
Advanced Receiver Algorithms for MIMO Wireless Communications

A. Burg*, M. Borgmann†, M. Wenk*, C. Studer*, and H. Bölcskei†
* Integrated Systems Laboratory

ETH Zurich
8092 Zurich, Switzerland

Email: apburg@iis.ee.ethz.ch

† Communication Technology Laboratory
ETH Zurich

8092 Zurich, Switzerland
Email: {moriborg|boelcskei}@nari.ee.ethz.ch

Abstract

We describe the VLSI implementation of MIMO detec-
tors that exhibit close-to optimum error-rate performance,
but still achieve high throughput at low silicon area. In par-
ticular, algorithms and VLSI architectures for sphere decod-
ing (SD) and K-best detection are considered, and the cor-
responding trade-offs between uncoded error-rate perfor-
mance, silicon area, and throughput are explored. We show
that SD with a per-block run-time constraint is best suited
for practical implementations.

1. Introduction

Multiple-input multiple-output (MIMO) technology con-
stitutes the basis for next-generation wireless communica-
tion systems, for example in the standards IEEE 802.11n
or IEEE 802.16. In particular, spatial multiplexing allows to
achieve a spectral efficiency that grows linearly with the min-
imum of the number of transmit and receive antennas [1].

Unfortunately, the considerable gains in spectral effi-
ciency resulting from spatial multiplexing are bought dearly
at the expense of additional signal processing complexity at
the receiver, most prominently in the MIMO detection unit.
Optimum error-rate performance is achieved by the maxi-
mum likelihood (ML) detector. However, since the compu-
tational complexity of ML detection grows exponentially
in the transmission rate (measured in bits per channel use),
its implementation has so far been considered infeasible for
high-rate systems.

Contributions. In this paper, we show how MIMO detec-
tion algorithms with close-to-ML performance can be imple-
mented for high-rate systems under reasonable resource con-
straints, i.e., limits on silicon area and processing delay. The
two algorithms considered are sphere decoding (SD) and
K-best detection, which both have their origins in [2,3] and
were introduced to wireless communications in [4] and [5],
respectively. Besides the implementation complexity per se,
an important obstacle to the practical application of the SD
algorithm has been its variable throughput. We show that

this problem can be alleviated, without a significant degra-
dation of error-rate performance, by block processing. Our
comparison of SD (with block processing) and K-best de-
tection demonstrates that SD is more efficient in terms of
hardware complexity and provides more flexibility to trade
throughput against error-rate performance.

Outline. In the remainder of this section, we introduce the
system model and describe the practical problems of imple-
menting MIMO detectors with close-to-ML performance.
In Section 2, we explain how tree-search algorithms with
resource constraints can achieve close-to-ML performance.
Section 3 describes the key VLSI implementation aspects of
SD and K-best detection. A comparison between the two al-
gorithms is provided in Section 4.

1.1. System Model

We consider a spatial multiplexing MIMO system with
MT transmit and MR receive antennas. The transmitter
sends MT spatial streams, i.e., it chooses the entries of
the transmitted MT -dimensional vector symbol s indepen-
dently from a set of complex-valued constellation pointsO;
we write s ∈ OMT . The transmission rate is given by
R = MT log2|O| bits per channel use (bpcu), where |O|
denotes the cardinality of the set O. The corresponding re-
ceived vector y is given by

y = Hs + n (1)

where H is the MR ×MT -dimensional channel matrix and
n is an MR-dimensional noise vector. The noise is i.i.d.
proper complex Gaussian distributed.

Throughout the paper, we consider an uncoded 4×4 sys-
tem with Gray-labeled 16-QAM modulation. SNR denotes
the average (with respect to the channel) signal-to-noise ra-
tio at each receive antenna.

