction. More specifically,

it is the the union of the cone of influence of each of the vari-

ables affected by the instruction.

There are two parts to instruction-driven slicing. First, we

need to identify the instruction-driven slice. Next, we need to

isolate the rest of the circuit by identifying the flops govern-

ing the rest of the circuit and gating them out. Since we are

slicing based on an instruction or a type of instruction (for ex-

ample, an ALU instruction, or an LSU instruction, etc.), we can

obtain a slice both at the RTL and the architectural level mod-

els.

Turning off sub-circuits is a well-researched topic [13],[19],

and in addition to instruction-driven slicing. We can implement

more sophisticated algorithms to determine the sub-circuits to

be turned off and the logic required to perform the disabling.

The innovation is to automatically identify the sub-circuits in

the context of the execution of a particular instruction by lever-

aging available high level information about instructions and

functional units at the RT-level, which is not available to the tra-

ditional transistor level optimizing tools. In fact, it turns out that

our algorithm to automatically identify an instruction-driven

slice introduces much more fine grained gated clocks than prior

art automatic methods. We report these findings in Section 4.

Instruction-driven slicing at the architectural level is carried

out exactly the same way as at the RT-level. The overall struc-

ture available at the architectural level is the same as the RTL

model. The key difference is that the architectural model is

more abstract than the RTL model. This in turn means that the

clock gating due to instruction-driven slicing is more coarse-

grained in the architectural model than in the RTL model.

3. Our Technique

3.1. InstructionDrive Slicing Algorithm

We give an algorithm for automatically identifying

instruction-driven slices, given a set of instructions and a mi-

croprocessor design. The instruction-driven slicing algorithm

for RTL models is given in Figure 1.

The inputs to the algorithm are an RTL model (vRTL) of

the microprocessor, and a set of instructions insts which will

be executed on that model (given by the ISA of the micropro-

cessor). First, we parse the vRTL model to generate an abstract

graph of the program, called the Abstract Syntax Program

Graph (ASPG). The nodes of an ASPG are the data comput-

ing/modifying statements of the design, whereas the edges of

the ASPG define the control flow of the RTL program. We have

modified the Verilog parser from vl2mv code distributed with

VIS-2.0 [17] to generate our ASPGs.

Now, we traverse the ASPG for each instruction and slice the

ASPG. The graph traversal algorithm is a two-pass algorithm.

In the first pass we identify variables affected by the instruc-

tion driving the slicing and the cone of influence of those vari-

ables. Along with this, we compute the condition predicates that

are true for every pipeline stage. In the second pass, we iden-

tify parts of the ASPG governed by flops1 which are outside

the identified cone of the first pass. These parts of the ASPG

are gated out2. If there is already gating logic on any of these

1 We use the term flop loosely to mean a single-bit storage element with an
enable signal.

2 We implement the gating out, not by preventing clock from switching, but
setting and unsetting the enable on every flop. We assume that all flops have
an enable signal. Also, because of such a gating out mechanism, there is no



Algorithm instruction-driven-slicing (input: vRTL, insts; output: aRTL).

[1] Parse vRTL to obtain the ASPG (Abstract Syntax Program Graph).

[2] For each instruction i in insts repeat

Begin loop

[3] Slice the ASPG for instruction i

[4] Traverse the ASPG

[5] Add annotation variables if such a block is found

[6] If a particular flop is already gated by a previous annotation, then

add the current annotation as an additional signal

[7] Return the annotated ASPG

End loop

[8] Generate Verilog code for the annotated ASPG (aRTL).

End.

Figure 1. Overview of the Instructiondriven Slicing Algorithm for RTL.

flops, then the algorithm adds to the existing logic in an opti-

mized fashion.

Lastly, we reverse the process of the parser, and generate

Verilog code for this annotated ASPG (aRTL).

The time complexity of our algorithm is linear in the size of

the program graph. A point of note is that the algorithm may

not be able to identify every flop outside the slice. The com-

puting the cone of influence part of our algorithm is based on

prior algorithms with guaranteed correctness [20]. The correct-

ness result guarantees that the generated slice is always an over-

approximation, i.e., the annotation insertion is guaranteed to be

a functionality preserving transformation.

