

Determining the Optimal Timeout Values for a Power-Managed System
based on the Theory of Markovian Processes: Offline and Online

Algorithms1

ABSTRACT1

This paper presents a timeout-driven DPM technique which relies
on the theory of Markovian processes. The objective is to
determine the energy-optimal timeout values for a system with
multiple power saving states while satisfying a set of user defined
performance constraints. More precisely, a controllable
Markovian process is exploited to model the power management
behavior of a system under the control of a timeout policy.
Starting with this model, a perturbation analysis technique is
applied to develop an offline gradient-based approach to
determine the optimal timeout values. Online implementation of
this technique for a system with dynamically-varying system
parameters is also described. Experimental results demonstrate
the effectiveness of the proposed approach.

Introduction

Dynamic power management (DPM), which refers to selective
shut-off or slow-down of components that are idle or
underutilized, has proven to be a particularly effective technique
for reducing power dissipation in such systems. In the literature,
various DPM techniques have been proposed, from heuristic
methods presented in early works [1][2] to stochastic
optimization approaches [3][4].

Among the heuristic DPM methods, the timeout policy is
the most widely used approach in industry and has been
implemented in many operating systems. Examples include the
power management scheme incorporated into the Windows
system, the low-power saving mode of the IEEE 802.11a-g
protocol for wireless LAN card, and the enhanced adaptive
battery life extender (EABLE) for the Hitachi disk drive. Most of
these industrial DPM techniques provide mechanisms to adjust
the timeout values at the user level.

In the other direction, stochastic approaches have been
proposed for DPM. Reference [3] proposed a power management
model based on discrete-time Markovian decision chain. The
discrete-time model requires policy evaluation at periodic time
intervals and may thus consume a large amount of power
dissipation even when no change in the system state has
occurred. To overcome this shortcoming, a model based on

1 This project was funded in part by the NSF CNS grant no.

0509564.

continuous-time Markovian decision processes (CTMDP) was
proposed in [4]. The policy change under this model is
asynchronous and thus more suitable for implementation as part
of a real-time operating system environment. Reference [5] also
improved on the modeling technique of [3] by using a
time-indexed semi-Markovian decision process to handle
workloads with Pareto-distributed idle time durations. The most
significant advantage of stochastic approaches is that, based on
mathematically rigorous stochastic models of a power-managed
system, these techniques can construct the optimum DPM policy.

This paper presents a timeout-based DPM technique, which
is constructed based on the theory of Markovian processes and is
capable of determining the optimal timeout values for an
electronic system with multiple power-saving states. More
precisely, in this paper, a continuous-time Markovian process
based stochastic model is presented to capture the power
management behavior of an electronic system under the control
of a timeout policy. Perturbation analysis is used to construct an
offline gradient-based approach to determine the set of optimal
timeout values. Finally, online implementation of this approach
is also discussed.

The motivation for this work comes from the following
factors. The timeout policy is an industry standard that has been
widely deployed in many real systems. A DPM technique based
on timeout policies may thus be easier and safer for users to
implement. At the same time, it helps them achieve a reasonably
good energy-performance trade-off. To implement a more
elaborate DPM technique requires the users to directly control
the power-down and wake-up sequences of system components,
which normally necessitates detailed knowledge of hardware and
involves a large amount of low-level programming dealing with
the hardware interface and device drivers. Notice also that the
various system modules typically interact with each other
implying that hasty power-down of a system module may cause
the whole system to malfunction or become unstable. So it is a
big responsibility to control directly over the state of a system
module that should not be delegated unceremoniously. A DPM
technique based on a simple and well-tested timeout policy and
incorporated in the operating system will have none of the above
concerns.