1.2. The MIMO ML Detection Problem

We consider coherent detection, i.e., we assume that the
receiver has perfect knowledge of the channel matrix H, ob-
tained for example through a training phase preceding the



data transmission phase. The task of the MIMO detector
is to recover s from y. Optimum error-rate performance is
achieved by ML detection, which amounts to finding the vec-
tor symbol

ŝ = arg min
s∈OMT

‖y −Hs‖. (2)

A straightforward approach to solving (2) is an exhaustive
search over all possible candidate vector symbols OMT .
However, since the number of possible solutions grows ex-
ponentially in R, the implementation of an exhaustive search
becomes quickly prohibitive as R increases. For example, in
our setting of a 4×4 MIMO system with 16-QAM modula-
tion (R = 16 bpcu), an exhaustive search would require the
consideration of 65 536 candidate vector symbols.

Traditional approaches to MIMO detection resort to lin-
ear receivers or successive interference cancellation (SIC)
algorithms, both of which exhibit an error-rate performance
inferior to that achieved by ML detection. In this paper, we
shall focus on the question of how to build VLSI implemen-
tations of MIMO detectors that exhibit close-to-ML perfor-
mance, but are yet feasible under reasonable resource con-
straints. A viable solution to this problem is to search only a
fraction of the vector-symbol alphabet. However, to achieve
close-to-ML performance we need to ask the question: How
can we confine our search space while maintaining a high
probability of finding the ML solution? We shall see that, in
terms of achievable throughput and error-rate performance,
SD and K-best detection represent attractive solutions to this
problem.

2. MIMO Detection by Tree Search

In the following, we describe the two most relevant tree-
search algorithms for MIMO detection, SD and K-best de-
tection.

2.1. Principles of Tree-Search Algorithms

Triangularization. The first step in mapping the ML de-
tection problem to a tree-search problem is computing the
QR decomposition H = QR, where R is upper-triangular
and Q is unitary. Left-multiplying (1) by QH leads to a mod-
ified input-output relation according to

ŷ = Rs + QHn with ŷ = QHy

so that (2) can be written as

ŝ = arg min
s∈OMT

d (s) with d (s) = ‖ŷ −Rs‖. (3)

Before we show how this modification can be exploited to
reduce detection complexity, we introduce the set of par-
tial candidate vector symbols s(i) =

[

si si+1 · · · sMT

]

,
i = 1, 2, . . . , MT , and we note that the s(i) can be arranged
in a tree that has its root on level i = MT + 1 and leaves,

which correspond to the set of all possible candidate vec-
tor symbols, on level i = 1.

Computing Partial Euclidean Distances. The vector
norm in (3) can be computed recursively as d(s) = d1 with
the partial Euclidean distances (PEDs)

di = di+1 + |ei|2 (4)

and the distance increments

|ei|2 =

∣

∣

∣

∣

∣
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where we set dMT +1 = 0 (cf. [6]). Due to the upper triangu-
lar structure of R, the PEDs di depend only on s(i) and can,
therefore, be associated with the corresponding nodes in the
tree. In other words, the computation of d(s) can be inter-
preted as a traversal of the tree from the root to the leaf cor-
responding to s. When proceeding from a node on level i+1
to one of its children on level i, the detector increments the
PED by the nonnegative quantity |ei|2.

Complexity Reduction with Tree Pruning. The ML solu-
tion (2), or equivalently (3), can now be found by an exhaus-
tive tree traversal that searches for the leaf associated with
the smallest d(s). Efficient tree-search algorithms reduce the
search space by pruning the tree below certain nodes, such
that the path leading to the ML solution is preferably not dis-
carded. Pruning criteria are typically based on the PED and
resource constraints.

2.2. Sphere Decoding with Run-Time Constraints

The SD algorithm traverses the tree depth-first, i.e., the
detector visits the children of a node before visiting its sib-
lings. The rule for pruning the tree follows from the sphere
constraint (SC), which limits the candidate vector symbols
to those points in OMT for which Hs lies within a radius r
around the received point y. Since the PEDs are monotoni-
cally increasing along a path in the tree, the SC corresponds
to a constraint on the PED for each level of the tree, given
by di < r2.

A considerable problem with the application of the SC is
the fact that the search complexity depends critically on the
a-priori choice of the radius [7]. If r is chosen too small, no
solution is found, and the algorithm must be restarted with a
larger radius. If it is chosen too large, many candidate vector
symbols lie within the sphere, and the detection effort is high.

