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ABSTRACT1
 

This paper presents a timeout-driven DPM technique which relies 
on the theory of Markovian processes. The objective is to 
determine the energy-optimal timeout values for a system with 
multiple power saving states while satisfying a set of user defined 
performance constraints. More precisely, a controllable 
Markovian process is exploited to model the power management 
behavior of a system under the control of a timeout policy. 
Starting with this model, a perturbation analysis technique is 
applied to develop an offline gradient-based approach to 
determine the optimal timeout values. Online implementation of 
this technique for a system with dynamically-varying system 
parameters is also described. Experimental results demonstrate 
the effectiveness of the proposed approach.

 
Introduction 

Dynamic power management (DPM), which refers to selective 
shut-off or slow-down of components that are idle or 
underutilized, has proven to be a particularly effective technique 
for reducing power dissipation in such systems. In the literature, 
various DPM techniques have been proposed, from heuristic 
methods presented in early works [1][2] to stochastic 
optimization approaches [3][4].  

Among the heuristic DPM methods, the timeout policy is 
the most widely used approach in industry and has been 
implemented in many operating systems. Examples include the 
power management scheme incorporated into the Windows 
system,  the low-power saving mode of the IEEE 802.11a-g 
protocol for wireless LAN card, and the enhanced adaptive 
battery life extender (EABLE) for the Hitachi disk drive. Most of 
these industrial DPM techniques provide mechanisms to adjust 
the timeout values at the user level. 

In the other direction, stochastic approaches have been 
proposed for DPM. Reference [3] proposed a power management 
model based on discrete-time Markovian decision chain. The 
discrete-time model requires policy evaluation at periodic time 
intervals and may thus consume a large amount of power 
dissipation even when no change in the system state has 
occurred. To overcome this shortcoming, a model based on 
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continuous-time Markovian decision processes (CTMDP) was 
proposed in [4]. The policy change under this model is 
asynchronous and thus more suitable for implementation as part 
of a real-time operating system environment. Reference [5] also 
improved on the modeling technique of [3] by using a 
time-indexed semi-Markovian decision process to handle 
workloads with Pareto-distributed idle time durations. The most 
significant advantage of stochastic approaches is that, based on 
mathematically rigorous stochastic models of a power-managed 
system, these techniques can construct the optimum DPM policy. 

This paper presents a timeout-based DPM technique, which 
is constructed based on the theory of Markovian processes and is 
capable of determining the optimal timeout values for an 
electronic system with multiple power-saving states.  More 
precisely, in this paper, a continuous-time Markovian process 
based stochastic model is presented to capture the power 
management behavior of an electronic system under the control 
of a timeout policy. Perturbation analysis is used to construct an 
offline gradient-based approach to determine the set of optimal 
timeout values. Finally, online implementation of this approach 
is also discussed. 

The motivation for this work comes from the following 
factors. The timeout policy is an industry standard that has been 
widely deployed in many real systems. A DPM technique based 
on timeout policies may thus be easier and safer for users to 
implement. At the same time, it helps them achieve a reasonably 
good energy-performance trade-off. To implement a more 
elaborate DPM technique requires the users to directly control 
the power-down and wake-up sequences of system components, 
which normally necessitates detailed knowledge of hardware and 
involves a large amount of low-level programming dealing with 
the hardware interface and device drivers. Notice also that the 
various system modules typically interact with each other 
implying that hasty power-down of a system module may cause 
the whole system to malfunction or become unstable. So it is a 
big responsibility to control directly over the state of a system 
module that should not be delegated unceremoniously. A DPM 
technique based on a simple and well-tested timeout policy and 
incorporated in the operating system will have none of the above 
concerns.  

Previous stochastic DPM approaches with non-stationary 
input request generation rates [6][7] or variable system 
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parameters [8] are mostly based on online lookup or 
manipulation of policy tables that have in turn been constructed 
offline. This is because the calculation of the optimal DPM 
policy is very computation-intensive and hence cannot be done at 
runtime. The perturbation analysis-based DPM approach 
presented in this paper reveals a very different approach for 
online power management policy tuning. This approach does not 
require a pre-computed policy table yet it avoids the 
computational burden of solving complex mathematical 
programs to derive the optimal DPM policy online [7]. The key 
idea is to compute an optimal parameterized policy offline for 
the complete range of system input parameters. Next, at runtime, 
by exploiting perturbation analysis, the gradients of power 
dissipation and performance with respect to the control 
parameters are estimated and subsequently used to adjust the 
policy parameters, e.g., the timeout values or the probability that 
a decision is made by as part of policy. 