Previous stochastic DPM approaches with non-stationary
input request generation rates [6][7] or variable system

Peng Rong

Dept. of Electrical Engineering
University of Southern California

Los Angeles, CA 90089
e-mail : prong@usc.edu

Massoud Pedram

Dept. of Electrical Engineering
University of Southern California

Los Angeles, CA 90089
e-mail : pedram@ceng.usc.edu

parameters [8] are mostly based on online lookup or
manipulation of policy tables that have in turn been constructed
offline. This is because the calculation of the optimal DPM
policy is very computation-intensive and hence cannot be done at
runtime. The perturbation analysis-based DPM approach
presented in this paper reveals a very different approach for
online power management policy tuning. This approach does not
require a pre-computed policy table yet it avoids the
computational burden of solving complex mathematical
programs to derive the optimal DPM policy online [7]. The key
idea is to compute an optimal parameterized policy offline for
the complete range of system input parameters. Next, at runtime,
by exploiting perturbation analysis, the gradients of power
dissipation and performance with respect to the control
parameters are estimated and subsequently used to adjust the
policy parameters, e.g., the timeout values or the probability that
a decision is made by as part of policy.

In the literature, several works have been reported to
optimize the timeout policies. For example, reference [10], based
on the theory of competitive analysis, generalizes a
2-competitive algorithm [9] to power management of a system
composed of components with multiple power saving states. The
analysis shows that this generalization of the 2-competitive
policy consumes at most twice as much energy dissipation as the
optimum policy. Note that competitive analysis is a worst case
analysis method which often provides pessimistic bounds on
energy saving that is achievable by DPM. In particular, policies
developed based on competitive analysis do not take advantage
of knowledge about the workload. To surmount this deficiency,
reference [10] also proposed a probabilistic analysis method to
determine the optimal timeout values for a given input
probability distribution with the objective of minimizing the
average power consumption. A similar method is used in
reference [11] to determine the optimal timeout value, assuming
that the duration of idle periods between input requests follows a
Pareto distribution. A key shortcoming of all of the
abovementioned timeout value optimization techniques is that
they do not consider any timing constraints that may be imposed
on the service time of the input requests.

The remainder of this paper is organized as follows.
Background for perturbation analysis is provided in Section 2. In
Section 3, stochastic modeling of a system under the control of a
timeout policy is presented. Offline solution approach is
presented in Section 4 and online implementation issues are
addressed in Section 5. Experimental results and conclusions are
provided in Sections 6 and 7, respectively.

1 BACKGROUND OF PERTURBATION ANALYSIS
Perturbation analysis (PA) provides performance sensitivities for
a discrete event system by analyzing the dynamic behavior of the
system. In the literature, many PA methods have been developed
[12] for various types of system descriptions, including
differential equations, queuing networks, and Markovian
processes. In this section, we will briefly introduce the PA
method developed in [13] for Markovian processes, which is
based on the concept of perturbation realization.

Consider a regular, positive recurrent, and irreducible
continuous-time Markovian process (CTMP) X = {Xt, t≥0} with
a countable state space S = {s1, s2, …} and an infinitesimal
generator G = [gij], where gij represents the transition rate from

state si to sj. Let p=(pi) denote the steady-state probabilities of the
Markovian process. Then it holds that pG=0 and Ge=0,
e=[1,1,…]T. Let f(si): S→R denote a performance function. The
expected performance measure of the Markovian process is
determined by

() ()
i

p i i
s S

E f p f s pfη
∈

= = =∑ ,

where f = [f(s1), f(s2),…] is a column vector.

Now suppose that G changes to Gδ=[gδ, ij]=G+δH, where δ
is a small real number and He=0, which results in the
performance measure changing to ηδ=η+Δη. Perturbation
analysis studies the derivative of η in the direction of H, which is
defined as follows

0
lim

H
δ

δ

η ηη
δ→

−∂
∂

.

The fundamental basis of perturbation realization is that the
effect of a parameter change is the sum of the effects of many
individual changes on a sample path. Consider the Markovian
process X with state space S and generator G. Assume at time t0,
X is perturbed from state si to sj, which means that X should
transit to state si according to G, but it reaches state sj because of
the small change of generator G, i.e., G becomes Gδ at this
instance. Let X1 and X2 denote the original and perturbed
processes, respectively. It is assumed that after t0 both X1 and X2
evolve based on generator G. Thus the effect of this single
perturbation on the performance can be measured as the
difference between the performances of X1 and X2.