A technique known as radius reduction allows to avoid
the problem of selecting a suitable radius altogether; in ad-
dition, this technique improves the pruning efficiency. The
basic idea of radius reduction is to start the algorithm with
r = ∞ and to update the radius according to r2 ← d(s)
whenever a leaf s is reached. However, this procedure is ef-
ficient only if the depth-first paradigm is used in conjunc-
tion with Schnorr-Euchner (SE) enumeration [8], which en-
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Figure 1. BER performance of SD in a fast-fading sce-
nario with a per–vector symbol (ET) and with a per-
block (BET, N = 64) run-time constraint of Dmax =
Davg = 7 visited nodes.

sures that the detector visits the children of a node in ascend-
ing order of their PEDs.

SD with Early Termination. A VLSI implementation of
SD based on depth-first tree traversal and SE enumeration
can achieve ML performance with high average throughput
at reasonable silicon area [6].

A significant disadvantage of SD is that the effort required
to find the ML solution depends on the realization of the
channel and the noise and sometimes even corresponds to an
exhaustive search. In practice, the maximum detection effort
must be limited by a constraint on the algorithm run time,
which ultimately prevents the detector from achieving ML
performance. We call such an approach constrained SD. A
straightforward way to impose a run-time constraint is to ter-
minate the detection process for each received vector after a
maximum number of visited nodes Dmax; with the architec-
ture described in Section 3.2, the number of visited nodes is
a direct measure for the run time of the detector. The detec-
tor then returns the best solution found so far. Unfortunately,
this simplistic approach results in frequent over- or under-
allocation of computing resources, since the variance of the
run time required to find the ML solution is large. Because
early termination is likely to prevent the decoder from find-
ing the ML solution, the bit error rate (BER) performance is
severely impaired (compare the top curve in Fig. 1 against
the bottom one, which corresponds to ML detection).

Block Processing. A better solution to the variable run time
problem is to impose an aggregate run-time constraint of
NDavg visited nodes for an entire block of N vector sym-
bols. While the average run time remains the same as for SD
with early termination and Dmax = Davg, block processing
leads to a more efficient allocation of computing resources.
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Figure 2. BER performance of K-best detection with
and without ordering for K = 5 and K = 10.

The main difficulty with the application of a per-block
run-time constraint lies in the fact that the detection effort for
the individual vector symbols is not known a priori. Hence,
a scheduling algorithm must be used to distribute the avail-
able run time over the vector symbols in the block. The re-
cursive maximum-first strategy [9] allocates a maximum run-
time equivalent of Dmax(n) to the nth vector symbol in a
block according to

Dmax(n) = NDavg −
n−1
∑

i=1

D(i)− (N − n)MT (6)

where D(i) denotes the actual number of visited nodes for
the ith vector symbol. The concept behind (6) is that a vec-
tor symbol is allowed to use up all of the remaining run time
within the block up to a safety margin of (N−n)MT visited
nodes, which allows to find at least the zero-forcing decision-
feedback solution [10] for the remaining vector symbols.

The improvement in BER performance due to block pro-
cessing depends on the block length N and on the channel
variation within the block. The third curve from the top in
Fig. 1 shows the BER performance for N = 64 and inde-
pendent channel realizations for each vector symbol, corre-
sponding to a fast-fading scenario. Note the significant im-
provement over per–vector symbol early termination.

2.3. K-Best Detection

The K-best algorithm traverses the tree breadth-first, i.e.,
the detector visits all siblings of a node before it proceeds
to the next level. The tree pruning strategy is designed such
that the detection effort is constant for each vector symbol:
the detector visits only K nodes on each level of the tree and
computes the PEDs of all their children. Among these chil-
dren, it then selects the K ones with the smallest PEDs as
the parent nodes to be visited on the next level.
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Figure 3. (a) One-node-per-cycle VLSI architecture for SD. (b) Tree-pruning example. The numbers on the branches
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Clearly, the choice of the design parameter K determines
the trade-off between silicon area, throughput, and BER
performance. Computational complexity and memory re-
quirements grow with increasing K, but the BER perfor-
mance also improves, as illustrated in Fig. 2. The allocation
of computing resources and hence the run time per vector
symbol is constant, determined by the design parameter K.
An important drawback of K-best detection against SD is
that a flexible allocation of resources across multiple vector
symbols, which results in improved performance as demon-
strated above, is not immediately possible.