In the literature, several works have been reported to 
optimize the timeout policies. For example, reference [10], based 
on the theory of competitive analysis, generalizes a 
2-competitive algorithm [9] to power management of a system 
composed of components with multiple power saving states. The 
analysis shows that this generalization of the 2-competitive 
policy consumes at most twice as much energy dissipation as the 
optimum policy. Note that competitive analysis is a worst case 
analysis method which often provides pessimistic bounds on 
energy saving that is achievable by DPM. In particular, policies 
developed based on competitive analysis do not take advantage 
of knowledge about the workload. To surmount this deficiency, 
reference [10] also proposed a probabilistic analysis method to 
determine the optimal timeout values for a given input 
probability distribution with the objective of minimizing the 
average power consumption. A similar method is used in 
reference [11] to determine the optimal timeout value, assuming 
that the duration of idle periods between input requests follows a 
Pareto distribution. A key shortcoming of all of the 
abovementioned timeout value optimization techniques is that 
they do not consider any timing constraints that may be imposed 
on the service time of the input requests. 

The remainder of this paper is organized as follows. 
Background for perturbation analysis is provided in Section 2. In 
Section 3, stochastic modeling of a system under the control of a 
timeout policy is presented. Offline solution approach is 
presented in Section 4 and online implementation issues are 
addressed in Section 5. Experimental results and conclusions are 
provided in Sections 6 and 7, respectively.  

1 BACKGROUND OF PERTURBATION ANALYSIS 
Perturbation analysis (PA) provides performance sensitivities for 
a discrete event system by analyzing the dynamic behavior of the 
system. In the literature, many PA methods have been developed 
[12] for various types of system descriptions, including 
differential equations, queuing networks, and Markovian 
processes. In this section, we will briefly introduce the PA 
method developed in [13] for Markovian processes, which is 
based on the concept of perturbation realization. 

Consider a regular, positive recurrent, and irreducible 
continuous-time Markovian process (CTMP) X = {Xt, t≥0} with 
a countable state space S = {s1, s2, …} and an infinitesimal 
generator G = [gij], where gij represents the transition rate from 

state si to sj. Let p=(pi) denote the steady-state probabilities of the 
Markovian process. Then it holds that pG=0 and Ge=0, 
e=[1,1,…]T. Let f(si): S→R denote a performance function. The 
expected performance measure of the Markovian process is 
determined by 
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where f = [f(s1), f(s2),…] is a column vector.  

Now suppose that G changes to Gδ=[gδ, ij]=G+δH, where δ 
is a small real number and He=0, which results in the 
performance measure changing to ηδ=η+Δη. Perturbation 
analysis studies the derivative of η in the direction of H, which is 
defined as follows 

0
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The fundamental basis of perturbation realization is that the 
effect of a parameter change is the sum of the effects of many 
individual changes on a sample path. Consider the Markovian 
process X with state space S and generator G. Assume at time t0, 
X is perturbed from state si to sj, which means that X should 
transit to state si according to G, but it reaches state sj because of 
the small change of generator G, i.e., G becomes Gδ at this 
instance. Let X1 and X2 denote the original and perturbed 
processes, respectively. It is assumed that after t0 both X1 and X2 
evolve based on generator G. Thus the effect of this single 
perturbation on the performance can be measured as the 
difference between the performances of X1 and X2.  

We define potential vector ε=(εi), where εi denotes the 
performance potential for state si and is determined as follows 
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Here ( )i
tX  represents a sample path of Markovian process 

X with initial state si. Furthermore, ε satisfies the Poisson 
equation: Gε=-f+ηe [13]. Based on the concept of perturbation 
realization, the derivative of η is calculated as [13] 
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∂
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2 SYSTEM MODELING 
In this paper, we will focus our discussion on a power 
management framework which consists of a service requestor 
(SR), a service queue (SQ) and a single service provider (SP). 
The SP provides service for the service requests generated by the 
SR. The requests that cannot be serviced immediately are 
waiting in the SQ for the SP to become available. The SP has a 
working state and at least a low-power state. The SP uses less 
power in its low-power state, but a transition into or out of the 
low power state consumes additional energy and may increase 
the service delay for the requests. The state transition of the SP is 
controlled by a timeout policy, which assigns a timeout value to 
each state except the one with the lowest power. The SP will 
transit to the next highest power state from the current state if the 
corresponding timeout expires and no requests are generated. 
The objective of this paper is to find out the optimal timeout 
values that minimize the power consumption of the SP while 
satisfying the constraint on the average service delay.  