We define potential vector ε=(εi), where εi denotes the
performance potential for state si and is determined as follows

()

0
lim{ [()] }

T i
i t

T
E f X dt Tε η

→∞
= −∫ .

Here ()i
tX represents a sample path of Markovian process

X with initial state si. Furthermore, ε satisfies the Poisson
equation: Gε=-f+ηe [13]. Based on the concept of perturbation
realization, the derivative of η is calculated as [13]

pH
H

η ε∂ =
∂

.

2 SYSTEM MODELING
In this paper, we will focus our discussion on a power
management framework which consists of a service requestor
(SR), a service queue (SQ) and a single service provider (SP).
The SP provides service for the service requests generated by the
SR. The requests that cannot be serviced immediately are
waiting in the SQ for the SP to become available. The SP has a
working state and at least a low-power state. The SP uses less
power in its low-power state, but a transition into or out of the
low power state consumes additional energy and may increase
the service delay for the requests. The state transition of the SP is
controlled by a timeout policy, which assigns a timeout value to
each state except the one with the lowest power. The SP will
transit to the next highest power state from the current state if the
corresponding timeout expires and no requests are generated.
The objective of this paper is to find out the optimal timeout
values that minimize the power consumption of the SP while
satisfying the constraint on the average service delay.

(2-4)

(2-3)

(2-2)

(2-1)

Similar to the work in [4], the SR and the SQ can be
modeled as CTMP models as depicted in Figure 1. The SR
model consists of a state set R = {ri, i=1,2,…,R} and a generator
matrix GSR, where R is the number of the states of the SR. The SQ
model consists of a state set Q = {qi, i=0,1,…,Q} and a generator
matrix GSQ(r,s), where Q is the maximum length of the queue, s
denotes a state of the SP, and r denotes a state of the SR.

Figure 1. The CTMP models of the SR and the SQ.

The SP under the control of a timeout policy can be modeled
as a Markovian process model which simulates the power
management behavior of the SP. As an example, the CTMP model
of an SP with a single low-power state is presented in Figure 2,.
This model comprises of a state set S={Work, Idle, TO1…TOn,
Sleep} and a generator matrix GSP(λ), where λ is the parameter to
be optimized. Notice that λ sets the duration of time that the SP
spends in the Idle state before it can go to the low power Sleep
state during an idle period (i.e., the timeout value.) Details of
model states and state-transitions are explained next.

λλ

Figure 2. The CTMP model of the SP with a timeout policy.

Sleep: A low-power state. The SP transits to Idle state when the
SQ is non-empty.

Work: A functional state, where the SSP provides service to the
SR that is waiting in the SQ.

Idle: A non-functional state. If the SQ is non-empty, the SP goes
to the Work state; otherwise, it goes to TO1 state.

TOi: i=1,2,…,n: One of n non-functional time-out states. These
states are used to simulate the timeout policy. When the SQ is
non-empty, the SP goes back to the Idle state; otherwise, the SP
goes to TOi+1 state or Sleep state if the SP is in the TOn state.
Notice that the time for the SSP transferring from Idle to TOn
state is a random variable whereas in the timeout policy, the
timeout value is fixed. Consequently, multiple TO states are used
to improve the simulation accuracy based on the central limit
theorem [14]. The transition rates between Idle to TO1 and TOi to
TOi+1, i=1,2,..,n-1, are all the same, i.e., λ.