2.4. Ordering of Spatial Streams

Adapting the detection order of the individual spatial
streams to the geometry of the matrix channel is a well-
known means to improve the BER performance of SIC algo-
rithms. For K-best detection, ordering has the same benefi-
cial impact on BER. The effect of ordering on unconstrained
SD (i.e., with ML performance) is a reduction of the aver-
age number of visited nodes. For constrained SD, ordering
translates into an improved BER performance because, com-
pared to unordered SD, chances are higher that the detector
finds the ML solution within the run-time limit.

Ordering strategies for tree-search algorithms include
column-norm ordering [3], the application of the V-BLAST
scheme [11], and the sorted QR decomposition [12]. The lat-
ter algorithm is of particular interest for practical implemen-
tations because of the negligible additional silicon complex-
ity and the associated significant improvement in BER per-
formance. The corresponding gains are quantified in Figs. 1
and 2 for SD and K-best detection, respectively.

3. Implementation of Tree-Search Algorithms

In this section, we briefly describe suitable VLSI archi-
tectures for SD and K-best detection.

3.1. Modified Norm Algorithm

We shall first discuss the modified norm algorithm [6],
which is a method to reduce the considerable complexity as-
sociated with the VLSI implementation of the arithmetic op-
erations in (4) and (5). The square root of the PED (4), de-
noted by xi =

√
di, can be interpreted as an `2-norm of a

vector with elements xi+1 and ei; the same interpretation
holds for the computation of |ei| from <{ei} and ={ei}.
If we approximate the `2-norm by the `1-norm or by the
`∞-norm,1 the silicon area and the length of the critical
path can be significantly reduced. A detailed discussion of
the corresponding implications for BER performance can be
found in [6].

3.2. VLSI Architectures for Sphere Decoding

The SD algorithm can be implemented efficiently using
a one-node-per-cycle VLSI architecture [6], for which the
high-level block diagram is shown in Fig. 3(a). The design
is composed of two main entities, which operate in paral-
lel to ensure that a new node of the tree is visited in each
cycle. The metric computation unit (MCU) handles the for-
ward iterations by identifying the preferred child of the cur-
rent node. The metric enumeration unit (MEU) follows the
MCU on its path through the tree with one cycle delay, to
prepare for the moment when the forward iteration stalls be-
cause a leaf is reached or the SC is violated by all children
of a node. In this case, the MEU immediately supplies a new
node (together with its PED), from which the MCU can con-
tinue in the next cycle. An example of this traversal proce-
dure is given in Fig. 3(b).

Unfortunately, the recursive nature of the SD algorithm
precludes the use of pipelining to speed up the processing of
a single vector symbol. However, the introduction of pipeline

1 The `1-norm of a vector with real-valued components a and b is given
by |a| + |b|, the corresponding `∞-norm by max(|a|, |b|).
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stages allows to process subsequent vector symbols concur-
rently in an interleaved fashion, resulting in an overall higher
throughput.

When the modified norm algorithm is used, the `∞-norm
results in a better BER performance than the `1-norm [6].

3.3. VLSI Architectures for K-Best Detection

For the implementation of the K-best algorithm, in con-
trast to SD, the MT -dimensional MIMO detection problem
with complex-valued QAM constellations should generally
be decomposed into a 2MT -dimensional real-valued prob-
lem [13].

A K-best architecture consisting of a pipelined linear ar-
ray of processing elements (PE) has originally been pro-
posed in [5], which was later adopted for the implementation
of different variations of the same algorithm, among others
in [14,13]. The basic concept behind the architecture, shown
in Fig. 4, is that each of 2MT PEs (i.e., each pipeline stage)
considers one level of the tree. To this end, a PE comprises
two main entities: The K-best MCU receives (from the pre-
ceding PE) the PEDs of K admissible nodes and computes
the PEDs of all associated children. The K-best unit (KBU)
finds the K children with the smallest PEDs from the output
of the MCU and forwards this list to the next pipeline stage.