(2-4) 
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Similar to the work in [4], the SR and the SQ can be 
modeled as CTMP models as depicted in Figure 1. The SR 
model consists of a state set R = {ri, i=1,2,…,R} and a generator 
matrix GSR, where R is the number of the states of the SR. The SQ 
model consists of a state set Q = {qi, i=0,1,…,Q} and a generator 
matrix GSQ(r,s), where Q is the maximum length of the queue, s 
denotes a state of the SP, and r denotes a state of the SR. 

 
Figure 1. The CTMP models of the SR and the SQ. 

The SP under the control of a timeout policy can be modeled 
as a Markovian process model which simulates the power 
management behavior of the SP. As an example, the CTMP model 
of an SP with a single low-power state is presented in Figure 2,. 
This model comprises of a state set S={Work, Idle, TO1…TOn, 
Sleep} and a generator matrix GSP(λ), where λ is the parameter to 
be optimized. Notice that λ sets the duration of time that the SP 
spends in the Idle state before it can go to the low power Sleep 
state during an idle period (i.e., the timeout value.) Details of 
model states and state-transitions are explained next. 

λλ

 
Figure 2. The CTMP model of the SP with a timeout policy. 

Sleep: A low-power state. The SP transits to Idle state when the 
SQ is non-empty. 

Work: A functional state, where the SSP provides service to the 
SR that is waiting in the SQ.  

Idle: A non-functional state. If the SQ is non-empty, the SP goes 
to the Work state; otherwise, it goes to TO1 state. 

TOi: i=1,2,…,n: One of n non-functional time-out states. These 
states are used to simulate the timeout policy. When the SQ is 
non-empty, the SP goes back to the Idle state; otherwise, the SP 
goes to TOi+1 state or Sleep state if the SP is in the TOn state. 
Notice that the time for the SSP transferring from Idle to TOn 
state is a random variable whereas in the timeout policy, the 
timeout value is fixed. Consequently, multiple TO states are used 
to improve the simulation accuracy based on the central limit 
theorem [14]. The transition rates between Idle to TO1 and TOi to 
TOi+1, i=1,2,..,n-1, are all the same, i.e., λ. 

This model can easily be extended to an SP with multiple 
low power states by introducing a TO state chain for each 
additional low power states. Next, we define the CTMP model 
SYS of the whole system comprising of the SR, SQ and SP. Let 
X denote the state space of SYS, thus X=R×Q×S-{invalid 
states}, where the invalid states include the states where the SP is 
in the Work state while the SQ is empty. Assume the SP has m 

low-power states si, i=1,2,…,m, sorted in a descending order of 
power consumptions. Let s0 denote the full-power non-functional 
state, i.e., the Idle state in Figure 2. Let TOij, i=0,1,…,m-1, 
j=1,2,…,n, denote a TO state at the same power level as state si, 
where n denotes the number of TO states in a TO state chain. Let 
λ=(λi), where λi determines the timeout value Tto,i which should 
be exceeded before the SP can transit to low-power state si+1: 
Tto,i= n/λi. The generator of the SYS is a function of λ, and is 
denoted by G(λ). Note that this model includes unknown 
continuous parameters, i.e. λ, to be determined. 

3 PROBLEM FORMULATION AND SOLUTION  
Let γ =(γx) denote a column vector, where γx denotes the expected 
power consumption when the SYS is in state x. Let w=(wx) be a 
column vector, where wx denotes the number of requests waiting 
in the SQ when the SYS is in state x. Let D denote an upper 
bound on the expected number of requests waiting in the SQ. 
Finally, let p=(px) denote a row vector, where px represents the 
steady-state probability of state x. Now, we can formulate the 
timeout-policy based energy optimization problem as a 
constrained mathematical program as follows: 

( ){ , }p pλ γM in  

which is solved over variables p and λ subject to: 

( ) 0pG λ = ,  

T1, [1,1,...,1]pe e= = ,  
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Equations (4-2) and (4-3) capture properties of a CTMP. 
Inequalities (4-4), which are based on the Little’s theorem [15], 
impose constraints on the expected task delay of the SP.  