This model can easily be extended to an SP with multiple
low power states by introducing a TO state chain for each
additional low power states. Next, we define the CTMP model
SYS of the whole system comprising of the SR, SQ and SP. Let
X denote the state space of SYS, thus X=R×Q×S-{invalid
states}, where the invalid states include the states where the SP is
in the Work state while the SQ is empty. Assume the SP has m

low-power states si, i=1,2,…,m, sorted in a descending order of
power consumptions. Let s0 denote the full-power non-functional
state, i.e., the Idle state in Figure 2. Let TOij, i=0,1,…,m-1,
j=1,2,…,n, denote a TO state at the same power level as state si,
where n denotes the number of TO states in a TO state chain. Let
λ=(λi), where λi determines the timeout value Tto,i which should
be exceeded before the SP can transit to low-power state si+1:
Tto,i= n/λi. The generator of the SYS is a function of λ, and is
denoted by G(λ). Note that this model includes unknown
continuous parameters, i.e. λ, to be determined.

3 PROBLEM FORMULATION AND SOLUTION
Let γ =(γx) denote a column vector, where γx denotes the expected
power consumption when the SYS is in state x. Let w=(wx) be a
column vector, where wx denotes the number of requests waiting
in the SQ when the SYS is in state x. Let D denote an upper
bound on the expected number of requests waiting in the SQ.
Finally, let p=(px) denote a row vector, where px represents the
steady-state probability of state x. Now, we can formulate the
timeout-policy based energy optimization problem as a
constrained mathematical program as follows:

(){ , }p pλ γM in

which is solved over variables p and λ subject to:

() 0pG λ = ,

T1, [1,1,...,1]pe e= = ,

pw D≤ , , 0p λ ≥ .

Equations (4-2) and (4-3) capture properties of a CTMP.
Inequalities (4-4), which are based on the Little’s theorem [15],
impose constraints on the expected task delay of the SP.

This problem is a non-convex, constrained mathematical
program (c.f. (4-2)). The optimal solution can be found by using
standard stochastic search techniques, e.g., simulated annealing.
However, we have developed a gradient-based optimization
algorithm, which efficiently finds a good approximate solution
based on the structural features of the CTMP model.

We next consider the derivative of performance measure η
with respect to λi, i=0,1,…,m−1. From equation (2-4), the
derivative is calculated as

i
i

pH
η ε
λ

∂ =
∂

 where
,

()
[] []xy

i i xy
i

g
H h

λ
λ

∂
= =

∂
,

gxy(λ) denotes the (x, y) entry of the generator matrix G(λ), x,y∈X.
From an examination of the CTMP model, we find that λi affects
the SYS state transition rate only if the SQ is in state q0 and the SP
is in state si or TOij. Thus Hi is a sparse matrix which has only 2nR
non-zero entries, where n is the number of TOi states and R of SR
states. From the CTMP model SYS, it is seen that each non-zero
entry of Hi only takes a value of either 1 or -1. Let x(r, q, s) denote
the fact that in a global SYS state x, the SR is in state r, the SQ is
in state q, and the SP is in state s. From equation (4-5) and the
observation about the sparsity of Hi, the derivative is

0 0 ,1 0

0 , 0 , 1 0 ,

(, ,) (, ,) (, ,)

1

(, ,) (, ,) (, ,)
1

()

()i

i i i

i j i j i j

x r q s x r q TO x r q s

n

r x r q TO x r q TO x r q TO
j

p

p

η
λ

ε ε

ε ε
+

−

=

∂
=

∂

− +⎛ ⎞
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

∑ ∑
.

(4-1)

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

From equation (4-6), we can see that, with x=x(r, q0, s),
only a small number of px’s and εx’s are involved in the
derivative calculation. Thus we may not have to calculate values
for all px’s and εx’s.

Let indices of the generator matrix G(λ) be sorted following
the sequence of s, r, and q. Then, G(λ) may be represented as

11 12

21 22

()
()

G G
G

G G

λ
λ ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,

where G11(λ) represents the state transitions between states in a
sub-space X0 where q=q0. This is a square matrix with a
dimension of m(n+1)+1. G11, G21 and G22 are matrices with
constant entries, which are independent of the value of λ.

Lemma 1: If G(λ) is the infinitesimal generator of an ergodic
Markovian process, then the inverse of G22 will exist.