In [5,14], a fully serial architecture is used, in which the
PED computation takes one cycle per child node. The recent
design in [13] takes a more parallel approach and computes
the PEDs of all children of a given parent node in one cy-
cle. Hence, the delay of each pipeline stage reduces to only
K cycles, which allows for a much higher throughput com-
pared to previous implementations.

In contrast to SD, the modified norm algorithm yields bet-
ter error-rate performance if the `1-norm is employed instead
of the `∞-norm [13].

4. Implementation Results and Comparison

The area-throughput trade-off of our VLSI implementa-
tions for SD (with three pipeline stages) and for K-best de-
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Figure 5. Area-throughput trade-off for SD and K-best
detection.

tection, both in a 0.25 µm technology, is depicted in Fig. 5.
One gate equivalent (GE) corresponds to the area of a two-
input drive-one NAND gate.

4.1. Sphere Decoder Implementation

For SD, the constraint on the maximum number of vis-
ited nodes has no implications for the hardware implementa-
tion. Hence, the parameter Davg can be adjusted during op-
eration to provide the lowest possible error rate for a given
throughput requirement.

Fig. 5 shows that the use of the `∞-norm instead of the
`2-norm for the PED computation leads to a 15% reduc-
tion in silicon area; a reduction of the length of the criti-
cal path additionally yields a 4% higher throughput for the
same choice of Davg. However, the modified norm algo-
rithm incurs an SNR penalty of about 0.15 dB (Davg = 7)
and 1.4 dB (Davg = 18) for SNR below 24 dB. Interest-
ingly, at higher SNR, the `∞-norm SD performs better than
the `2-norm SD, because the `∞-norm results in more effi-
cient tree pruning [6], which helps to mitigate the negative
impact of the run-time constraint.

4.2. K-Best Detection Implementation

For K-best detection, silicon area as well as throughput
are significantly influenced by the design parameter K, as
shown in Fig. 5. The impact on area is mainly due to a
larger K requiring more storage registers between the PEs
of the pipelined architecture. The reasons for the consider-
able throughput reduction with increasing K are twofold:
First, the number of parent nodes to be visited by the MCUs,
and hence the number of cycles required by each pipeline
stage, is directly proportional to K. Second, the length of
the critical path in the KBU also increases almost linearly
with K [13]. The combination of these two effects causes
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the throughput of the parallel K-best architecture to decay
as 1/K2. The throughput of fully serial architectures [5,14]
decays according to 1/K, because the length of the criti-
cal path of the sorting units is almost independent of K.
However, implementation results indicate that the parallel
approach is still preferable for small K.

The use of the `1-norm instead of the `2-norm causes an
SNR penalty of 0.4 dB for K-best detection, but reduces sil-
icon area by approximately 16% and allows for an up to 13%
higher throughput.

4.3. Comparison of SD and K-Best Detection

To compare SD and K-best detection, consider the area-
throughput trade-off in Fig. 5 together with the BER per-
formance depicted in Fig. 6, where both implementations
use the modified norm algorithm. The implementations with
K = 5 and Davg = 7, respectively, both yield a high
throughput in excess of 400 Mbps, but SD provides better
BER performance at a 20% lower silicon area. If lower BER
is required, a K-best detector with K = 10 can slightly out-
perform the SD with Davg = 7, but only at a 5-fold through-
put penalty. On the other hand, when the run-time limit is
increased to Davg = 18, SD performs again better than the
K-best detector with K = 10, providing almost twice the
throughput at half the silicon area of the K-best detector.

5. Conclusion

K-best detection as well as SD with early termination and
block processing allow for the efficient implementation of
MIMO detection with close-to-ML error-rate performance.
In a fast-fading MIMO system, SD appears to be superior
to K-best detection, since for a given throughput require-
ment the algorithm yields a lower error rate at lower sili-

con area. Moreover, SD allows to adjust the run time dur-
ing operation to provide the best error-rate performance for a
given throughput requirement, which is a particularly desir-
able feature in systems supporting variable bandwidths such
as IEEE 802.11n or IEEE 802.16.
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