This problem is a non-convex, constrained mathematical 
program (c.f. (4-2)). The optimal solution can be found by using 
standard stochastic search techniques, e.g., simulated annealing. 
However, we have developed a gradient-based optimization 
algorithm, which efficiently finds a good approximate solution 
based on the structural features of the CTMP model.  

We next consider the derivative of performance measure η  
with respect to λi, i=0,1,…,m−1. From equation (2-4), the 
derivative is calculated as 

i
i
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gxy(λ) denotes the (x, y) entry of the generator matrix G(λ), x,y∈X. 
From an examination of the CTMP model, we find that λi affects 
the SYS state transition rate only if the SQ is in state q0 and the SP 
is in state si or TOij. Thus Hi is a sparse matrix which has only 2nR 
non-zero entries, where n is the number of TOi states and R of SR 
states. From the CTMP model SYS, it is seen that each non-zero 
entry of Hi only takes a value of either 1 or -1. Let x(r, q, s) denote 
the fact that in a global SYS state x, the SR is in state r, the SQ is 
in state q, and the SP is in state s. From equation (4-5) and the 
observation about the sparsity of Hi, the derivative is 
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From equation (4-6), we can see that, with x=x(r, q0, s), 
only a small number of px’s and εx’s are involved in the 
derivative calculation. Thus we may not have to calculate values 
for all px’s and εx’s.  

Let indices of the generator matrix G(λ) be sorted following 
the sequence of s, r, and q. Then, G(λ) may be represented as 

11 12

21 22

( )
( )

G G
G

G G

λ
λ ⎡ ⎤
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⎣ ⎦
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where G11(λ) represents the state transitions between states in a 
sub-space X0 where q=q0. This is a square matrix with a 
dimension of m(n+1)+1. G11, G21 and G22 are matrices with 
constant entries, which are independent of the value of λ.  

Lemma 1: If G(λ) is the infinitesimal generator of an ergodic 
Markovian process, then the inverse of G22 will exist. 

Based on this lemma, we can prove an important result, 
stating that to determine a derivative ∂η/∂λi, we need only 
explore the sub-space X0, whose size is nearly 1/R of the whole 
state space X. In the following, the superscripts “−1” and “T” 
denote the inverse and transpose of a matrix, respectively. 

Theorem 1: Let pX0=(px) be a row vector, and εX0=(εx) be a 
column vector, where x∈X0. pX0 and εX0 can be calculated from 
the following equations 
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where 
0X  denotes the complement of X0 in the state space X. 

Furthermore, η can be calculated based on pX0 as follows: 
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1
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Before presenting our algorithm to solve the optimization 
problem (4-1), we first define two performance measures: the 
expected energy consumption rate ηγ=pγ  and the expected 
number of waiting requests in the SQ ηw=pw. The derivatives of 
the two performance measures ∂ηγ/∂λi and ∂ηw/∂λi can be 
determined from equations (4-6) to (4-10). However, it is 
awkward to directly use these two measures in gradient-based 
optimization search. The reason is that the absolute values of 
these derivatives become very large when λi approaches 0. To 
overcome this problem, we define variable τi, such that 

ln , 0,1, , 1i i i mτ λ= = − . 
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Our algorithm to solve the optimization problem (4-1) is 
then as follows.  

Offline Algorithm 

Input: A parameterized generator matrix G(λ) which describes 
the power management system. 

Output: Timeout values, Tto,i= n/λi, i=0,1,…,m−1. 

1. Set initial values for τi, denoted as τi,0, and tolerances δu, 
δD>0. 

2. Calculate the constant parameter matrices used in equations 
(4-8) and (4-9). 

3. Set penalty factor M >0. 
4. Set initial step size s0 and k=0. 

5. Calculate ηγ and ηw values at step k by using equations (4-8) 
to (4-11). 

6. Calculate derivatives ∂ηγ /∂τi,k and ∂ηw/∂τi,k by using 
equations (4-6) and (4-12). 

7. Calculate the gradient of cost function u=ηγ +Μ(ηw−D) at 
step k, denoted as ∇uk. 

8. If ||∇uk||<δu, go to step 11. 

9. Set τk+1=τ k−sk∇uk, where τ k=(τi,k), i=0,1,…,m−1.   

10. Let k=k+1, and go to step 5. 

11. If ηw−D<δD, go to END, else increase M and go to step 4. 
END 
The convergence of this algorithm is guaranteed based on 

the following key result.  