We have implemented our instruction-driven slicing algo-

rithm on the ASPGs. The advantage of this is that without any

loss of generality, we can apply the algorithm on any ASPG, ir-

respective of whether the ASPG was generated from Verilog

RTL or from SimpleScalar architectural C models. The algo-

rithm for instruction-driven slicing on the architectural model

remains the same, except for parsing the model into ASPGs

and generating annotated models from ASPGs. We have imple-

mented our instruction-driven slicing algorithm in C.

The advantage of decoupling the algorithm from the model

is that the algorithm can now be treated as a transform engine,

which is a part of the tool chain.

3.2. Methodology

We have implemented a methodology to incorporate

instruction-driven slicing into the design flow. Figure 2 de-

scribes the overall implementation strategy of our tech-

nique. We have designed the tool-flow in order to incorporate

instruction-driven slicing as a part of the traditional de-

sign flow.

In order to demonstrate our technique we have built the

following tool-chain. We start with the Verilog RTL (vRTL)

and the architectural models. The RTL code is annotated with

added clock skew, and at the same time, there is no dynamic power saved
in the clock distribution network.

Power

Estimation

Results

(RTL level)

(Process

Power Model

parameters)

Power

Estimation

Results

(Arch level)

Architectural Model

SPEC2000 Benchmarks

aRTL

vRTL

slicer

slicer

vRTL

Arch

Environment

Compiler

Design

Synopsys

(Modified)

SimpleScalar

(architectural simulator)

with Wattch

Figure 2. Incorporating Instruction-driven slicing

into the design flow.

instruction-driven slicing annotations to obtain the aRTL, by

the previously described algorithm (Figure 1). The aRTL code,

process parameters for power estimation, as well as the bench-

mark SPECINT2000 files are fed to the Synopsys Design Com-

piler Environment. We have modified and set up the Synopsys

Design Compiler Environment as an integrated tool which can

take SPEC benchmarks and RTL code, synthesize the RTL code

and determine the power consumption due to switching activ-

ity. All SPEC benchmarks were run for 5 hours, and not to com-

pletion.

Along a parallel path, we start with the architectural model

of the design. Our model is written compatible with the Sim-

pleScalar Tool Set [3]. The model is annotated with instruction-

driven slicing annotations and fed as input to the SimpleScalar

with Wattch environment. Wattch is an architecture level power

estimator [2], [7]. We also modified the power.h file in this

environment to reflect the same process parameters as used for

the RTL power estimation.

Our aim in building this parallel power estimating setup at

two levels of design hierarchy is two-fold. First, we wish to



show that the dataflow and structure information available at

these levels can be usefully exploited to optimize the design for

lower power consumption. Second, our technique of automat-

ically adding annotations is scalable to many levels of design

hierarchy. The only caveat is that since the architecture model

is more abstract than the RTL model, the slicing induced clock

gating is coarser for the architecture model than the RTL model.

4. OR1200 - a Pipelined OpenRISC Processor

Integer EX
Pipeline

GPRs

System

Unit

MAC

Unit

Load/Store

Exceptions

Unit

Instruction

DMMU

&Cache

IMMU

&Cache

System

Figure 3. OR1200 Processor Block Diagram.

In order to demonstrate the efficacy of our technique, we

have chosen a very complicated, state-of-the-art microproces-

sor as our example. OR1200 is a pipelined microprocessor im-

plementing the OpenRISC instruction set architecture. We have

implemented the architectural model of OR1200 compatible

with SimpleScalar (sim-or1200). In the rest of this section,

we first give a description of the processor itself, and then give

our results from running our technique on these models.

4.1. OR1200

We use the OR1200, a publicly available processor for our

experiments. The specification manual of the OR1200 is at [8]

and the source code of its implementation in Verilog RTL can

be obtained from [15]. The OR1200 is a 32-bit scalar RISC

with Harvard microarchitecture, 4 stage integer pipeline, virtual

memory support (MMU) and basic DSP capabilities. OR1200

is intended for embedded, portable and networking applica-

tions.