Based on this lemma, we can prove an important result,
stating that to determine a derivative ∂η/∂λi, we need only
explore the sub-space X0, whose size is nearly 1/R of the whole
state space X. In the following, the superscripts “−1” and “T”
denote the inverse and transpose of a matrix, respectively.

Theorem 1: Let pX0=(px) be a row vector, and εX0=(εx) be a
column vector, where x∈X0. pX0 and εX0 can be calculated from
the following equations

()0 0 0 0 00

T 1 T T
X X X 11 12 22 X 21 XX() ()−+ − + =p e e G G G e e G eλ

()
0 0 0

0 0 00 0

T 1
X X 11 12 22 21 X

1 1
X 12 22 X X 12 22X X

()

(())()

−

− −

+ − =

− − −

e e G G G G

e G G e p I f G G f

λ ε

where
0X denotes the complement of X0 in the state space X.

Furthermore, η can be calculated based on pX0 as follows:

()
0 0 0

1
X X 12 22 Xp f G G fη −= −

Before presenting our algorithm to solve the optimization
problem (4-1), we first define two performance measures: the
expected energy consumption rate ηγ=pγ and the expected
number of waiting requests in the SQ ηw=pw. The derivatives of
the two performance measures ∂ηγ/∂λi and ∂ηw/∂λi can be
determined from equations (4-6) to (4-10). However, it is
awkward to directly use these two measures in gradient-based
optimization search. The reason is that the absolute values of
these derivatives become very large when λi approaches 0. To
overcome this problem, we define variable τi, such that

ln , 0,1, , 1i i i mτ λ= = − .

We have

, 0,1, , 1
∂ ∂

∂ ∂
= = −

i i

i i m
η η
τ λ

λ .

Our algorithm to solve the optimization problem (4-1) is
then as follows.

Offline Algorithm

Input: A parameterized generator matrix G(λ) which describes
the power management system.

Output: Timeout values, Tto,i= n/λi, i=0,1,…,m−1.

1. Set initial values for τi, denoted as τi,0, and tolerances δu,
δD>0.

2. Calculate the constant parameter matrices used in equations
(4-8) and (4-9).

3. Set penalty factor M >0.
4. Set initial step size s0 and k=0.

5. Calculate ηγ and ηw values at step k by using equations (4-8)
to (4-11).

6. Calculate derivatives ∂ηγ /∂τi,k and ∂ηw/∂τi,k by using
equations (4-6) and (4-12).

7. Calculate the gradient of cost function u=ηγ +Μ(ηw−D) at
step k, denoted as ∇uk.

8. If ||∇uk||<δu, go to step 11.

9. Set τk+1=τ k−sk∇uk, where τ k=(τi,k), i=0,1,…,m−1.

10. Let k=k+1, and go to step 5.

11. If ηw−D<δD, go to END, else increase M and go to step 4.
END
The convergence of this algorithm is guaranteed based on

the following key result.

Theorem 2: Given is a linear composition u of bounded,
differentiable measures defined on an ergodic CTMP with
parameterized generator G(τ) that is differentiable with respect to
τ. If step size sk>0 satisfies

2

1 1

, k k
k k

s s
∞ ∞

= =

= ∞ < ∞∑ ∑ ,

then u(τk) converges and lim () 0kk
u

→∞
∇ =τ with probability

one, where τk is a sequence defined in line 9 of the Offline
Algorithm.

Note that, as an example, a sequence of step sizes that satisfy
constraint (4-13) are sk=1/k, k=1,2,….