Theorem 2: Given is a linear composition u of bounded, 
differentiable measures defined on an ergodic CTMP with 
parameterized generator G(τ) that is differentiable with respect to 
τ. If step size sk>0 satisfies 
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then u(τk) converges and lim ( ) 0kk
u

→∞
∇ =τ  with probability 

one, where τk is a sequence defined in line 9 of the Offline 
Algorithm. 

Note that, as an example, a sequence of step sizes that satisfy 
constraint (4-13) are sk=1/k, k=1,2,…. 

4 ONLINE ALGORITHM 
To develop online power management algorithms, we assume 
that initially, the optimal solution has been deployed. This 
optimal solution can be achieved by doing online statistical 
profiling followed by offline optimization to generate the 
optimal solution for the nominal values of the system parameters. 
However, at run time, the system’s input parameters are subject 
to change. For example, the average service request generation 
rate can change over time. The goal of our online algorithm is to 
be able to adjust the initial optimal solution (i.e., the timeout 
values dictated by this solution) following changes in the system 
parameters, so as to maximize the power efficiency of the service 
provider while satisfying system-level performance constraints. 
For this purpose, Algorithm 1 can be used, however, although 
the matrix size has significantly been reduced by equations (4-8) 
and (4-9). Matrix multiplications and solving the system of 
equations may still be a heavy burden on the computation 
capability of the running system if such operations are performed 
online. Therefore, we estimate the values of pX0 and εX0 through 
the real sample path. Let Tk be the kth transition epoch of the 
Markovian processes {Xt} which describes the behavior of 
system SYS; Let Xk be the state after the kth transition, Ck be the 
sojourn time that process Xt stays in state Xk,. Then Ck= Tk+1-Tk. 
Now pX0 and εX0 are estimated based on the following equations 
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where ( , )  1, if k kX x X xς = = ; otherwise, it equals to 0; T is a 

properly chosen constant and l is selected satisfying that Xt is 
observed in the whole integration period in (5-2). Since f(Xt) is a 
piecewise function of t, the integration in (5-2) can be 
implemented by accumulating the product of Ck and f(Xk) at 
transition epoch Tk+1. In addition, we need to estimate η  in order 
to check the constraint and convergence condition, which may be 
directly done by 

0
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η
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For the online algorithm, it is important to capture the 
change in system parameters and guarantee that the performance 
constraints are met. Thus, we present an online algorithm, which 
adaptively adjusts the step size to speed up the convergence.  

Online Algorithm 

Input: Measured pX0, εX0, ηγ  and ηw along a sample path. 

Output: Timeout values Tto,i= n/λi, i=0,1,…,m−1. 

1. Set the initial step size s0 and k=0. Let τi,k denote the values 
of τi at step k. 

2. Calculate derivatives ∂ηγ /∂τi,k and ∂ηw/∂τi,k by using 
equations (4-6), (4-11), (4-12), (5-1) and (5-2).  

3. Estimate ηγ and ηw at step k by using equation (5-3), and 
denoted by ηγ, k and ηw,k, respectively. 

4. If ηw,k≤D, then 
1 ( ) /k k ks γ γη η+ = − ⋅∇ ∇τ τ . If ηw,k>D, then 

*
, ,arg max {( ) ( )}i k i w k ii γη τ η τ= ∂ ∂ ∂ ∂ , 

* *1, , kk i k i
sτ τ

+
= − . 

5. If ηw,k≤D≤ηw,k-1 or ηw,k-1≤D≤ηw,k, then set sk+1 = sk/α, where 
α>1 is a constant factor.  

6. If both ηw,k ,ηw,k-1>D, then increment a counter nc by one. In 
this case, if nc becomes greater than a preset threshold, then 
set sk+1 = αsk and clear nc. 

7. If both ηw,k ,ηw,k-1≤D and ∇ηγ,k ·∇ηγ,k-1<0, then set sk+1 = sk/α. 
8. Go to step 2. 

5 EXPERIMENTAL RESULTS 
For this experiment, we used ten-hour traces of hard disk requests 
generated by two types of applications running on a Linux PC. 
The first application was a file manipulation program, which read 
some data file, edited the file, and wrote it back to the disk. The 
second application was a program which periodically reads data 
from another machine through a WLAN card, searches for some 
relevant information in the received data, and stores this 
information onto the disk. The request generation pattern of the 
first application was accurately modeled with a Poisson process 
with an average rate of 0.208 requests per second. The request 
generation statistics of the second program was adequately 
characterized by a two-state CTMDP model. The state transition 
rate and generation rates of SR to hard disk λhd are 

( )10 0.0415

0.0063 0
s−⎡ ⎤

⎢ ⎥
⎣ ⎦

, 1[0.0826,0.0187] ( )hd sλ −= .  