Figure 3 shows the block diagram of the CPU of the OR1200

processor. The instruction unit implements the basic instruction

pipeline, fetches instructions from the memory subsystem, dis-

patches them to available execution units, and maintains a state

history to ensure a precise exception model and that operations

finish in order. The execution unit must discern whether source

data is available and has to ensure that no other instruction is

targeting the same destination register. OpenRISC 1200 imple-

ments 32 general-purpose 32-bit registers. The load/store unit

(LSU) transfers all data between the general purpose registers

and the CPU’s internal bus.

In this experiment we use TSMC CLO18G [14], a 0:18�m

generic process technology to estimate the power dissipation.

4.2. Results for OR1200RTL

(a) OR1200-RTL

(b) OR1200-Arch

Figure 4. OR1200 reduction in power dissipation
for SPECINT2000 benchmarks.

The RTL annotations were automatically generated and in-

serted in the OR1200 RTL in this experiment. The results are

shown in Figure 5(a). It is important to note that these num-

bers are on models of the processor, and were not originally

designed to be power-efficient. The key result therefore, is the

percentage reduction in power dissipation. The results are sum-

marized in Figure 4(a). In the best case, we see a 25% reduction

of dynamic power dissipation and 20% on an average.

Our power estimation tool (Synopsys power compiler) also

automatically gates the clock. However, there is not much over-

lap between those and the ones we add automatically. Primarily

this is because our flop disable logic is extremely fine grained

and is not on the clock distribution network. Both the unsliced

and the sliced RTL go through the same additional clock gat-

ing and hence the percentage reduction we obtain is in addition

to what was automatically added by the synthesis tool.

Figure 6 depicts the power-vs-timing and power-vs-area

tradeoffs. The normalized E nergy � Area product decreases

consistently with increased slicing. This means that as far as in-

crease in area is considered because of additional logic, it is



SPECINT2000 Unsliced 1-Sliced 4-Sliced 10-Sliced

Benchmarks Power Dissipation Power Dissipation Power Dissipation Power Dissipation

gcc 1.89 mW 1.72 mW 1.69 mW 1.53 mW

gzip 1.44 mW 1.38 mW 1.31 mW 1.19 mW

parser 2.12 mW 1.84 mW 1.80 mW 1.56 mW

vortex 2.33 mW 2.02 mW 1.94 mW 1.70 mW

Average 1.95 mW 1.74 mW 1.68 mW 1.49 mW

(a) OR1200-RTL Power dissipation results for SPECINT2000 benchmarks

SPECINT2000 Unsliced 1-Sliced 4-Sliced 10-Sliced

Benchmarks Power Dissipation Power Dissipation Power Dissipation Power Dissipation

gcc 2.04 mW 1.90 mW 1.87 mW 1.72 mW

gzip 1.67 mW 1.62 mW 1.55 mW 1.43 mW

parser 2.32 mW 2.08 mW 2.03 mW 1.84 mW

vortex 2.51 mW 2.28 mW 2.14 mW 1.94 mW

Average 2.14 mW 1.97 mW 1.90 mW 1.73 mW

(b) OR1200-Arch Power dissipation results for SPECINT2000 benchmarks

Figure 5. OR1200 Power dissipation results after slicing on 1, 4 and 10 instructions.

not a problem since we are gaining substantially in terms of re-

duced power. The same result shows up from the E nergy �
D elay2 product as well. [12] introduced E nergy � D elay2

product as an efficient measure of energy-vs-delay tradeoff

since it represents a voltage independent metric. Therefore, in-

dependent of device supply voltage, gains because of lower

power dissipation consistently offset the increased area and de-

lay. Also, in certain timing critical blocks, our algorithm can be

tuned to slice more coarsely to meet the timing requirements of

that block.

Figure 6. OR1200RTL Power reduction com
pared to increase in area and delay due to slic

ing. The first set of comparisons depicts the nor
malized E nergy� Area product. The second set

depicts the normalized E nergy� D elay2 product.