4 ONLINE ALGORITHM
To develop online power management algorithms, we assume
that initially, the optimal solution has been deployed. This
optimal solution can be achieved by doing online statistical
profiling followed by offline optimization to generate the
optimal solution for the nominal values of the system parameters.
However, at run time, the system’s input parameters are subject
to change. For example, the average service request generation
rate can change over time. The goal of our online algorithm is to
be able to adjust the initial optimal solution (i.e., the timeout
values dictated by this solution) following changes in the system
parameters, so as to maximize the power efficiency of the service
provider while satisfying system-level performance constraints.
For this purpose, Algorithm 1 can be used, however, although
the matrix size has significantly been reduced by equations (4-8)
and (4-9). Matrix multiplications and solving the system of
equations may still be a heavy burden on the computation
capability of the running system if such operations are performed
online. Therefore, we estimate the values of pX0 and εX0 through
the real sample path. Let Tk be the kth transition epoch of the
Markovian processes {Xt} which describes the behavior of
system SYS; Let Xk be the state after the kth transition, Ck be the
sojourn time that process Xt stays in state Xk,. Then Ck= Tk+1-Tk.
Now pX0 and εX0 are estimated based on the following equations

1

0

1
lim (,)

N

x k k
N

kN

p X x C
T

ς
−

→∞ =

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑ ,

(4-7)

(4-8)

(4-9)

(5-1)

(4-10)

(4-11)

(4-12)

(4-13)

0

0

(,) ()
lim

(,)

K

K

N l T T

k tT
k

x N lN

k
k

X x f X dt

X x

ς
ε

ς

− +

=
−→∞

=

=
∑ ∫

∑

where (,) 1, if k kX x X xς = = ; otherwise, it equals to 0; T is a

properly chosen constant and l is selected satisfying that Xt is
observed in the whole integration period in (5-2). Since f(Xt) is a
piecewise function of t, the integration in (5-2) can be
implemented by accumulating the product of Ck and f(Xk) at
transition epoch Tk+1. In addition, we need to estimate η in order
to check the constraint and convergence condition, which may be
directly done by

0

1
lim ()

NT

tN
N

f X dt
T

η
→∞

= ∫

For the online algorithm, it is important to capture the
change in system parameters and guarantee that the performance
constraints are met. Thus, we present an online algorithm, which
adaptively adjusts the step size to speed up the convergence.

Online Algorithm

Input: Measured pX0, εX0, ηγ and ηw along a sample path.

Output: Timeout values Tto,i= n/λi, i=0,1,…,m−1.

1. Set the initial step size s0 and k=0. Let τi,k denote the values
of τi at step k.

2. Calculate derivatives ∂ηγ /∂τi,k and ∂ηw/∂τi,k by using
equations (4-6), (4-11), (4-12), (5-1) and (5-2).

3. Estimate ηγ and ηw at step k by using equation (5-3), and
denoted by ηγ, k and ηw,k, respectively.

4. If ηw,k≤D, then
1 () /k k ks γ γη η+ = − ⋅∇ ∇τ τ . If ηw,k>D, then

*
, ,arg max {() ()}i k i w k ii γη τ η τ= ∂ ∂ ∂ ∂ ,

* *1, , kk i k i
sτ τ

+
= − .

5. If ηw,k≤D≤ηw,k-1 or ηw,k-1≤D≤ηw,k, then set sk+1 = sk/α, where
α>1 is a constant factor.

6. If both ηw,k ,ηw,k-1>D, then increment a counter nc by one. In
this case, if nc becomes greater than a preset threshold, then
set sk+1 = αsk and clear nc.

7. If both ηw,k ,ηw,k-1≤D and ∇ηγ,k ·∇ηγ,k-1<0, then set sk+1 = sk/α.
8. Go to step 2.

5 EXPERIMENTAL RESULTS
For this experiment, we used ten-hour traces of hard disk requests
generated by two types of applications running on a Linux PC.
The first application was a file manipulation program, which read
some data file, edited the file, and wrote it back to the disk. The
second application was a program which periodically reads data
from another machine through a WLAN card, searches for some
relevant information in the received data, and stores this
information onto the disk. The request generation pattern of the
first application was accurately modeled with a Poisson process
with an average rate of 0.208 requests per second. The request
generation statistics of the second program was adequately
characterized by a two-state CTMDP model. The state transition
rate and generation rates of SR to hard disk λhd are

()10 0.0415

0.0063 0
s−⎡ ⎤

⎢ ⎥
⎣ ⎦

, 1[0.0826,0.0187] ()hd sλ −= .