The average service time for a disk request is 67ms. For our 
experiment, we used the hard disk drive, Hitachi Travelstar 7K60, 

as the service provider, which has three low power states. Power 
dissipation and start-up energy and latency of the disk drive are 
reported in Table 1.  

Table 1. Energy/transition data of hard disk driver 
State Power 

(w) 
Start-up 
energy (J)  

Wake-up 
time (s) 

Active  2.5 -- -- 
Performance idle 2.0 0 0 
Low power idle 0.85 1.86 0.4 
Stand-by 0.25 10.5 2 
Sleep 0.1 15.9 5 

First, we examine the offline algorithm. The aforesaid 
traces are denoted as RT1 and RT2, respectively. In addition, we 
also generated two synthetic SR input traces: ST1 and ST2, 
where the SR generation rates were set to 1/10 and 1/15 per 
second, respectively. For comparison purposes, we considered 
two DPM techniques in addition to our proposed technique 
(which we denote by PA for perturbation analysis): a 
probabilistic analysis-driven timeout policy (PTO) [10] which 
determines the timeout value to minimize energy consumption 
while ignoring any timing constraints and a CTMDP-based DPM 
policy [4]. The simulation results of these policies for different 
input traces and under different delay constraints are reported in 
Figure 3. 
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Figure 3. Comparison of simulation results of offline policies on 

a semi-log plot. 

As we can see, the PTO approach yields well in terms of 
energy minimization. However, the corresponding SR delays are 
quite large except for ST1. Thus, in the case where constraining 
the SR latency is important, it is not suitable. The CTMDP-based 
DPM generates the provably optimal policy for minimizing 
energy under timing constraints. It is seen that the results 
generated by the PA technique are very close to the CTMDP- 
based technique. Recall that the key advantages of the PA 
technique lie in that (a) it is easier to implement the PA 
technique for a real system than the CTMDP-based techniques 
and (b) The PA technique does not require random variable 
generators, which are normally required by non-TO-based DPM. 

We evaluated the proposed online algorithm. We compared 
our algorithm with Stochastic Learning Hybrid Automata (SLHA) 
approach presented in [16]. This model attempts to 
probabilistically learn the length of the future idle period and, 
accordingly adjust action the switching probabilities. The SLHA 

(5-2) 

(5-3) 



 

model was implemented according to our best of our ability and 
utilized for the remaining simulations. A linear reward-penalty 
scheme is used for feedback learning. The feedback parameters 
were selected to ensure that the timing constraints are eventually 
satisfied. We ran these two algorithms with three different input 
request generation patterns: ST1, RT1 and RT2. In Figure 4, two 
traces of the two algorithms for RT1 and RT2 are presented. The 
constraint on average waiting number of requests as set to 0.1 for 
(a) and 0.02 for (b). The reward-penalty coefficients used in 
SLHA were set as a=0.1 and b=0.01. Experimental results with 
different timing constraints D (c.f. (4-4)) are reported in Table 2. 
Parameter T in (5-2) is set to 100s for ST1 and RT1 and 200s for 
RT2. It is seen that the online PA technique achieves energy 
savings very close to the results of the offline optimal technique. 
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Figure 4. Comparison of simulation results of online policies. 

Table 2. Results of power consumption for online algorithms 

 D ST1 RT1 RT2 

0.02 1.937 2.009 0.929 SLHA 
0.1 1.386 1.779 0.457 
0.02 1.672 1.998 0.854 Online PA 
0.1 1.102 1.437 0.443 

6 CONCLUSION 
This paper proposes a timeout-based DPM technique constructed 
on the theory of Markovian processes. This approach is designed 
to find out the optimal timeout values for a system with multiple 
power saving states in terms of energy dissipation while satisfying 

user defined performance constraints. First, a Markovian 
processes based stochastic model is proposed to model the power 
management behavior of a system under the control of a timeout 
policy. Next, based on this model, perturbation analysis technique 
is used to construct an offline gradient-based approach to search 
for the optimal timeout values. Online implementation of this 
approach is also proposed for a system with variable parameters. 
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