We also synthesized our design and ran it through a place-

and-route tool [4], both before and after the slicing. The de-

sign contained 3287 flops before slicing. In the unsliced ver-

sion, all 3287 enables are treated as on as shown in Figure 7(a).

After instruction-driven slicing on l.add, 1413 flops are dis-

abled during the course of execution of the l.add. Figure 7(b)

shows the flop distribution after slicing on the l.add instruc-

tion. The parts of the chip that are lit are all the enables on the

flops which are on during the execution of the l.add. In the

unsliced layout, the entire chip is on, as opposed to the sliced

layout where we can clearly see the fine-grained clock gating

induced by our algorithm. Figure 7(c) shows the same com-

parison for a load (l.lw) instruction (831 flops are disabled

in this case). The flop distribution in Figure 7 is based on pre-

liminary floor plan estimate, whereas, the number of enables in

each case is accurate.

The inserted annotations introduce additional flops into the

design. For the OR1200 RTL we found that the number of ad-

ditional flops was less than 1% of the total number of flops. On

the same count, the additional switching power due to the ad-

ditional logic is also less than 1% of the total power dissipated.

The additional logic will also cause increased leakage power.

Since we have no model to measure the static power dissipa-

tion, we do not have a measure of this. However, since the per-

centage of additional logic is so low compared to the overall

power reduction, we do not expect this to be a problem.

4.3. Results for OR1200Arch

We ran the same benchmarks on our architectural model

sim-or1200. The results are shown in Figure 5(b).

sim-or1200 absolute power dissipation estimations were

more than the RTL estimations. The percentage improve-

ment observed was also lesser than in the RTL model. We be-

lieve this behavior is a direct correlation of how fine-grained the

clock gating is. Also, since the architectural model is more ab-

stract than the RTL model, it is natural to expect lesser gains

on the architectural model. The results are summarized in Fig-

ure 4(b).

Instruction-driven slicing is unique because it tries to en-

force a semantics (the semantics of the instruction being exe-

cuted, as given by the program graph) on the flops one is try-

ing to shut-off. This does not preclude the use of netlist level

power optimization techniques. To what extent a netlist level



(a) Unsliced flop distribution (b) After slicing on l.add (c) After slicing on l.lw

(3287flops enabled) (1874flops enabled) (2456flops enabled)

Figure 7. Flop distribution effect of instructiondriven slicing on l.add and l.lw in the OR1200 RTL.

optimization is anticipated by our method is not clear. On the

contrary, it is clear that our algorithm by virtue of operating at

the RTL and architectural levels employs a host of optimiza-

tions which are not visible at the netlist level.

5. Conclusions

In this article, we have proposed instruction-driven slicing,

a new technique to automatically annotate RTL for reducing

power dissipation by switching activity. We have implemented

the instruction-driven slicing algorithm and have incorporated

it into the design flow tool-chain. We have automatically sliced

the RTL and architectural models for OR1200, a pipelined im-

plementation of the OpenRISC instruction set architecture. We

have used our tool-chain to test our methodology on this pro-

cessor and have obtained encouraging results.

Our algorithm is particularly suited for in-order pipelined

processor designs. It can be applied to out-of-order superscalar

processors too. However the reduction in power will be sub-

stantially less than the OR1200 case since there might be mul-

tiple instructions in flight in any pipeline stage, thereby reduc-

ing the amount of logic we can actually shut off.

Although our algorithm is conservative, it automatically

identifies a close-to optimal set of flops. Our instruction-driven

slicing algorithm can be thought of as a wrapper to implement

more sophisticated methods of identifying flops which control

the circuitry outside the slice.

All previous program slicing algorithms slice the program

graph syntactically. The key innovative idea in this technique

which separates it from previous techniques is that it computes

a cone of semantic influence of an instruction. It is notewor-

thy that this information is available only at the RTL and archi-

tectural level of description, but is lost at the netlist level where

most prior power optimization techniques reside.