The average service time for a disk request is 67ms. For our
experiment, we used the hard disk drive, Hitachi Travelstar 7K60,

as the service provider, which has three low power states. Power
dissipation and start-up energy and latency of the disk drive are
reported in Table 1.

Table 1. Energy/transition data of hard disk driver
State Power

(w)
Start-up
energy (J)

Wake-up
time (s)

Active 2.5 -- --
Performance idle 2.0 0 0
Low power idle 0.85 1.86 0.4
Stand-by 0.25 10.5 2
Sleep 0.1 15.9 5

First, we examine the offline algorithm. The aforesaid
traces are denoted as RT1 and RT2, respectively. In addition, we
also generated two synthetic SR input traces: ST1 and ST2,
where the SR generation rates were set to 1/10 and 1/15 per
second, respectively. For comparison purposes, we considered
two DPM techniques in addition to our proposed technique
(which we denote by PA for perturbation analysis): a
probabilistic analysis-driven timeout policy (PTO) [10] which
determines the timeout value to minimize energy consumption
while ignoring any timing constraints and a CTMDP-based DPM
policy [4]. The simulation results of these policies for different
input traces and under different delay constraints are reported in
Figure 3.

10
-2

10
-1

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Average number of waiting requests

A
ve

ra
g

e
po

w
e

r c
o

ns
u

m
pt

io
n

(W
)

RT1, PA

ST1, PA
ST2, PA

RT2, PA

RT1, CTMDP

ST1, CTMDP
ST2, CTMDP

RT2, CTMDP

RT1, PTO

ST1, PTO
ST2, PTO

RT2, PTO

Figure 3. Comparison of simulation results of offline policies on

a semi-log plot.

As we can see, the PTO approach yields well in terms of
energy minimization. However, the corresponding SR delays are
quite large except for ST1. Thus, in the case where constraining
the SR latency is important, it is not suitable. The CTMDP-based
DPM generates the provably optimal policy for minimizing
energy under timing constraints. It is seen that the results
generated by the PA technique are very close to the CTMDP-
based technique. Recall that the key advantages of the PA
technique lie in that (a) it is easier to implement the PA
technique for a real system than the CTMDP-based techniques
and (b) The PA technique does not require random variable
generators, which are normally required by non-TO-based DPM.

We evaluated the proposed online algorithm. We compared
our algorithm with Stochastic Learning Hybrid Automata (SLHA)
approach presented in [16]. This model attempts to
probabilistically learn the length of the future idle period and,
accordingly adjust action the switching probabilities. The SLHA

(5-2)

(5-3)

model was implemented according to our best of our ability and
utilized for the remaining simulations. A linear reward-penalty
scheme is used for feedback learning. The feedback parameters
were selected to ensure that the timing constraints are eventually
satisfied. We ran these two algorithms with three different input
request generation patterns: ST1, RT1 and RT2. In Figure 4, two
traces of the two algorithms for RT1 and RT2 are presented. The
constraint on average waiting number of requests as set to 0.1 for
(a) and 0.02 for (b). The reward-penalty coefficients used in
SLHA were set as a=0.1 and b=0.01. Experimental results with
different timing constraints D (c.f. (4-4)) are reported in Table 2.
Parameter T in (5-2) is set to 100s for ST1 and RT1 and 200s for
RT2. It is seen that the online PA technique achieves energy
savings very close to the results of the offline optimal technique.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

Time (s)

P
ow

e
r

co
n

su
m

p
tio

n
(W

)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

1

1.5

Time (s)

W
a

iti
n

g
 n

u
m

be
r

o
f

 r
e

q
u

e
st

s

 Online PA

SLHA

Online PA
SLHA

(a) RT1

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.5

1

1.5

2

Time (s)

P
ow

er
 c

on
su

m
pt

io
n

(W
)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.05

0.1

0.15

0.2

Time (s)

W
ai

tin
g

nu
m

be
r o

f
re

qu
es

ts

Online PA
SLHA

Online PA
SLHA

(b) RT2

Figure 4. Comparison of simulation results of online policies.

Table 2. Results of power consumption for online algorithms

 D ST1 RT1 RT2

0.02 1.937 2.009 0.929 SLHA
0.1 1.386 1.779 0.457
0.02 1.672 1.998 0.854 Online PA
0.1 1.102 1.437 0.443

6 CONCLUSION
This paper proposes a timeout-based DPM technique constructed
on the theory of Markovian processes. This approach is designed
to find out the optimal timeout values for a system with multiple
power saving states in terms of energy dissipation while satisfying

user defined performance constraints. First, a Markovian
processes based stochastic model is proposed to model the power
management behavior of a system under the control of a timeout
policy. Next, based on this model, perturbation analysis technique
is used to construct an offline gradient-based approach to search
for the optimal timeout values. Online implementation of this
approach is also proposed for a system with variable parameters.

REFERENCES
[1] M. Srivastava, A. Chandrakasan, and R. Brodersen,

"Predictive system shutdown and other architectural
techniques for energy efficient programmable
computation," IEEE Trans. VLSI Systems, Vol. 4, pp.
42–55, Mar. 1996.

[2] C-H. Hwang and A. Wu, “A predictive system shutdown
method for energy saving of event-driven computation,”
ICCAD, pp. 28–32, Nov. 1997.

[3] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli,
“Policy optimization for dynamic power management,”
IEEE Trans. Computer-Aided Design, Vol. 18, pp.
813–33, Jun. 1999.

[4] Q. Qiu, Q Wu and M. Pedram, “Stochastic modeling of a
power-managed system-construction and optimization,”
IEEE Trans. Computer-Aided Design, Vol. 20, pp.
1200-17, Oct. 2001.

[5] T Simunic, L Benini, P Glynn and G. D. Micheli,
“Event-driven power management,” IEEE Trans.
Computer-Aided Design, Vol. 20, pp. 840-857, Jul. 2001.

[6] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu and G. De
Micheli, “Dynamic power management for non-stationary
service requests,” IEEE Trans. on Computers, pp.
1345-61, Nov. 2002.

[7] Z. Ren, B.H. Krogh, and R. Marculescu, “Hierarchical
adaptive dynamic power management,” DATE, pp.
136-41, Feb. 2003.

[8] P. Rong and M. Pedram, “Extending the lifetime of a
network of battery-powered mobile devices by remote
processing: a Markovian decision-based
approach,” DAC, pp. 906-911, Jun. 2003

[9] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki,
“Competitive randomized algorithms for nonuniform
problems,” Algorithmica, vol. 11, no. 6, pp. 542–71, June
1994.

[10] S. Irani, S. Shukla, and R.Gupta, “Online strategies for
dynamic power management in systems with multiple
power saving states,” ACM Trans Embedded Systems, vol.
2, no. 3, pp. 325-346, 2003

[11] L. Cai and Y-H Lu, “Joint power management of memory
and disk,” Proc. of DATE 2005, Vol. 1, pp. 86–91, 2005.

[12] J.F. Bonnans and A. Shapiro, “Perturbation analysis of
optimization problems,” Springer, New York, 2000.

[13] X-R Cao and H-F Chen, “Perturbation realization,
potentials, and sensitivity analysis of Markov processes,”
IEEE Trans Auto Control, vol.42, no. 10, pp. 1382-93,
Oct. 1997.

[14] http://mathworld.wolfram.com/CentralLimitTheorem.html.
[15] E. A. Feinberg, A. Shwartz, Handbook of Markov

decision processes: methods and applications, Kluwer
Academic, 2002.

[16] T. Erbes, S. K. Shukla, and P. Kachroo, Stochastic
Learning Feedback Hybrid Automata for Dynamic Power
Management in Embedded Systems, Thesis, 2004.