References

[1] D. Brooks and M. Martonosi. Dynamic thermal management for
high-performance microprocessors. In Proceedings of the Seventh In-

ternational Symposium on High-Performance Computer Architecture

(HPCA’01), page 171. IEEE Computer Society, 2001.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Proceedings

of the 27th annual international symposium on Computer architecture,
pages 83–94. ACM Press, 2000.

[3] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
SIGARCH Comput. Archit. News, 25(3):13–25, 1997.

[4] Cadence placement-and-routing (PNR) tool.

[5] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power cmos digital
design, 1992.

[6] D. Chaver, L. Pi~nuel, M. Prieto, F. Tirado, and M. C. Huang. Branch
prediction on demand: an energy-efficient solution. In Proceedings of

the 2003 international symposium on Low power electronics and design,
pages 390–395. ACM Press, 2003.

[7] J. W. Chen, M. Dubois, and P. Stenström. Integrating complete-system
and user-level performance/power simulators: The simwattch approach.
Proceedings of International Symposium on Performance Analysis of Sys-

tems and Software, 2003.

[8] D. Lampret et al. OpenRisc 1000 Architecture Manual,
http://www.cs.utexas.edu/� vinod/patmos05/or1200 spec.pdf. 2003.

[9] S. Devadas and S. Malik. A survey of optimization techniques target-
ing low power vlsi circuits. In Proceedings of the 32nd ACM/IEEE con-

ference on Design automation, pages 242–247. ACM Press, 1995.

[10] Edmund M. Clarke and Masahiro Fujita and Sreeranga P. Rajan and
Thomas W. Reps and Subash Shankar and Tim Teitelbaum. Program Slic-
ing of Hardware Description Languages. Conference on Correct Hard-

ware Design and Verification Methods, pages 298–312, 1999.

[11] M. Weiser. Program Slicing. IEEE Transactions on Software Engineer-

ing, 10(4):352–357, July 1984.

[12] A. J. Martin, M. Nystrom, and P. I. Penzes. Et2: a metric for time and
energy efficiency of computation. pages 293–315, 2002.

[13] J. Monteiro, J. Rinderknecht, S. Devadas, and A. Ghosh. Optimization of
combinational and sequential logic circuits for low power using precom-
putation. In Proceedings of the 16th Conference on Advanced Research

in VLSI (ARVLSI’95), page 430. IEEE Computer Society, 1995.

[14] Mosis-TSMC 0.18�m CLO18 Process.
http://www.mosis.org/products/fab/vendors/tsmc/tsmc018/. 2004.

[15] OPENCORES. http://www.opencores.org.

[16] A. Sakanaka, S. Fujii, and T. Sato. A leakage-energy-reduction technique
for highly-associative caches in embedded systems. SIGARCH Comput.

Archit. News, 32(3):50–54, 2004.

[17] The VIS Group. VIS: A system for Verification and Synthesis. In R. Alur
and T. Henzinger, editors, Proceedings of the 8th International Confer-

ence on Computer Aided Verification, pages 428–432. Springer Lecture
Notes in Computer Science #1102, July 1996.

[18] F. Tip. A Survey of Program Slicing Techniques. Journal of Program-

ming Languages, 3:121–189, 1995.

[19] V. Tiwari, S. Malik, and P. Ashar. Guarded evaluation: pushing power
management to logic synthesis/design. In Proceedings of the 1995 inter-

national symposium on Low power design, pages 221–226. ACM Press,
1995.

[20] V. M. Vedula, J. A. Abraham, J. Bhadra, and R. Tupuri. A hierarchical
test generation approach using program slicing techniques on hardware
description languages. J. Electron. Test., 19(2):149–160, 2003.

[21] C. Zhang, F. Vahid, J. Yang, and W. Najjar. A way-halting cache for low-
energy high-performance systems. In Proceedings of the 2004 interna-

tional symposium on Low power electronics and design, pages 126–131.
ACM Press, 2004.


	Main
	DATE06
	Front Matter
	Table of Contents
	Author Index

	Designer's Forum 06



